
Combining Symbolic Model Checking with
Uninterpreted Functions for

Out-of-Order Processor Verification
�

Sergey Berezin, Armin Biere, Edmund Clarke, and Yunshan Zhu

Computer Science Department, Carnegie Mellon University
5000 Forbes Avenue, Pittsburgh, PA 15213, U.S.A.�

Sergey.Berezin,Armin.Biere,Edmund.Clarke,Yunshan.Zhu � @cs.cmu.edu

Abstract. We present a new approach to the verification of hardware systems
with data dependencies using temporal logic symbolic model checking. As a
benchmark we take Tomasulo’s algorithm [10] for out-of-order instruction schedul-
ing. Our approach is similar to the idea of uninterpreted function symbols [4]. We
use symbolic values and instructions instead of concrete ones. This allows us to
show the correctness of the machine independently of the actual instruction set
architecture and the implementation of the functional units. Instead of using first
order terms as in [4], we represent symbolic values with a new compact encoding.
In addition, we apply some other reduction techniques to the model. This signif-
icantly reduces the state space and allows the use of highly efficient symbolic
model checkers like SMV instead of special decision procedures. The correct-
ness of the method has been proven formally with the PVS theorem prover.

1 Introduction

Modern microprocessors are becoming extremely complicated, involving superscalar
pipelines and out-of-order execution (OOO). This complexity increases the demand for
fast but reliable validation methods to ensure timely delivery of the product with as few
errors as possible. Formal verification is the most precise technique that can guaran-
tee the correctness of the design. However, the growing complexity of microprocessors
makes formal verification increasingly difficult because data and control flow are tightly
coupled. A formal model has to capture all of the data dependencies. As a result, the
state space may become enormous. Straightforward model checking techniques [5, 6]
can not handle this complexity because of the state explosion problem. Theorem prov-
ing [8, 12, 19] alone usually involves significant manual effort. Moreover, the proofs are
too tedious to be easily manageable. Symbolic execution using uninterpreted function
symbols [4] is based on extensive term rewriting and simple proof-theoretic reasoning,
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and thus, can be easily automated. However, when the circuit becomes too large, each
cycle in the symbolic execution produces large formulas. In addition, the number of
cycles required to complete the verification grows as well.

Usually the terms that appear during symbolic execution are not arbitrary. Often,
they share subterms and have similar structure. We introduce a special representation
for such terms that reduces the number of copies of identical subterms. This represen-
tation is based on a data structure called the reference file. Terms that share common
subexpressions simply have references to the same entries in the reference file. This
greatly reduces the memory requirements and also simplifies the problem of checking
equivalence between terms — we simply compare the references. We propose to use
symbolic model checking techniques [3, 16] to perform the actual symbolic execution
of the circuit. The correctness of the method has been proven in the PVS theorem prover
[20].

Recently there has been a lot of work on the verification of superscalar micropro-
cessors both with and without OOO execution. Burch and Dill [4] use the notion of un-
interpreted functions to represent data and instructions symbolically. Interpreting these
symbols results in a particular run of the concrete processor being verified. All of the
formulas with uninterpreted function symbols that can be proven remain true under
arbitrary interpretations. Thus, their approach can prove the correctness of a device re-
gardless of the concrete implementation. This approach, however, requires special deci-
sion procedures for uninterpreted function symbols and does not use previously existing
techniques like BDDs [1]. Skakkebæk et al. [21] propose an incremental flushing tech-
nique to verify an OOO design. Their approach is also based on uninterpreted function
symbols and uses the SVC tool as a decision procedure. Our approach does not require
any special decision procedures. We only need a powerful symbolic model checker.

Sajid et al. [18] have extended the decision procedures for uninterpreted function
symbols to use BDDs. However, their work shares the disadvantage of [4] that their de-
cision procedure can not be easily combined with symbolic model checking. Moreover,
they do not have a notion of fairness nor can their method verify more involved tempo-
ral properties. They have also not investigated how their techniques can be applied to
the verification of OOO.

Hojati and Brayton [11] have developed a formal description technique for integer
combinational/sequential (ICS) systems. Their technique is even more general than un-
interpreted functions ([4]). For a restricted class of models they show, by applying the
notion of data independence [24], that 0-1 instantiation can reduce the size of the model
to a finite number of states. This allows the usage of efficient symbolic model checkers.
However, OOO is inherently data dependent and thus these abstraction techniques can
not be applied. [11] also investigates how approximate reachability analysis can be per-
formed for general ICS models. They give an algorithm that makes use of BDDs, but
it is only used for reachability analysis and no limit on the number of terms occurring
in the verification can be given. Our approach does not require a new algorithm, and
the number of terms that need to be considered can be calculated a priori. Therefore,
our model can be represented very efficiently in previously existing symbolic model
checkers.



Velev and Bryant [22] use BDDs to verify pipelined microprocessor designs. It is
not immediately clear if their approach can be extended to handle OOO. Instead of
symbolic model checking their technique is based on symbolic trajectory evaluation.

McMillan in [17] has used model checking to verify a variant of Tomasulo’s al-
gorithm (see Sect. 2). However, his model has only one functional unit that computes
only one concrete operation (integer addition). The main idea in his paper is to use
compositional reasoning to reduce the complexity of the verification. This part is or-
thogonal to our approach and can be combined with our representation of uninterpreted
functions. He also exploits symmetry to reduce the number of reservation stations, reg-
isters and their width. However, because the functional unit is modeled explicitly, his
approach is unsuitable for verifying examples with a large number of instruction types
or complex functional units (e.g. for operations like integer multiplication). He also
does not consider liveness, which is also the case for [8]. Our representation makes it
possible to abstract away the concrete instructions and functional units. Moreover, we
have developed a number of new transformations in addition to the classical symme-
try reduction [7] that significantly reduce the state space. In particular, these reductions
enable us to verify liveness easily.

The approaches of Burch & Dill [4] and McMillan [17] are both valuable for ver-
ifying out-of-order execution algorithms. However, they both have major limitations.
The decision procedures of Burch & Dill can not be used directly with symbolic model
checking. McMillan’s work, on the other hand, does use symbolic model checking tech-
niques. But he does not use uninterpreted function symbols, and therefore, is unable to
handle arbitrary instructions. Our approach does not suffer from these disadvantages.
It includes the benefits of both together with a powerful new technique for symboli-
cally representing the contents of registers. We believe that in order to verify realistic
superscalar out-of-order designs automatically all of these techniques will be necessary.

Our paper is organized as follows: In Sect. 2 an overview of Tomasulo’s algorithm
is given. Section 3 presents the basic abstraction technique. Tomasulo’s algorithm with
reference file is presented in Sect. 4. Section 5 explains the overall strategy that we
use for verifying the OOO algorithm. The next section describes other abstraction tech-
niques that allow us to speed up the verification. Section 7 shows some experimental
results. The paper concludes in Sect. 8 with a discussion of some directions for future
research.

2 Out-of-Order Execution

As benchmarks for our method we have verified several configurations of our imple-
mentation of Tomasulo’s algorithm [10]. This algorithm is the basic technique that is
used to implement OOO in modern microprocessors. It also has been used in previous
work on the verification of OOO [8, 17]. We will explain how OOO works and how
Tomasulo’s algorithm implements it. At the end of the section we briefly describe our
model.

To achieve greater throughput of instructions, superscalar microprocessors use sev-
eral functional units that can operate in parallel. However, if two instructions depend
on each other (e.g. the later needs the result of the first instruction) one of them has to



wait until the other has finished. In this case one functional unit is idle. But if a differ-
ent instruction, potentially following the other two in the instruction sequence, does not
depend on their results, then it can be executed on the free functional unit. This is the
main idea behind OOO.

R0 R0 R1:=

+
R0 R1:=

:=

∗
R0
R1 R1 R1

∗
I0
I1
I2

Fig. 1. An instruction sequence that allows OOO.

For instance, in Fig. 1 instruction I1 depends on the result computed by I0, and I2
does not have to wait for I0 or I1. This allows I2 to be executed in parallel to I0. Since
a multiplication can take much longer than an addition, the execution of I2 could have
finished before I0 has finished and I1 has started. In this case R1 is updated with the
result of I2 before I1 is started. In this example the execution of I1 would read the wrong
value from register R1. This is a data hazard (write after read) and has to be handled
properly. Tomasulo’s algorithm is designed to avoid such problems.
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Fig. 2. A model of an implementation of Tomasulo’s Algorithm.

The main idea behind Tomasulo’s algorithm is to dispatch instructions from the
instruction sequence into a pool of reservation stations (Fig. 2). From a reservation
station it schedules an instruction for execution on an unoccupied functional unit as



soon as all operands are available. To avoid data hazards two additional mechanisms are
needed. First, in addition to the operator, the operands are also stored in the reservation
station. This avoids write after read hazards that are explained in the previous paragraph.
If the value of a register is not yet computed, the register contains a tag that points to
the reservation station that will produce this value. Since the value of an operand may
not be available while dispatching the instruction into the reservation station, the tag
of the appropriate register is used instead of the actual value. Read after write hazards
are now handled by updating the operands in the reservation stations together with the
registers when results are written back.

In the actual hardware implementations of Tomasulo’s algorithm tags and values are
usually stored separately, and a special flag controls whether the value or the tag should
be used. In our model tags and values share the same memory for efficiency. Figure 2
is a high level floorplan of our model. It is similar to the OOO unit described in [10]. It
consists of a set of registers (the register file), a pool of reservation stations, and several
functional units. The main difference is that reservation stations are not associated with
specific functional units. In our paper we build a pool of reservation stations instead.
The Pentium ProTM [9] microprocessor also has a pool of reservation stations. A similar
model was used in [17].

3 Basic Abstraction Techniques

Symbolic model checking techniques [3, 16] have proven to be of great value for the
verification of reactive systems. They have made it possible to verify a large number of
practical examples, often with enormous state spaces. The techniques are automatic and
can generate counterexamples when a system fails to satisfy its specification. A variety
of powerful model checkers are now available, and they are becoming widely used in
industry. Because of the power of symbolic model checking techniques we decided
to investigate whether they could be used in combination with uninterpreted function
symbols to verify OOO designs.

The advantage of model checking over theorem proving [8, 19] is that it is much
more automatic. But even with the use of symbolic methods like BDDs there is a limit
on the size of the models that can be handled. We will show that the direct application
of symbolic model checking to the verification of OOO designs is infeasible. To reduce
the size of the model enough for symbolic techniques to be applicable, powerful ab-
straction techniques are needed. In this section we consider three different encodings
of a microprocessor. The first two turn out to be impractical, since they do not provide
enough reduction of the state space. We introduce the third representation that makes
the use of model checking feasible and allows us to verify non-trivial OOO designs.

3.1 Unabstracted Representation

An OOO unit of a microprocessor can be described as a finite state machine. However,
the number of states will be very large. Assume that the microprocessor has r registers
of width w, s reservation stations, and f functional units. Each reservation station has
to be able to save the contents of two registers (one for each operand of the instruction).



Each register contains w bits. This leads to a lower bound of w � � r � 2 � s � on the number
of bits n needed for encoding a state. For modern microprocessors we can assume w �
32, r � 16, f � 6, s � 2 � f � 12 and derive n � 32 � � 16 � 2 � 12 ��� 960. This number of
state bits is clearly out of the scope of all currently available model checkers.

3.2 The Brute Force Approach

The most obvious abstraction is to use only a small number of bits for each register.
This abstraction technique is described in [24, 11] and minimizes the size of registers
(and reservation stations) containing data. While, in general, this is a conservative ab-
straction, it assumes data independence. Since the functional units operate on the data
and the verification task is to compare the results of these operations, we can not make
this assumption.

Burch & Dill ([4]) use uninterpreted functions to overcome this problem. In their
approach the operations become uninterpreted function symbols and the data is repre-
sented by terms over these symbols. For their model of a microprocessor the verification
task amounts to checking the equivalence of two deeply nested terms. A special deci-
sion procedure for quantifier-free first order logic with equality [4] is needed for this
purpose. The original paper [4] only considered a single scalar pipeline. This work was
extended to a superscalar in-order microprocessor in [2]. However, his project required
a non-trivial amount of human interaction and manual modification of the model. The
decision procedure of Burch & Dill can not make use of highly effective symbolic
model checking techniques and is unable to handle OOO properly, as noted in [21].
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Fig. 3. Execution trace of a sequential machine.

We start with the same basic idea as [4]. The model of the microprocessor does not
compute concrete values. It only manipulates symbolic terms made of constants and



uninterpreted function symbols. This is explained in Fig. 3(a) where a symbolic execu-
tion trace of a sequential microprocessor is shown. The processor has two registers and
the instruction sequence consists of two instructions. The registers R0 and R1 contain
the initial symbolic values r0 and r1 respectively. The first instruction adds these two
values and stores the symbolic result ‘r0 + r1’ into register R0. Note that ‘+’ is treated
as an uninterpreted function with no actual meaning. In particular, we can not assume
commutativity or associativity of these functions. The second instruction computes the
product of the result and the initial value r1 of register R1. The final symbolic result
‘(r0 + r1) * r1’ is generated and stored in register R1.

In general, we associate a unique constant with the initial value of each register.
Since the number of registers is finite, the number of constants is also finite. Thus, if
we execute a finite number of instructions, the number of terms that occur during this
symbolic execution will also be finite. Consequently, the processor model will be finite
and can, in principle, be represented in a finite state model checker. A direct encoding of
all possible terms would achieve our goal of combining uninterpreted function symbols
with symbolic model checking. However, we will show that the number of bits needed
to represent these terms grows exponentially with the number of instructions i. This
makes this approach infeasible.
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Fig. 4. All possible terms for 2 registers and 2 instructions. Every node in these graphs consists
of two possible labellings. So each graph represents 2#nodes possible terms.

First, consider the example in Fig. 3(a). There are two constants and two uninter-
preted function symbols of arity two (‘+’ and ‘*’). To count the number of possible
terms consider the graphs (a) – (e) in Fig. 4. From (e) we get two terms of height 1 and
8 terms of height 2 from (d). The graphs (a) and (b) represent all 64 � 32 � 32 terms
of height 3 where one of the root children has a height of 1. The remaining graph (c)
includes all the terms with the maximal number of nodes. These make up additional
128 terms. All together we have 202 different terms, and it takes 8 bits to encode one
term.



In general, any term occurring in the symbolic execution will have a height no larger
than i � 1. The height of a term is defined as the height of its syntax tree or, equivalently,
the maximal number of nested function applications plus one. As a rough lower bound
on the number of all possible terms we use a lower bound on the number of terms with
maximal height and maximal number of subterms (e.g. Fig. 4(c)). There are at least as
many terms as there are combinations of constants at the leaves. Because the tree has 2i

leaves and each leaf is one of r constants, a lower bound will be r2i
.

Since this is doubly exponential, the number of bits needed in a binary encoding of
that domain would grow exponentially with the number of instructions. As an example
consider the case where r � 4, s � 4 and i � 5 (see Section 7). In a binary encoding we
have to use at least log2 425 � 26 � 64 bits for each register and other locations where
a data value can be stored. With four registers and four reservation stations the number
of state bits would be at least 64 � � 4 � 2 � 4 � � 768. Note that 64 bits is often as big as
the width of a register in a concrete model.

3.3 The Reference File

While the brute force approach of direct encoding of all possible terms is not feasible,
it is important to note that in one execution trace not all possible terms can occur.
Moreover, the same terms or subterms are referenced at different locations. For instance,
in the final state of the execution trace in Fig. 3(a) the subterm ‘r0 + r1’ occurs both in
register R0 and R1. In this model it has to be stored twice and can not be shared.

A similar problem occurs in the implementation of logic and functional program-
ming languages like Prolog and Lisp [23, 14, 15]. They use a heap to store newly gen-
erated terms and thus enable structure sharing. Registers in the abstract machine for
these languages (e.g. WAM [23]) only contain constant values or pointers to the heap.
This prevents unnecessary copying and allows sharing of common subterms.

We use a special data structure, called reference file, similar to a heap. This is a
much more compact encoding of the terms occurring during an execution. Each entry
of the reference file contains an application of an uninterpreted function symbol. Each
operand of the function application is either an initial value of a register or a pointer to
another entry of the reference file. Unlike the heap, the size of the reference file is finite
and is equal to the number of instructions i.

As an example, Figure 3(b) shows the execution of the same instruction sequence as
in Fig. 3(a). Now all terms are represented with a reference file. After the first instruction
the entry P0 of the reference file stores the corresponding function symbol (‘+’) together
with its operands. In our case the operands are the constants ‘r0’ and ‘r1’. Instead of the
whole term (‘r0 + r1’) only the pointer (‘p0’) is written into the destination register R0.
This result is further used by the second instruction. In the entry P1 of the reference file
allocated for this instruction the first operand is again stored as a pointer (‘p0’) without
being expanded. Finally, the pointer ‘p1’ is written to the destination register R1 of the
second instruction.

Compared to the first execution trace in Fig. 3(a), the difference is that the registers
do not contain terms anymore. Symbolic constants (‘r0’ and ‘r1’) or pointers to the
reference file (‘p0’ and ‘p1’) are stored in the registers. When a functional unit finishes



a computation, a new entry is allocated in the reference file for a newly generated term,
and the registers are updated with pointers to it. Note that the terms occurring in the
first run can easily be restored from the reference file by expanding the pointers.

Now, we can calculate an upper bound on the number of bits for the representation
of the reference file. Each entry has to store a function symbol and two operands, where
an operand is a constant or a pointer to the reference file. There are i � r values for
each operand and i function symbols. This requires 2 � log2

�
i � r � bits to encode the two

operands and log2 i bits for a function symbol yielding the total of 2 � log2
�
i � r � � log2 i

bits per entry. The entire reference file consists of i entries, and thus, can be encoded
with O

�
i � log2

�
i � r � � bits.

We also need to encode the contents of the register file and the reservation stations.
There, in addition to data values, we also need to store tags (see Section 2). This re-
quires log2

�
i � r � s � bits, since we have s different tag values. Each reservation station

contains a busy bit, two operands and an opcode. This takes s � � 1 � 2 � log2
�
i � r � s � �

log2 i � bits for all s reservation stations. We also need r � log2
�
i � r � s � bits for r reg-

isters. Putting it all together, our model of Tomasulo’s algorithm can be encoded with
O
� �

i � r � s � � log2
�
i � r � s � � state bits.

For an example with four registers (r � 4), four reservation stations (s � 4), and five
instructions (i � 5) the exact number of bits is 16 for the register file, 48 bits for the
reservation stations, and 55 bits for the reference file, giving the total of 119 bits.

In fact, the number of different instructions that have to be considered is i � s � 1,
since only s instructions can be stored in the reservation stations at any time, and only
one new instruction needs to be dispatched (see Section 5). With i instructions at most 3 �
i registers can be involved (2 operands and one destination register for each instruction).
Thus, if the actual processor has more than 3 � i registers, the unused registers can be
eliminated. Hence, the only free parameter is the number of reservation stations s, and
the upper bound simplifies to O

�
s � log2 s � .

4 Tomasulo’s Algorithm with Reference File

Now we can explain how our model of Tomasulo’s algorithm actually works (Sect. 2)
when combined with the reference file (Sect. 3). The configuration shown in Fig. 5
consists of three registers, three reservation stations, and two functional units. Since we
only consider three instructions in this example, the number of entries in the reference
file is also three (P0, P1, and P2).

The instruction sequence is the same as in Fig. 3(a) and (b) with one additional
instruction. The first instruction places its result into the register R0. This register is
then read by the two following instructions, which do not depend on each other. This
allows the second and third instructions to be executed in parallel. The result of the
first instruction will be written into the entry P0 of the reference file. Similarly, the
results of the second and third instructions are written into P1 and P2 respectively.
This establishes a one-to-one mapping between the instructions and the entries of the
reference file.

When a reservation station becomes available, a new instruction can be dispatched
into it. Dispatching means copying the value of the operands and the opcode into this
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Fig. 5. Execution trace of an out-of-order machine using a Reference File (D = Dispatch, X =
Execute, W = Write-Back).

free reservation station. In addition, the tag of the destination register is updated to point
to this reservation station. For instance, when the first instruction ‘R0 := R0 + R1’ in
Fig. 5 is dispatched, the value of the operands (‘r0’ and ‘r1’) together with the opcode
(‘+’) are copied into S0. At the same time R0 is updated with ‘s0’, a pointer to S0. At
the next step the second instruction is dispatched. This is handled similarly to the first
step. However, note that a dependency between S1 and S0 is generated by copying ‘s0’
into the first operand field of S1.

Up to this point the reference file was not needed, since no actual computation took
place. Now, in step three, the result of the execution of the first instruction is placed on
the Common Data Bus (CDB) by the functional unit F0 and written back into register
R0. In our abstract model the result of the computation is a new term. It consists of
the uninterpreted function symbol ‘+’ applied to the symbolic values ‘r0’ and ‘r1’. The
term is represented by a pointer (‘p0’) to the reference file entry P0 after P0 is updated
appropriately. Thus, ‘p0’ is written back into register R0. At the same time the tag ‘s0’
in S1 is updated with ‘p0’.

Beside writing back, the third step involves dispatching the third instruction. This
instruction also needs the result of the first instruction in its first operand. When copying
the value of the first operand from register R0 to the reservation station, the new value
‘p0’ on the CDB has to be used instead of the old value ‘s0’ in the register. Not for-
warding the value from the CDB seems to be a frequent error while designing an OOO



unit based on Tomasulo’s algorithm. We made this mistake in a preliminary version of
our model and during the verification the model checker produced a counterexample. A
similar error is also reported in [17].

In the fourth step the second and third instructions are executed in parallel. After
that, in the fifth step, the execution of both instructions is finished. However, only one
functional unit at a time can use the CDB to write back. Our model nondeterministically
chooses the second functional unit F1 to be the bus master. This illustrates that the
reference file can be written out-of-order. Thus, the third entry P2 of the reference file is
updated with the result of the third instruction while the second entry P1 remains empty.
In the sixth step P1 is updated with the result of the second instruction. Intuitively, the
reference file resembles a reorder buffer that never retires instructions. Therefore the
final contents of the reference file will also be independent of the execution order.

5 Overall Verification Approach

The verification of an OOO design consists of proving partial and total correctness.
The proof of the total correctness is accomplished by showing a liveness property, and
in our model can be easily model checked. The partial correctness (safety) is usually
stated in terms of sequential execution (Fig. 6). That is, executing an arbitrary sequence
of instructions in both the OOO and the sequential machine produces the same result
in the register file (for simplicity, we do not consider memory in our example here). A
standard approach to deal with instruction sequences is to use induction on the length
of the sequence [4]. Below we use s and t to denote states of the OOO machine, and p
and q for the sequential machine.

In the induction step we have to compare states of the OOO and the sequential
machines. We say that two states s and p are equivalent if flushing the OOO machine
from s produces the same contents of the register file as in the state p. Flushing means
executing all of the pending instructions in the reservation stations without dispatching
new ones. Given two equivalent states s and p, the induction step consists of dispatching
an arbitrary instruction I in the OOO machine and executing the same instruction in the
sequential machine. Then we need to check that the resulting states t and q are again
equivalent. This property is often described as a commutative diagram [4] (the rear
side of the cube in Fig. 7). There are two paths from s to q in Fig. 7. The path where
dispatching of I is followed by flushing is called the OOO path. The other path where
flushing is followed by executing I is called the sequential path. Then the diagram
commutes if and only if the two paths lead to the same state.

More formally, let
������� �

p � I � be a function that executes an instruction I sequen-
tially in a state p. Similarly, �
	 �
� � s � I � dispatches the instruction I in the state s yielding
a new OOO state. And ��������� � s � flushes the OOO machine from the state s and returns
the equivalent sequential state. Note that both �
	 �
� and ��������� may span over several
steps of the execution. Moreover, ��������� may never terminate if the model has an error
and there is a circular dependency among reservation stations. In other words, it may
be a partial function. We verify that this function is always total, which implies the total
correctness (liveness). We state the partial correctness of the processor as the following
theorem:
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Theorem 1 (Partial Correctness). For any finite sequence of instructions I1 ������� � In and
two sequences of states s0 � s1 ������� � sn and p0 � p1 ������� � pn of the OOO and sequential ma-
chines respectively, such that

�
i � n � si � 1 � �
	 ��� � si � Ii � and pi � 1 � ��� � � �

pi � Ii � �

if p0 � ��������� � s0 � , then pn � ��������� � sn � .

The proof is by induction over the length of the instruction sequence n. The base
case of the induction (n � 0) is trivial. The inductive step relies on the following lemma:

Lemma 2 (Commutative Diagram).
�

s �
�

I �
������� � � �����
� � s ��� I � � ��������� � �
	 �
� � s � I � ���

If we prove Lemma 2, then the proof of Theorem 1 is easy. However, proving the
lemma is hard and is the main bottleneck of the verification of OOO designs. In part,
our method of proving this lemma is similar to the one of Burch & Dill [4]. As in their
approach, we use an initial abstraction that replaces the concrete instructions and data
values by uninterpreted constants and function symbols. But then we apply symbolic
model checking techniques, including the reference file, as opposed to special decision
procedures. In the rest of this section we describe the entire method more formally, and
give an idea of how it can be encoded and justified formally in a theorem prover.

The first observation is that the number of instructions j stored in the processor at
any given time is always finite and usually not very large. Thus, we only have to deal
with at most j � 1 instructions, including the new instruction being dispatched. Since
Tomasulo’s algorithm is independent of the actual instructions, we can use j � 1 differ-
ent instruction symbols instead. Registers initially contain distinct symbolic constants.
Symbolic instructions are then used as function symbols to construct new terms over
these constants. The correspondence between such a symbolic representation and the
concrete microprocessor is given by the semantic function [[ � ]]. Proving the commu-
tativity of the abstract diagram (the front side of the cube in Fig. 7) and providing an
appropriate semantic function [[ � ]] is sufficient for proving the commutativity of the
concrete diagram. This, in turn, completes the proof of the main correctness theorem
for arbitrary sequences of instructions. Formally, we need to prove the following two
lemmas. We denote abstract (symbolic) values with primed letters (s � , I � , etc.), and con-
crete values by corresponding unprimed letters.

Lemma 3 (Abstract Diagram).
�

s ���
�

I ���
������� � � �����
� � s � ��� I � � � ��������� � �
	 ��� � s � � I � � �

Lemma 4 (Abstraction). Let [[ � ]] be a mapping of symbols from the abstract domain
to the actual functions and constants in the implementation domain, such that

�
I � �
�

s � � �
	 �
� � [[s � ]] � [[I � ]] � � [[ �
	 �
� � s � � I � � ]] and
�

I � �
�

p � �
��� � � �

[[p � ]] � [[I � ]] � � [[
������� �

p � � I � � ]] �

Then, if
�

s ���
�

I ���
��� � � � � �����
� � s � ��� I � � � � �����
� � �
	 ��� � s � � I � � � in the abstract domain, then

�
s � �

�
I � �

������� � � �����
� � [[s � ]] ��� [[I � ]] � � ��������� � �
	 ��� � [[s � ]] � [[I � ]] � �	�



Figure 7 gives a graphical view of the approach: we prove the commutativity of the
front (abstract) side of the cube (Lemma 3) using model checking and provide a seman-
tic function [[ � ]] that makes the left and right sides commute (conditions in Lemma 4).
This implies the commutativity of the rear side, and that is exactly the inductive step for
the concrete processor (Lemma 2).

We use the PVS theorem prover to prove Theorem 1 and Lemmas 2 and 4, pro-
viding Lemma 3 as an assumption. This is a relatively easy part of the verification.
Lemma 2 immediately follows from Lemma 3 and Lemma 4. The proofs of Theorem 1
and Lemma 4 consist only of manipulating the next state functions and relations with-
out expanding them, and thus, can be done only once for an arbitrary configuration of
an OOO design. The constraints on the semantic function in Lemma 4 require some in-
formation of the actual implementation details and have to be checked for each concrete
model. However, the proof of it only needs to establish that the transition relations of
both concrete and abstract machines are structurally the same and differ only in the data
types (bit vectors versus function and constant symbols). This lemma can be easily au-
tomated, or even avoided by creating a preprocessor that compiles the implementation
model into the abstract domain.

Lemma 3 is proven automatically using our model checking technique. It is encoded
in CTL as an AG formula of the form

AG
�
OOO � finished � SEQ � finished �

OOO � regfile � SEQ � regfile � OOO � reffile � SEQ � reffile � �

To prove the liveness of the OOO unit we assume the following fairness constraints:
every busy functional unit will eventually produce a result. Then we check the formula

AF OOO � finished

Note, that this task is much easier than proving the liveness property for the abstract
commutative diagram since only one machine is involved.

6 Other Optimizations

With the abstraction techniques presented in previous sections we are able to verify
several interesting configurations of OOO designs (Fig. 7). However, to verify designs
that are closer to real microprocessors we need to apply other optimizations as well.

(Classical) Symmetry Reduction for Functional Units [7]. In our model the re-
sult of only one functional unit can be written back at each clock cycle. We make all
the functional units completely general such that they can execute any type of instruc-
tions. Hence, by a symmetry argument we can assume that only one functional unit
writes back on the CDB. This leaves all the other functional units idle, and they can be
eliminated.

Execution of One Machine at a Time. To prove that the diagram in Fig. 7 com-
mutes, we need to traverse both the sequential and the OOO paths (see page 11) and
compare the results. In a model checker it amounts to running two independent ma-
chines from one and the same initial state. It turns out that starting one machine only
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after the other one has finished greatly reduces the number of states and the complexity
of the verification.

Partial Order on Reservation Stations. The next two reductions are very impor-
tant and will be described in greater details in the full version of the paper. Here we
only sketch them briefly. First, we notice that the OOO model is independent of the
order of reservation stations. That is, applying an arbitrary permutation to the reserva-
tion stations preserves the transition relation (Fig. 8). Note that all the tags pointing to
the permuted reservation stations have to be adjusted accordingly. This allows us to as-
sume that all the tags in the reservation stations point “upwards”, that is, to reservations
stations with smaller indices. In addition, we can also require that all busy reservation
stations have smaller indices than all free ones. This reduces the state space further.

Dynamic Permutation of Reservation Station. This is an extension of the previ-
ous reduction technique. Essentially, we construct a quotient transition relation under
the permutations of reservation stations. In our implementation the quotient model ap-
plies an appropriate permutation to the reservation stations after every transition. This
maintains the property that all busy RSs are followed by all free ones, as well as the
tags are always pointing towards RSs with smaller indices.

AG Splitting and the Cone of Influence Reduction. Our specification of (partial)
correctness consists of comparing many state variables of the OOO and the sequential
machines. Instead of writing such a specification in one formula (see page 14), we split
it into multiple formulas each comparing only a few state variables. This transformation
is called AG splitting. Although ultimately we have to check all of the state variables,
we can do it in multiple runs of the model checker. Each split formula depends on a
small number of variables and another technique called the cone of influence reduction
may eliminate some of the state variables from the model. In particular, notice that in
our model we only write to the reference file and never read it. Thus, no state variable
depends on any of the entries in the reference file. If we split our specification to com-
pare one entry of the reference file at a time, then all the other entries can be removed
from the model. A similar technique was used in [17].

7 Experimental Results

We conducted a set of experiments for several configurations of our model of Toma-
sulo’s algorithm using an enhanced version of the SMV model checker ([16]). To make
the description of our model more general the model was described in the M4 macro
language. The M4 script can generate SMV code for an arbitrary configuration of the
OOO unit. The parameters to the script are the number of functional units, reservation
stations, registers and instruction symbols.



In all configurations the model only contains one Common Data Bus (CDB). This
restricts the number of instructions that can be completed in one clock cycle to one.
Therefore, the symmetry reduction described in Sect. 6 reduces the number of func-
tional units to one. That is, proving the correctness of the system with only one func-
tional unit implies the correctness of the same system with an arbitrary number of func-
tional units. Nevertheless, we included several functional units in some of the config-
urations of our model to study how the complexity of the verification grows with the
number of functional units. The table in Fig. 7 summarizes the results for a number of
different configurations of the machine.

Fig. 9. Experimental results for different OOO machine configurations.

Regs RSs FUs Instr. Time (sec.) States BDD Nodes � 106 Iter.

3 2 1 3 94 5 � 4 � 1014 0.7 7

3 3 1 4 240 3 � 2 � 1015 1.78 9

3 4 1 5 1480 2 � 0 � 1026 6.59 11

4 4 1 5 3362 1 � 5 � 1028 15.9 11

5 4 1 5 3941 8 � 0 � 1030 14.3 11

6 4 1 5 8427 5 � 1 � 1031 21.3 11

3 3 2 4 1116 3 � 5 � 1017 7.27 10

3 3 3 4 3380 4 � 8 � 1019 23.1 10

3 4 2 5 � 41505 � 1 � 1028 � 28 � 4 � 1

The actual implementation consists of an OOO machine and a sequential machine
that start from one and the same state. In this state the dependencies between the reser-
vation stations respect the order of their indices as described in Sect. 6. The sequential
machine flushes all of the instructions from reservation stations and then executes a new
instruction sequentially. This implements the sequential path of the commutative dia-
gram (see page 11). The OOO machine dispatches the same new instruction as soon as
one of the reservation stations becomes available, and then flushes the state. After both
machines have finished their computation, the final values of the register and reference
files are compared.

This finishes the main part of the partial correctness proof. In addition, to make
sure that the application of the symmetry reductions from Sect. 6 is correct, we have to
show that a certain invariant holds while executing both machines. The invariant states
that the dependency graph for the reservation stations is acyclic. It is very important to
check this invariant in order to prove the system correct. For example, one of our mod-
els had a subtle error that did not show up in the verification of the main correctness
formula. The error happened when dispatching a new instruction in the OOO imple-
mentation occurred at the same cycle as writing back to a register, whose result was



used by the instruction. The tag of that register had not been yet updated, and thus,
was copied to the reservation station. At the next cycle, however, the register already
had a new value, but the operands in the reservation station still maintained an old tag
pointing to an empty RS. This tag is never replaced later, since the write back has al-
ready occurred, and this reservation station will never be ready to execute (see Sect. 4
for a more detailed description of this kind of error). This makes the safety property on
page 14 vacuously true. We were able to catch this error only by checking that all tags
point to busy reservation stations with smaller indices.

8 Conclusion

We have presented a set of new model checking techniques that combine symbolic
model checking with the idea of uninterpreted function symbols. This allows us to prove
more complex designs than with standard symbolic model checking or decision proce-
dures for uninterpreted functions alone. Compared to straightforward symbolic model
checking we are able to handle arbitrarily complex functional units since we can ab-
stract from their actual implementation. On the other hand, we can use the broad spec-
trum of powerful symbolic model checking techniques, whereas decision procedures
for uninterpreted functions can not be easily combined with symbolic model checking.

The key improvement is a new compact encoding of data terms that requires only
O
�
s � log2 s � bits for an OOO design with s reservation stations as opposed to an expo-

nential number of bits for a straightforward encoding.
In addition to that, we have developed a number of different transformations that

dramatically reduce the size of the set of reachable states and increase the scale of the
designs that we are able to handle. Most of the transformations can be formulated as
symmetry reductions [7] and we want to investigate to what extent these reductions can
be automated.

The technique includes a theorem proving part using PVS where we check that we
did not overlook any important detail. First, we prove a general Theorem 1 together
with Lemma 4. Both have to be proven only once, and can be applied directly to any
configuration of an OOO design, for which Lemma 3 holds. This Lemma is actually
proven by the SMV model checker.

We applied our technique to a set of non-trivial configurations of an OOO design
based on Tomasulo’s algorithm. We plan to extend it to handle additional hardware
structures. In particular, we have already tried some preliminary experiments with mem-
ory operations (load and store instructions). In these experiments we assumed that the
execution of load and store instructions is always in-order. A more realistic model would
enable some degree of OOO execution. In this scenario an address might be the result
of a previously executed instruction and must therefore be represented by a symbolic
term. Since two addresses represented as terms might actually be the same even if the
terms differ, a more involved analysis is required. We are also going to implement the
reorder buffer and support for precise exception handling. Finally, it is very important
to combine our method with compositional approaches like those of McMillan’s [17]
and incremental flushing of Skakkebæk et al. [21].



References

[1] R. E. Bryant. Graph-based algorithms for boolean function manipulation. IEEE Transac-
tions on Computers, 35(8):677–691, 1986.

[2] J. R. Burch. Techniques for verifying superscalar microprocessors. In 33rd Design Au-
tomation Conference (DAC’96), pages 552–557, 1996.

[3] J. R. Burch, E. M. Clarke, and K. L. McMillan. Symbolic model checking: 1020 states and
beyond. Information and Computation, 98:142–170, 1992.

[4] J. R. Burch and D. L. Dill. Automatic verification of pipelined microprocessor control. In
D. L. Dill, editor, CAV’94, volume 818 of LNCS. Springer-Verlag, 1994.

[5] E. Clarke and E. A. Emerson. Design and synthesis of synchronization skeletons using
branching time temporal logic. In Proceedings of the IBM Workshop on Logics of Pro-
grams, volume 131 of LNCS, pages 52–71. Springer-Verlag, 1981.

[6] E. M. Clarke, E. A. Emerson, and A. P. Sistla. Automatic verification of finite-state con-
current systems using temporal logic specifications. ACM Transactions on Programming
Languages and Systems, 8(2):244–263, 1986.

[7] E. M. Clarke and S. Jha. Symmetry and induction in model checking. Number 1000 in
LNCS. Springer-Verlag, 1995.

[8] W. Damm and A. Pnueli. Verifying out-of-order executions. In D. Probst, editor,
CHARME’97. Chapman & Hall, 1997. To appear.

[9] L. Gwennap. Intel’s P6 uses decoupled superscalar design. Microprocessor Report, 9(2):9–
15, 1995.

[10] J. Hennessy and D. Patterson. Computer Architecture: A Quantitative Approach. Morgan
Kaufmann Publishers, 1996.

[11] R. Hojati and R. K. Brayton. Automatic datapath abstraction of hardware systems. In
CAV’95. Springer-Verlag, 1995.

[12] R. Hosabettu, M. Srivas, and G. Gopalakrishnan. Decomposing the proof of correctness of
pipelined microprocessors. In Hu and Vardi [13], pages 122–134.

[13] Alan J. Hu and Moshe Y. Vardi, editors. CAV’98, number 1427 in LNCS, 1998.
[14] S. L. Peyton Jones. The Implementation of Functional Programming Languages. Prentice-

Hall, 1987.
[15] Peter M. Kogge. The Architecture of Symbolic Computers. McGraw-Hill, 1991.
[16] K. L. McMillan. Symbolic Model Checking: An Approach to the State Explosion Problem.

Kluwer Academic Publishers, 1993.
[17] K. L. McMillan. Verification of an implementation of tomasulo’s algorithm by composi-

tional model checking. In Hu and Vardi [13], pages 110–121.
[18] K. Sajid, A. Goel, H. Zhou, A. Aziz, and V. Singhal. BDD based procedures for a theory

of equality with uninterpreted functions. In Hu and Vardi [13], pages 244–255.
[19] J. Sawada and W. A. Hunt. Processor verification with precise exceptions and speculative

execution. In Hu and Vardi [13], pages 135–146.
[20] N. Shankar, S. Owre, and J. M. Rushby. PVS Tutorial. Computer Science Laboratory, SRI

International, 1993.
[21] J. U. Skakkebæk, R. B. Jones, and D. L. Dill. Formal verification of out-of-order execution

using incremental flushing. In Hu and Vardi [13], pages 98–109.
[22] M. N. Velev and R. E. Bryant. Bit-level abstraction in the verification of pipelined micro-

processors by correspondence checking. 1998. Submitted for publication.
[23] D. H. D. Warren. An abstract prolog instruction set. Tech. Note 309, SRI, 1983.
[24] P. Wolper. Expressing interesting properties of programs in propositional temporal logic. In

Proceedings of the 13th annual ACM Symposium on Principles of Programming Languages
(POPL’86), pages 184–193. ACM, 1986.


