The Evolution from LIMMAT to NANOSAT

Technical Report #444
Dept. Computer Science, ETH Ziirich, CH-8092 Ziirich, Switzerland

Armin Biere
Computer System Institute

15. April 2004

Abstract

In this technical report we summarize the evo-
lution of SAT solvers implemented at the for-
mal methods group at ETH Ziirich. We start
with LIMMAT and COMPSAT, which both
took part in the SAT’03 SAT solver competi-
tion. From the more ambitious design of FU-
NEX we reach the minimal implementation of
NANOSAT. We close the discussion with an
overview on how our QBF solver QUANTOR
can be used as a preprocessor for SAT. We high-
light differences to similar implementations, em-
phasizing new ideas. No detailed experimental
comparison is provided, since the main purpose
of this technical report is to give a reference
point for the SAT’04 SAT solver competition.

1 Introduction

The most successful technique for SAT is the
classical DPLL style algorithm [3]. The last
decade has seen a tremendous increase in rea-
soning power of SAT solvers. The improve-
ments are mainly based on the following tech-
niques: non chronological backtracking as in
GRASP [6], learning of conflict clauses as in
RELSAT [1], GRASP and SATO [9], unique im-
plication points pioneered by GRASP, lazy data
structures following SATO [9] and CHAFF [7],
and, most important, the new dynamic decision
heuristics VSIDS of CHAFF [7] and its variances
implemented in BERKMIN [5]. Our solvers fol-
low this evolution of techniques and implement
some more optimizations.

2 SAT Solver LIMMAT

The LIMMAT project was started in 2001 be-
fore the source code of the SAT solver CHAFF
became available. Our main motivation was
to cross check the impressive results the au-
thors of CHAFF reported. From the publica-
tions alone, without access to the source code,
various details were still unclear. As a conse-
quence it turned out, that our first version of
LIMMAT was hardly able to match the per-
formance of CHAFF, after it became available
as executable. Nowadays plenty of reimple-
mentations of CHAFF are publicly accessible in
source. These reimplementations more or less
follow the design decisions made by CHAFF and
its ancestor GRASP.

One such important design decision is con-
cerned with how exactly clauses are learned. In
our first version of LIMMAT we implemented
the simplest scheme: traverse the implication
graph starting from the conflict and collect the
negation of all decisions encountered. As an op-
timization we terminated the traversal at unique
implication points. The idea is to generate
smaller conflict clauses, as pioneered in GRASP.
In our experiments, this optimization turned out
to be important, which was also the conclusion
of the detailed analysis in [10]. We believe that
the real power of this optimization lies in the
fact, that less variables in the conflict clause po-
tentially may result in much larger back jumps
in non chronological backtracking.

However, what we did not realize, and which
hardly could be deduced from the literature,
was the optimization, employed in GRASP and
CHAFF, to stop traversal of the implication
graph, whenever a literal assigned at a lower

decision level than the current one is reached.
The effectiveness of this optimization can be ex-
plained by the same intuition which is behind
VSIDS and the decision heuristics of BERK-
MIN: localize search as much as possible.

After the source code of CHAFF became
available we could trace the learned clauses in
CHAFF and compare them to those learned in
LIMMAT. Only then our unfortunate design de-
cision became clear. In principle, a detailed
analysis of the source code of GRASP could also
have revealed the problem. However, it was not
clear that CHAFF followed GRASP’s design de-
cision in this case. Also CHAFF was proven to
be much faster than GRASP.

After we changed LIMMAT accordingly by
adding another termination criteria to the impli-
cation graph traversal, the performance of LIM-
MAT increased considerably. The change only
involved adding one single boolean expression to
the C program. The lesson learned is, that im-
portant details are often omitted in publications
and can only be extracted from source code. It
can be argued, that making source code of SAT
solvers available is as important to the advance-
ment of the field as publications.

2.1 Fast Access

The original two-watched literal scheme of
CHAFF has the following drawback. Assume,
that a clause is satisfied and the first watched
literal pointer is moved to a satisfied literal. It
may often happen, that later this clause is vis-
ited again through the second watched literal.
In our analysis we realized that the original im-
plementation of CHAFF would still need to tra-
verse the literals of the clause, until either the
first satisfied literal, another satisfied literal or
an unsatisfied literal is found. This traversal
is unnecessary if another level of indirection is
used.

In CHAFF and LIMMAT the occurrence
lists of literals are both implemented as stacks
of pointers. In CHAFF the pointers directly
point to the watched literals in the clause, while
in LIMMAT they point to the clause head. In
the clause head the indices of the watched lit-
erals are saved. In order to distinguish the two
watched literals, we use the low level bit of the
pointers in the occurrence lists. This additional
level of indirection, allows constant time lookup
of the other watched literal in the same clause
and avoids those superfluous traversals in the

example discussed above. The disadvantage of
this technique is the additional pointer derefer-
ence necessary to access a watched literal.

2.2 Optimizing Reasons

In LIMMAT the assignments of variables gen-
erated during boolean constraint propagation
(BCP) are stored in the assignment queue,
which is not a unique feature of LIMMAT. Us-
ing a queue instead of a stack results in breadth
first BCP instead of depth first BCP. The former
heuristically minimizes the depth of the implica-
tion graph, which may result in shorter conflict
clauses.

In LIMMAT we made the design decision
to postpone the actual assignment of variables
until the corresponding assignment is dequeued
from the assignment queue. This has the follow-
ing effect. During clause traversal when moving
watched literal pointers, literals that are already
known to be assigned false, may still be used as
new target of a watched literal pointer.

This lazy assignment of variables allows the
following two optimization. They are both trig-
gered, when an assignment for an unassigned
variable is enqueued to the assignment queue
the second time in the same BCP. There are
two cases, depending on, whether the values in
the two assignments match or not. If the values
do not match, then an early conflict is detected
and the current BCP terminates. However, if
the two values match, then we have two reasons,
e.g. clauses implying the assignment of the vari-
able to the common value.

This opens up the possibility to drop either
reason, which we call reason simplification. For
the decision which reason to use, we employ
the greedy heuristics to pick the smaller reason.
This choice may decrease the depth of the im-
plication graph, again with the goal to minimize
the size of conflict clauses.

Our experiments showed that chances for
simplification of reasons are rare, but early con-
flict detection can often be applied. Since early
conflict detection is automatically detected in
eager assignments of variables, it turns out that,
there is not much benefit in using lazy assign-
ments. Finally, note, that reason simplification
can not immediately be combined with eager as-
signments of variables, since overwriting reasons
without care may introduce cycles into the im-
plication graph.

3 SAT Solver COMPSAT

LIMMAT was our first implementation of the
ideas of CHAFF [7]. Although partially suc-
cessful in the SAT’02 SAT Solver competition,
where LIMMAT won the category of satisfiable
industrial benchmarks, it was clear that the
plain reasoning speed of LIMMAT was much
slower than the one of CHAFF.

In a first attempt to analyze the reason for
this effect, we tried to produce the same deci-
sion order within LIMMAT as in CHAFF. After
quite some effort, we finally gave up. It became
apparent, that visiting the clauses in the occur-
rence lists in different order or traversing literals
of clauses differently, will result in different con-
flict clauses generated. This directly influences,
which decisions are taken. In essence, it is im-
possible, to compare even slight variants of data
structures, without enforcing the same decisions
explicitly.

Since a direct comparison turned out to be
impossible, we just guessed that the often ob-
served slow down of LIMMAT compared to
CHAFF was due to the slightly more bulky data
structures of LIMMAT and the two level indi-
rection when accessing a watched literal from
the occurrence lists through a clause head. In
order to show that this is one of the main prob-
lems with LIMMAT, we decided to build a new
SAT solver COMPSAT with the main goal of a
compact memory layout.

Just reimplementing CHAFF’s data struc-
tures, would not have given any new insight and
we also wanted to keep the successful feature of
LIMMAT, that allows fast access to the other
watched literal and avoids superfluous traversals
of literals, if one of the watched literals satisfies
the clause.

Around that time van Gelder published a
new lazy data structure in [8], based on mov-
ing the watched literals to the first two posi-
tions of the array of literals of a clause. As in
LIMMAT the occurrence lists contain pointers
to the clauses instead and not to the literals as
in CHAFF. Since the two watched literals are
the first two literals in the clause, they can be
accessed immediately and no additional indirect
access is necessary as in LIMMAT. Therefore
this was the base for our new implementation.

The resulting memory layout is very simple
and compact. A clause is represented by the
index of its first literal in the literal pool, which
is just a large array of integers. The last literal of

a clause is followed by a separator, the number 0,
which does not correspond to any legal literal.
Occurrence lists of literals are implemented as
stacks of integer. They contain the indices of
the clauses in which the literal is watched.

As described in [8] BCP involves visiting all
clauses in which a literal is watched. Then the
literals of such a clause are traversed, search-
ing for another literal which is not assigned to
false. This literal is swapped with the currently
watched literal. Before the traversal of the lit-
erals of the clause is started, it is checked that
the other watched literal, which can be accessed
in constant time, does not already satisfy the
clause. In this case no traversal is necessary.

Compared to CHAFF the lazy data struc-
ture of COMPSAT allows fast access to the
other watched literal, and does not need bit-
stuffing to mark watched literals. However, it
always involves starting the traversal of the lit-
erals of a clause at the first position, as opposed
to CHAFF, where the traversal starts at the
watched literal. In theory, this may result in
quadratic many more traversals, although we
have not seen this to occur in practice. As a
remedy to this problem, one may cache the last
traversed position, similar to the cache for the
direction of the last traversal in CHAFF. So far
we have not seen it necessary to implement this
optimization.

As we learned from LIMMAT, the idea of
simplifying reasons does not pay off, and ac-
cordingly we implemented eager assignments to
variables: as soon a unit is found the variable is
immediately assigned, as opposed to LIMMAT,
where the assignment is just enqueued to the
assignment queue, and the assignment is only
performed, when it is dequeued from the queue.

In COMPSAT, on a low level of implementa-
tion, mainly one dynamic data structure is used,
which is a generic stack of integers. In order to
obtain and even more compact memory layout,
we implemented a compact stack implementa-
tion of integer stacks, which has the following
characteristics.

Its anchor only needs two 32 bit words,
which beside saving space also fits better to
modern cache architectures. This is only pos-
sible by restricting the maximal number of ele-
ments on the stack to 228. The compact stack
allocates an additional heap object only on de-
mand. In addition, it uses consecutive 16 bit
short words on the heap instead of 32 bit words,
if the integers stored on the heap are small

enough. This is particular useful if the num-
ber of variables is smaller than 2'°, and, in this
case, reduces the memory foot print by almost
a factor of two.

At compile time the wuser can specify,
whether the compact stack implementation is
used or the standard fast stack implementation,
which resembles the one of the vector type in
STL for C++, as used for instance in CHAFF.
The fast stack needs 3 pointers for its anchor
and the array allocated on the heap always con-
tains 32 bit integers.

Despite the much smaller memory require-
ments using compact stacks, in practice the
trade off of time for space does not pay off. It
seems that memory contention is not the main
problem for SAT solvers and the gained cache
efficiency of compact stacks is offset by an in-
crease in executed instructions. Therefore, the
default is to fall back to the fast stack imple-
mentation. However, for certain combinations
of operating systems, compilers and processors,
the compact stack implementation may be su-
perior.

As the SAT solver COMPSAT entered the
SAT’03 SAT solver competition it still contained
one major flaw. This flaw was revealed in
an early stage and resulted in the exclusion of
COMPSAT from the competition. The problem
consisted of failing to flush the assignment queue
after restart and was introduced when moving
the call to the restart function from the decision
to the backtracking function. Since the restart
interval is very large, restart was seldom trig-
gered in the test suite. In those test case where
a restart occurred the overall result was still cor-
rect. To avoid this problem in the future, we
added a test case with a restart interval of one
to our regression tests, which forces restart ev-
ery other decision.

4 SAT Solver FUNEX

Initially, our SAT solver LIMMAT was an at-
tempt to cross check the impressive results of
CHAFF [7]. We also implemented some new
ideas, which helped LIMMAT to actually im-
prove on CHAFF in certain problem domains.
In general, LIMMAT turned out not to be as ro-
bust as CHAFF. Our hypothesis was, that LIM-
MAT’s two levels of indirection, when accessing
watched literals, slow down BCP considerably.
To test this hypothesis we implemented COMP-

SAT. The main goal was to have the smallest
memory foot print possible and to simplify the
implementation.

With COMPSAT we achieved this goal and
our experiments confirmed that COMPSAT was
an improvement over LIMMAT. Nevertheless
COMPSAT still was not as robust as CHAFF.
Originally, we started to work on LIMMAT
again, but its complex data structures and some
unfortunate design decisions, including lazy as-
signments stood in the way. It became clear that
a new start would probably be better.

At the same time the new decision strat-
egy of BERKMIN [5] was published. The re-
sults on standard benchmarks were slightly bet-
ter than those of CHAFF. So we decided to
support BERKMIN’s decisions strategy in our
new SAT solver FUNEX as well. Our experi-
ence with implementing LIMMAT and COMP-
SAT suggested that a more generic design was
necessary to allow an easy transition between
different heuristics without essentially rebuild-
ing a whole SAT solver.

4.1 Watchers

We also followed the lesson from COMPSAT: in-
dices instead of pointers are not much slower to
handle and simplify the complexity of the im-
plementation considerably. Clauses are stored
in a separate clause data base and are accessed
through their index. Each clause consists of a
clause head, which beside the size of the clause
contains an offset into the literal pool, a large
integer stack.

Separated from the clause data base we
maintain a stack of watchers. Watchers and
clauses with the same index are mapped to each
other. Each watcher contains two indices of the
watched literals of the clause with the same in-
dex. Watchers are also used for caching the
direction of the last traversal. During BCP,
as in LIMMAT and in COMPSAT but not in
CHAFF, watchers allow fast access to the other
watched literal of a clause, avoiding superfluous
traversals, when the other watched literal is sat-
isfied.

Beside empty clauses and units, FUNEX dis-
tinguishes three classes of clauses: binary, small
and large clause. The clauses in these classes
only differ in their size. A binary clause has
two literals. The bound for the size of a small
clause is determined at run-time on start-up of
the solver. The default is to classify non binary

clauses with at most four literals as small.

This 3-way classification allows to implement
dedicated BCP procedures for each class. In
particular, only large clauses are watched. The
watchers of smaller clauses are not used, which
is not possible if clause heads and watchers are
merged.

4.2 Shorter Reasons First

The optimization in LIMMAT of simplification
of reasons prefers shorter reasons. The intuition
is, that shorter reasons decrease the size of the
implication graph, which heuristically should
produce shorter conflict clauses and longer back
jumps in non chronological backtracking.

Following the same intuition, FUNEX
changes the order of BCP in the following way.
First the occurrence lists of variables are also
separated into occurrences in binary clauses,
small clauses and large clauses. Then all prop-
agations are performed that involve only binary
clauses, before small clauses are visited. Only
if all binary and all small clauses of assigned
variables are visited and did not produce any
further assignment, then large clauses are vis-
ited. This technique has the additional advan-
tage that cheap propagations are executed first,
before more expensive propagations involving
visits of large clauses are tried.

4.3 Satisfied Cache

In FUNEX we implemented the decision heuris-
tics of BERKMIN, which in essence traverses
the stack of learned clauses backward to find
a still unsatisfied clause. Among the literals
and its negations contained in this first un-
satisfied clause, the unassigned literal with the
largest activity according to the VSIDS heuris-
tics of CHAFF is chosen as next decision. As in
BERKMIN, if all learned clauses are satisfied,
then we fall back to the original CHAFF heuris-
tics and pick the literal with the largest activity
among all still unassigned literals.

Even though using BERKMIN’s decision
heuristics helped to improve robustness of FU-
NEX, certain benchmarks became very slow.
Profiling revealed that most of the time was
spent in the search for a satisfied clause. To
speed up this search we cache for each decision
level the interval of indices of learned clauses,
which have been searched earlier at this deci-
sion level and contains only indices of satisfied

clauses. With this optimization we were able
to reduce the percentage of time spent in the
search for satisfied clauses from 90% of the to-
tal run-time to less than 10% in many cases.

4.4 Decision Strategies

Already in the first version of FUNEX as used
in the SAT’03 SAT solver competition we al-
lowed the specification of decision strategies at
run-time. The specification is an omega regular
expression over basic decision functions. Orig-
inally no choice operator was included and we
only allowed dlis, horn, chaff and berkmin as
basic decision function.

The decision functions dlis, the arguably
best decision function implemented in GRASP,
and horn as implemented in SATO [9], need
to traverse all unsatisfied clauses. Even after
restricting the traversal to the original clauses
only, too much time is still spent in the decision
function and we removed dlis and horn for the
new version of FUNEX submitted to the SAT’04
SAT solver competition.

In the new version of FUNEX we introduced
a random decision function. It randomly picks a
still unassigned literal. Initially we picked a ran-
dom variable index and incremented it modulo
the number of variables until an unassigned vari-
able is found. Again profiling revealed that for
certain benchmarks, most of the time is spent
in this decision function. The effect seems to be
the same as with open addressing in hash tables:
linear probing results in clustering and degrades
performance considerably.

We use the same solution as in open ad-
dressing hashing. If the first randomly picked
variable is assigned, then we generate another
random number ¢ which is relative prime to the
number of variables. Then instead of increment-
ing the variable index we add § modulo the num-
ber of variables. As our experiments suggest
this approach avoids the problems seen before.
A typical strategy is specified as follows:

random~100.
(random.berkmin~3000) “infinity

It starts off with 100 random decisions, followed
by an infinite repitition of 3000 berkmin deci-
sions after one random decision.

Beside random decisions we implemented a
static decision function, which is based on the
original variable index alone. It picks an unas-
signed variable with the smallest variable index

as decision variable. The phase is determined
by the literal activity. If partitioning is enabled,
as described in the next section, a static pre-
computed variable order is used instead of the
variable index order.

In addition, it is possible to randomly chose
sub-strategies by using the choice operator.
Only the Kleene star, which represents arbi-
trary, but finite, repetition, can not be used yet.
The default strategy in the new version is:

random~100.

restart.

static”3000.

restart.

berkmin~3000.
(random|static|berkmin~99) “infinity

4.5 Partitioning

We strongly believe that the process of generat-
ing a CNF leaves its traces in the CNF. For in-
stance if a circuit is translated into CNF via the
standard Tseitin construction, and the gates are
processed in depth first search, then the variable
order reflects the levelized structure of the origi-
nal circuit to some extent. For some equivalence
checking benchmarks, we observed, that static
decisions heuristics result in orders of magnitude
less decisions.

The benchmarks used in previous SAT solver
competitions have always been randomized,
which destroys the natural variable order. To
allow FUNEX to reclaim the original order in
this or similar applications, we experimented
with a min cut based partitioner. Our current
implementation is slow and the quality of the
results, measured in average cut size, is often
poor. Therefore we seed the static order with a
simple DFS ordering algorithm. Then the min
cut partitioner is run. Only if it improves the
average cut width the static order obtained from
the partitioner is used. At the moment it is also
not clear, whether average cut width is a good
quality measure for variable orders.

4.6 Garbage Collection

A discussion with Niklas Eén destroyed our be-
lief that garbage collection in SAT solvers is un-
necessary. If all learned clauses are kept, then
BCP becomes too expensive, particularly for
hard combinatorial problems (usually in the old
”handmade” category). Therefore we added an

activity based garbage collector to FUNEX us-
ing similar techniques as described in [5].

5 SAT Solver NANOSAT

Our SAT solver NANOSAT is a reaction to the
big success of the closed source solvers SIEGE
and BERKMIN in version 561. In some of
our experiments, these solvers outperformed all
other solvers by a large margin. From the very
sparse information we could obtain about im-
plementation details, we deduced that the ef-
ficiency stems from a carefully low-level opti-
mized implementation and not necessarily from
algorithmic advances.

As first design decision of NANOSAT was to
stick to statically allocated memory as much as
possible. This should in principle allow compil-
ers to produce faster and more compact code.
For instance the variable stack is allocated stat-
ically and thus its start is never moved. Various
other data structures, such as the trail, which
stores the assigned variables in chronological or-
der of their assignment, is allocated once and
forall and will never be moved. No bound checks
are necessary and instead of offsets to the trail,
we can directly use pointers to its elements.

The occurrence lists of literals are imple-
mented as real lists. The list nodes, the
clause heads and the literals of large clauses
are all managed by a moving garbage collec-
tor. This keeps the list nodes for the occur-
rence lists close together for better memory lo-
cality. As reported for the new version of FU-
NEX, NANOSAT follows the ideas of [5] to de-
termine which clauses are collected. In addi-
tion, the moving garbage collector removes all
top level satisfied clauses.

Binary clauses are replaced by two implica-
tions which are stored in separate implication
lists. For instance if the CNF contains the clause
(a vV —b) then the implication list of b contains
a and the implication list of —a contains —b.
Again the moving garbage collector is helpful
in keeping the implications of one literal in con-
secutive memory. We inherit from FUNEX the
idea, that implications should be processed first
before the literals of ”real” clauses are visited,
whenever a new assignment is deduced.

At the top level, after all units are propa-
gated, the pure literal rule is applied in a further
preprocessing step and, if successful, is followed
by a call to the garbage collector. This is re-

peated for a fixed number of times and of course
aborted if no more pure literals are detected.

After preprocessing the CNF a static vari-
able order is determined by DFS. The decision
heuristics follow the BERKMIN strategy. If the
variables of an unsatisfied clause are compared
the static variable order is used as last compar-
ison criteria. The first comparison criteria is as
usual the activity as in CHAFF. If all learned
clauses are satisfied we fall back to the CHAFF
heuristics. To find the most active variable, we
use an O(1) scheduler, inspired by JERUSAT.

Finally, NANOSAT contains one novel fea-
ture, which in its current version may actu-
ally result in slow BCP on instances with many
large original or learned clauses. We improved
the classical single counter based occurrence list
scheme, that uses a single counter per clause, to
count the number of its non false literals.

In the classical version, as soon the counter
becomes 1, the whole clause has to be traversed,
to find the unit, which then triggers an assign-
ment. This search can be avoided as follows. In
each clause head we not only have the counter
of non false literals, but also a sum field that
contains the XOR (exclusive or) of all the point-
ers representing non-false literals. If the counter
becomes one, the sum field is equal to the new
unit.

As always with counter based structures, the
drawback compared to lazy data structures as
in CHAFF is, that many more visits to clauses
are necessary, though in our novel approach at
least the literals itself do not have to be visited.
The literals are only used in the analysis of the
implication graph and in the BERKMIN style
decision heuristics. In addition, during back-
tracking the counters and the sum fields have to
be restored, which is not necessary for lazy data
structures.

In order to reduce the number of visits to
clauses, we do not connect large learned clauses.
In the submitted version, learned clauses with
more than 100 literals are not connected. Dis-
connected learned clauses influence the activi-
ties of variables as usual. They are also used in
the search for still not satisfied clauses, which
is organized as in FUNEX. As consequence a
learned clause may be found with all its liter-
als assigned to false. In this case the decision
level has to be adjusted to the maximum deci-
sion level of all the literals in the contradictory
clause, before standard conflict analysis is in-
voked. In practice, we observed that only a very

small number of adjustments are necessary.

6 QUANTOR

The QBF solver QUANTOR removes subsumed
clauses and uses unit propagation, the pure lit-
eral rule, equivalence reasoning and resolution
to eliminate existential variables. Since all vari-
ables of a SAT problem seen as QBF problem
are existentially quantified, we can use QUAN-
TOR as preprocessor to simplify a SAT prob-
lem, before it is handed to a standard SAT
solver.

6.1 Equivalence Reasoning

To detect equivalences we search for pairs of
dual binary clauses. A clause is called dual to
another clause if it consists of the negation of
the literals of its dual. If such a pair is found,
we take one of the clauses and substitute the
larger literal by the negation of the smaller one
throughout the whole CNF.

The search for dual clauses can be imple-
mented efficiently by hashing binary clauses. In
more detail, whenever a binary clause is added,
we also save a reference to it in a hash table and
check, whether the hash table already contains a
reference to its dual. If this is the case an equiv-
alence is found. After an equivalence is found,
it is used to eliminate one of the variables of the
equivalence.

6.2 Resolution

Variables in a propositional CNF can be elimi-
nated by resolution as was proposed in the orig-
inal DP paper [4]. In [2] we present an efficient
on-the-fly resource driven scheduler that deter-
mines the order in which variables are elimi-
nated. Cheapest to eliminate variables are elim-
inated first. Elimination by resolution continues
as long the number of added literals remains be-
low a certain threshold, 100 literals by default.

6.3 Subsumption

Resolution may produce a lot of redundant sub-
sumed clauses. Therefore, subsumed clauses
should be removed. If a new clause is added, all
old clauses are checked for being subsumed by
this new clause. This check is called backward
subsumption and can be implemented efficiently

on-the-fly, by using a signature-based algorithm.
However, the dual check of forward subsump-
tion is very expensive and is only invoked pe-
riodically, for instance at each expansion step.
More details on the subsumption algorithm can
be found in [2].

6.4 Lifting Partial Assignments

After elimination by resolution becomes too
costly and no further simplifications are possi-
ble, then the CNF is handed over to our SAT
solver FUNEX. If FUNEX determines unsatisfi-
ability, the original formula is also unsatisfiable,
which immediately is reported by QUANTOR.
However, if a satisfying assignment to the sim-
plified CNF is found, this assignment still has
to be lifted to a full assignment of all variables
of the original CNF.

In our implementation, we simply copy the
original CNF, add the partial assignment ob-
tained from the first run of FUNEX together
with eliminated units and pure literals as unit
clauses. We also include pairs of binary clauses
representing equivalences for all variables elim-
inated by equivalence reasoning. The resulting
CNF is satisfiable. In practice FUNEX easily
finds a full satisfying assignment, which is then
reported to the user by QUANTOR.

The second CNF handed to FUNEX is usu-
ally much larger than the first. Therefore the
expensive min cut partitioning algorithm in FU-
NEX is switched off. It usually is used to ob-
tain a good static variable order. For the version
of FUNEX linked to QUANTOR submitted for
the SAT competition, partitioning is switched
off for the first run of FUNEX and if the CNF
is satisfiable also for the second run.

7 Conclusion

We have described the evolution of our SAT
solvers. These solvers do not share much code,
but of course they share many ideas and partic-
ularly design decisions. Some pitfalls discovered
in earlier solvers have been avoided in recent
ones. Nevertheless, it is clear that plenty more
optimizations exist and should be investigated.
Breakthroughs are still possible.

References

[1]

[10]

R. Bayardo and R. Schrag. Using CSP
look-back techniques to solve real-world
SAT instances. In Proceedings of the Na-

tional Conference on Artificial Intelligence
(AAAI), 1997.

A. Biere. Resolve and expand. In Sev-
enth International Conference on Theory
and Applications of Satisfiability Testing
(SAT’04), Vancouver, BC, Canada, 2004.

M. Davis, G. Logemann, and D. Loveland.
A Machine Program for Theorem-Proving.
Communications of the ACM, 5:394-397,
July 1962.

M. Davis and H. Putnam. A Computing
Procedure for Quantification Theory. Jour-
nal of the ACM, 7:201-215, 1960.

E. Goldberg and Y. Novikov. BerkMin: a
Fast and Robust Sat-Solver. In Proceedings
of Design Automation and Test in Europe,
pages 142-149, March 2002.

J. P. Marques-Silva and K. A. Sakallah.
GRASP: A Search Algorithm for Proposi-
tional Satisfiability. IEEE Trans. on Com-
puters, 48(5):506-521, May 1999.

M. H. Moskewicz, C. F. Madigan, Y. Zhao,
L. Zhang, and S. Malik. Chaff: Engineering
an Efficient SAT Solver. In Proc. of the
38" Design Automation Conference, pages
530-535, June 2001.

A. Van Gelder. Generalizations of watched
literals for backtracking search. In Seventh
International Symposium on Al and Math-
ematics, F't. Lauderdale, FL, 2002.

H. Zhang. SATO: An Efficient Proposi-
tional Prover. In Proc. of the International
Conference on Automated Deduction, pages
272-275, July 1997.

L. Zhang, C. F. Madigan, M. W.
Moskewicz, and S. Malik. Efficient con-
flict driven learning in boolean satisfiability
solver. In ICCAD, 2001.

