
The AIGER And-Inverter Graph (AIG) Format Version 20071012

Armin Biere

Johannes Kepler University Linz, Austria

Abstract. This report describes the AIG file format as used by the AIGER library. The purpose of this
report is not only to motivate and document the format, but also to allow independent implementations
of writers and readers by giving precise and unambiguous definitions.

1 Acknowledgements

The format went through various incarnations even before real code became available. In particular the
following colleagues gave invaluable feedback on earlier drafts.

Jason Baumgartner, Roderick Bloem, Robert Brummayer, Alessandro Cimatti, Koen Claessen,
Niklas Eén, Marc Herbstritt, Geert Janssen, Barbara Jobstmann, Hyondeuk Kim, Toni Jussila,
Duraid Madina, Ken McMillan, Alan Mishchenko, Tobias Nopper, Fabio Somenzi,
Niklas Sörensson, Allen Van Gelder.

We also want to thank Holger Hermanns who started the discussion on having a model checking competition
affiliated to CAV and also provided strong support after the idea became more concrete.

2 Availability

You can download up-to date versions of this report, the AIGER library, and utilities from here:

http://fmv.jku.at/aiger

3 Introduction

The name AIGER contains as one part the acronym AIG of And-Inverter Graphs and also if pronounced in
German sounds like the name of the “Eiger”, a mountain in the Swiss alps. This choice should emphasize
the origin of this format. It was first openly discussed at the Alpine Verification Meeting 2006 in Ascona as
a way to provide a simple, compact file format for a model checking competition affiliated to CAV 2007.

The AIGER format has an ASCII and a binary version. The ASCII version is the format of choice if an AIG
is to be saved by an application which does not want to use the AIGER library. It is simple to generate
and has less restrictions. The easiest way to write an AIG in AIGER format is of course to use the AIGER
library.

The binary format is more restricted and much more compact. It is easier to read and thus is the format of
choice for benchmarks and competitions. The average user can either use the AIGER library to generate a
binary file directly or if it is impossible to use the library due to LICENSE or language restrictions, generate
a file in ASCII format and transform it into the binary format with the “aigtoaig” utility. The reverse
is also possible, if for instance a human readable version of an AIG in binary AIGER format is required.

Technical Report 07/1, October 2007, FMV Reports Series
Institute for Formal Models and Verification, Johannes Kepler University

Altenbergerstr. 69, 4040 Linz, Austria

https://doi.org/10.35011/fmvtr.2007-1

Another usage of the “aigtoaig” tool is to validate AIGs in binary AIGER format produced by other tools
not using the AIGER library.

Let us start with some simple examples in ASCII format which all can be found in the “examples” subdi-
rectory. An AIGER file in ASCII format starts with the format identifier string “aag” for ASCII AIG and
5 non negative integers “M”, “I”, “L”, “O”, “A” separated by spaces.

The interpretation of the integers is as follows

M = maximum variable index

I = number of inputs

L = number of latches

O = number of outputs

A = number of AND gates

The empty circuit without inputs nor outputs consists of the single line

aag 0 0 0 0 0 header

The file that consists of the following two lines

aag 0 0 0 1 0 header

0 output

represents the constant FALSE. Note that the comments to the right are not part of the file. The following
file represents the constant TRUE:

aag 0 0 0 1 0

1

The single “1” in the header specifies that the number of outputs is one. In this case the header is followed
by a line which contains the literal of the single output.

The following file is a buffer

aag 1 1 0 1 0 header

2 input

2 output

and the following an inverter

aag 1 1 0 1 0 header

2 input

3 output !1

The maximal variable index is 1, the first number. The second number represents the number of inputs. The
first line consists of the single input literal. A variable is transformed into a literal by multiplying it by two. In
the first case the output specified on the last line leaves the input unchanged. In the second case the output
inverts the input. The output literal “3” has its sign bit, the least significant bit, set to one accordingly.

An AND gate looks as follows

aag 3 2 0 1 1

2 input 0

4 input 1

6 output 0

6 2 4 AND gate 0 1 & 2

2

The literal representing the AND gate is “6” with variable index “3”, the first number in the header, which
denotes the maximal variable index. The last number is the number of AND gates.

An OR gate can be formulated as

aag 3 2 0 1 1

2 input 0

4 input 1

7 output 0 !(!1 & !2)

6 3 5 AND gate 0 !1 & !2

Let us now turn to a more complete combinational circuit

aag 7 2 0 2 3 header line

2 input 0 1st addend bit ’x’

4 input 1 2nd addend bit ’y’

6 output 0 sum bit ’s’

12 output 1 carry ’c’

6 13 15 AND gate 0 x ^ y

12 2 4 AND gate 1 x & y

14 3 5 AND gate 2 !x & !y

i0 x symbol

i1 y symbol

o0 s symbol

o1 c symbol

c comment header

half adder comment

The symbol table is optional and does not need to be complete, but may only contain symbols for inputs,
latches, or outputs.

Sequential circuits have latches as state elements. Here is a toggle flip flop, which has no input, one latch,
and two outputs, its current state and its negation:

aag 1 0 1 2 0

2 3 latch 0 with next state literal

2 output 0

3 output 1

Latches are always assumed to be initialized to zero. The same toggle flip flop with an enable and additional
explicit active low reset input:

aag 7 2 1 2 4

2 input 0 ’enable’

4 input 1 ’reset’

6 8 latch 0 Q next(Q)

6 output 0 Q

7 output 1 !Q

8 4 10 AND gate 0 reset & (enable ^ Q)

10 13 15 AND gate 1 enable ^ Q

12 2 6 AND gate 2 enable & Q

14 3 7 AND gate 3 !enable & !Q

The order of the literals and the definitions of the AND gates is irrelevant. The binary format described
more formally below places more restrictions on the order and also does not allow unused literals.

3

4 Design Choices

The format should allow to model combinational circuits.

Structural SAT problems can be described.

The format should allow to model sequential circuits.

Model checking problems can be described.

The operators are restricted to bit level.

The set of operators needs to be as simple as possible.

A compact standardized binary format should be available.

The ASCII format should be as easy as possible to write by programs.

The binary format should be as easy as possible to read by programs.

A symbol table and comments can be included.

Symbol table and comments can be ignored reading the file sequentially.

Some simple form of extensibility should be possible.

5 Header

The AIGER format describes circuits by multi-rooted And-Inverter Graphs (AIGs). A file in AIGER format
has to start with a format identifier string, which is either “aag” for ASCII format or “aig” for the binary
format. After the format identifier string and one space character follow 5 non negative integers “M”, “I”,
“L”, “O”, and “A” in ASCII encoding. The maximal variable index “M” is the first number in the header. The
circuit has “I” inputs, “L” latches, “O” outputs, and consists of “A” AND gates. If all variables are used and
there are no unused AND gates then “M = I + L + A”.

An unsigned respectively non negative integer is either “0” or a strictly positive ASCII encoded digit followed
by a sequence of arbitrary digits including “0”. The “a” of the format identifier string is the first character of
the file. The format identifier string “aag” respectively “aig” and the numbers are all separated by exactly
one space character. The header line ends with a new line character immediately after the last digit of the
number of ands “A”.

6 Variables and Literals

Literals are constants or signed variables and are also represented by unsigned integers. The least significant
bit of the unsigned word encoding a literal is the sign bit. The remaining bits represent the variable index.

In essence, to obtain the sign bit of a literal we take its unsigned integer representation modulo 2. A sign bit
of one means negated, a sign bit of zero unnegated. To extract the variable from a literal we divide it by 2.
To obtain a literal from a variable in the other direction we multiple the variable index by 2 and optionally
add 1 if the variable should be negated. A literal can be negated by just toggling its least significant bit.

The constant FALSE is represented by the literal “0”, the constant TRUE by “1”. This implies, that FALSE
is unnegated, while TRUE is negated.

AIGER only models cycle-accurate models. Latches are assumed to have a reset zero state, e.g. are initialized
to zero and no explicit reset nor clock signal is necessary. More general circuit models with non zero reset
states or even non deterministic transition relations can be translated into the AIGER format by simple
constructions. See for instance the techniques implemented in “smvtoaig” to translate arbitrary flat and
boolean encoded SMV models into AIGER format.

4

7 ASCII Format

The ASCII format has “aag” as format identifier in the header, which is an acronym for ASCII AIG. The
names of files in the ASCII format are supposed to have an “.aag” extension. The AIGER library also
supports files compressed with GNU GZIP. In this case an additional “.gz” suffix is expected.

After the header the “I” inputs are listed, one per line, as unnegated literal, e.g. represented as even positive
integers. Then the “L” latches are defined. Again one latch per line. Each line consists of exactly two positive
integers separated by a space character. The first is even and denotes the current state of the latch. The
second is the literal that defines the next state function of this latch.

Then the “O” output literals are listed, one per line. Here arbitrary literals are allowed. This concludes the
interface part and the definitions of the “A” AND gates follow.

The definition of an AND gate consists of three positive integers all written on one line and separated by
exactly one space character. The first integer is even and represents the literal or left-hand side (LHS). The
two other integers represent the literals of the right-hand side (RHS) of the AND gate.

In order to be well formed, the “I” inputs, the current state literal of the “L” latches, e.g. the pseudo-primary
inputs, and the LHS of the “A” AND gates are all different and define exactly “I + L + A” literals. The
other literals, except for the two constants “0” and “1”, are undefined and can not be used as output, as
next state literal, nor on the RHS of an AND. Furthermore, the definitions of the ANDs have to be acyclic.
To be more precise: The literal on the LHS of an AND is defined to depend on the literals on the RHS after
stripping sign bits. The transitive non reflexive closure of this dependency relation has to be acyclic.

In the ASCII format both checking for undefined literals and checking for cyclic dependencies has to be
done explicitly. This is the price one has to pay for a simple, easy to generate and less restricted format.
The binary format on the other hand has a strict order requirement on the literals not only for inputs and
latches, but also for the RHS literals with respect to the LHS literals. The binary format does not require
such an explicit check. The AIGER library and all the tools including “aignm” and “aigtoaig”, which read
AIGs in AIGER format with the AIGER library, can be used to validate AIGER files in ASCII or binary
format.

Finally note, that in the ASCII format the number of defined literals does not have to match the maximal
variable index “M”. In essence, some literals may just not be used in ASCII format.

8 Symbols

After the definitions of the AND gates an optional symbol table may follow. A symbol is an arbitrary ASCII
string of printable characters excluding the new line character. Symbols can only be attached to inputs,
latches and outputs and there is at most one symbol per input, latch or output allowed. A symbol entry
makes up one line in the input and consists of a symbol type specifier which is either “i”, “l”, or “o” on the
first character position, followed by a position, which is not separated by a space. After a space character the
symbol name starts and continues until but not including the next new line character. Therefore a symbol
table entry looks as follows:

[ilo]<pos> <string>

The position “pos” of the symbol denotes the position of the input, latch, or output, in the list of inputs,
latches, and outputs respectively. It has to follow immediately the symbol type identifier without space.

The symbol table is put after all the definitions, such that an application reading an AIG can just stop
reading the file after it has read the definitions. The same applies to comments which come last.

5

9 Comments

After the symbol table an optional comment section may start. The comment section starts with a “c”
character followed by a new line. The following lines are comments. Each comment starts at the first character
of a line and extends until the next new line character. There can be no comment lines at all, but the last
comment has to be terminated by a new line character, which then also has to be the last character of the
file.

10 Binary Format Motivation

The binary format is more restricted than the ASCII format. Literals have to follow a specific order. The
order restrictions and using a two-complement binary representation of numbers makes the binary format
not only easier to read but also much more compact. Experiments show that these restrictions and an
additional delta encoding result in smaller uncompressed files. The binary format is often smaller than the
same model in GZIP compressed ASCII format. Without symbol tables the reduction is typically a factor of
two compared to the GZIP compressed ASCII format. Compressing the binary format results in additional
reduction.

As example consider the following SMV model “texas.parsesys^1.E.smv”, the largest benchmark from
the TIP suite:

1204637 unmangled.smv

485595 mangled.smv

191045 unstripped.aag

185098 stripped.aag

114796 unmangled.smv.gz

97455 mangled.smv.gz

72486 unstripped.aag.gz

70693 stripped.aag.gz

44044 unstripped.aig

38097 stripped.aig

28061 unstripped.aig.gz

26226 stripped.aig.gz

After flattening and binary encoding, the SMV model has a size of 1204637 bytes (unmangled.smv). Simply
renaming the symbols, e.g. mangling them, results in a reduction in file size of almost a factor of 3. At least
another factor of two can be obtained by translating the original unmangled SMV file into an AIG and
writing it in the ASCII format (unstripped.aag) with our tool “smvtoaig”. This file still contains all the
unmangled symbols. Stripping the symbol table reduces the size slightly (stripped.aag). Compressing these
four files with GZIP results in another reduction of at least 2. In particular note, that the uncompressed and
unstripped binary format is two third the size of the compressed and stripped ASCII format. Finally using
the binary format, gives almost an additional factor of two. Compressing the binary format gives further
reduction.

For the whole TIP suite the sizes are as follows

4393611 unmangled.tar.gz

3099882 mangled.tar.gz

2676172 aigtosmv.tar.gz

2303631 aag.tar.gz

347325 aig.tar.gz

6

Here we stripped the symbols in the AIG case. The tar file “aigtosmv.tar.gz” contains the result of
translating the files from binary format (tip/aig.tar.gz) back into SMV format. It is also remarkable, that
with the exception of the binary format, GZIP can not make use of the fact that most of the models in the
TIP suite occur multiple times though with different properties.

Finally, as a combinational example consider the CNF benchmark “f10bidw” submitted by P. Manolios and
S. K. Srinivasanused to the SAT Race 2006 with 800k variables and roughly 2.4 million clauses. Since the
original benchmark consists of only AND gates and one unit clause, we could easily extract a corresponding
AIG with our tool “cnf2aig”.

55125988 f10bidw.cnf

17728435 f10bidw.aag

11743646 f10bidw.cnf.gz

5827259 f10bidw.aag.gz

2904681 f10bidw.aig

1931015 f10bidw.aig.gz

These experiments show that using a binary format can considerably reduce space requirements for storing
benchmarks. This reduction is even more important if the AIGER format is used for large combinational
benchmarks, e.g. in a SAT context as in the last example.

11 Binary Format Definition

The binary format is semantically a subset of the ASCII format with a slightly different syntax. The binary
format may need to reencode literals, but translating a file in binary format into ASCII format and then
back in to binary format will result in the same file.

The main differences of the binary format to the ASCII format are as follows. After the header the list of
input literals and all the current state literals of a latch can be omitted. Furthermore the definitions of the
AND gates are binary encoded. However, the symbol table and the comment section are as in the ASCII
format.

The header of an AIGER file in binary format has “aig” as format identifier, but otherwise is identical to
the ASCII header. The standard file extension for the binary format is therefore “.aig”.

A header for the binary format is still in ASCII encoding:

aig M I L O A

Constants, variables and literals are handled in the same way as in the ASCII format. The first simplifying
restriction is on the variable indices of inputs and latches. The variable indices of inputs come first, followed
by the pseudo-primary inputs of the latches and then the variable indices of all LHS of AND gates:

input variable indices 1, 2, ... , I

latch variable indices I+1, I+2, ... , (I+L)

AND variable indices I+L+1, I+L+2, ... , (I+L+A) == M

The corresponding unsigned literals are

input literals 2, 4, ... , 2*I

latch literals 2*I+2, 2*I+4, ... , 2*(I+L)

AND literals 2*(I+L)+2, 2*(I+L)+4, ... , 2*(I+L+A) == 2*M

7

All literals have to be defined, and therefore “M = I + L + A”. With this restriction it becomes possible
that the inputs and the current state literals of the latches do not have to be listed explicitly. Therefore,
after the header only the list of “L” next state literals follows, one per latch on a single line, and then the
“O” outputs, again one per line.

In the binary format we assume that the AND gates are ordered and respect the child parent relation. AND
gates with smaller literals on the LHS come first. Therefore we can assume that the literals on the right-hand
side of a definition of an AND gate are smaller than the LHS literal. Furthermore we can sort the literals on
the RHS, such that the larger literal comes first. A definition thus consists of three literals

lhs rhs0 rhs1

with “lhs” even and “lhs > rhs0 >= rhs1”. Also the variable indices are pairwise different to avoid com-
binational self loops. Since the LHS indices of the definitions are all consecutive (as even integers), the
binary format does not have to keep “lhs”. In addition, we can use the order restriction and only write the
differences “delta0” and “delta1” instead of “rhs0” and “rhs1”, with

delta0 = lhs - rhs0, delta1 = rhs0 - rhs1

The differences will not be negative, and in practice often very small. We can take advantage of this fact by
the simple little-endian encoding of unsigned integers of the next section. After the binary delta encoding
of the RHSs of all AND gates, the optional symbol table and optional comment section start in the same
format as in the ASCII case.

12 Binary Encoding of Deltas

Assume that “w0, ..., wi” are 7-bit words, “w1” to “wi” all non zero and the unsigned number “x” can
be represented as

x = w0 + 2^7*w1 + 2^14*w2 + 2^(7*i)*wi

The binary encoding of x in AIGER is the sequence of i bytes b0, ... bi:

1w0, 1w1, 1w2, ..., 0wi

The MSB of a byte in this sequence signals whether this byte is the last byte in the sequence, or whether
there are still more bytes to follow. Here are some examples:

unsigned integer byte sequence of encoding (in hexadecimal)

x b0 b1 b2 b3

0 00

1 01

2^7-1 = 127 7f

2^7 = 128 80 01

2^8 + 2 = 258 82 02

2^14 - 1 = 16383 ff 7f

2^14 + 3 = 16387 83 80 01

2^28 - 1 ff ff ff 7f

2^28 + 7 87 80 80 80 01

8

This encoding can reduce the number of bytes by at most a factor of 4, which very often in practice is almost
reached, in particular in our application where many small numbers are expected.

This binary encoding of arbitrary precision unsigned integers is platform-independent and thus 64-bit clean.
Unfortunately, this is not true for the following code snippets in C. We also just ignore overflows and file
errors, but otherwise this code shows that encoding and decoding is very simple.

unsigned char

getnoneofch (FILE * file)

{

int ch = getc (file);

if (ch != EOF)

return ch;

fprintf (stderr, "*** decode: unexpected EOF\n");

exit (1);

}

unsigned

decode (FILE * file)

{

unsigned x = 0, i = 0;

unsigned char ch;

while ((ch = getnoneofch (file)) & 0x80)

x |= (ch & 0x7f) << (7 * i++);

return x | (ch << (7 * i));

}

void

encode (FILE * file, unsigned x)

{

unsigned char ch;

while (x & ~0x7f)

{

ch = (x & 0x7f) | 0x80;

putc (ch, file);

x >>= 7;

}

ch = x;

putc (ch, file);

}

Not checking that the next character is an EOF may result in an infinite loop. In the binary format of
AIGER we always expect a complete sequence. Therefore if an EOF is read before the sequence is complete
a parse error occurs. A simple solution to this problem is to check the return value of “getc”. If the value
is EOF then abort decoding with a parse error.

9

13 Property Checking

The AIGER format can easily be used for various types of property checking. A combinational circuit with
no latches, e.g. L = 0, and exactly one output can be assumed to be a circuit for which we want to force the
output to be one. This is an encoding of SAT.

For sequential circuits model checking of simple safety properties is encoded in the same way. To check
liveness we interpret each of the outputs as fairness constraint. An algorithm that finds a reachable fair cycle
for these fairness constraints allows to model check LTL properties.

In addition we plan to support PSL properties in the following way. PSL properties are written in a separate
file. As atomic properties only output of the circuit are allowed. The outputs are referenced through a
mandatory symbolic name in the symbol table.

14 Vectors, Stimulus, Traces, Solutions and Witnesses

In this section we define the semantics and syntax of traces and solutions to property checking problems.
More specifically we only consider structural SAT solving and bad state detection witnesses.

In essence, a valid solution is a list of input vectors. An input vector may contain beside “0” and “1” also
“x” values. Such a list of input vectors is a valid witness iff for any instantiation of the “x” values by “0” or
“1” two-valued simulation will produce at least one “1” at the output of the AIG, assuming that the AIG
starts in its initial all “0” state. For structural SAT problems, the AIG does not contain latches. In this case
one input vector is enough.

In principle one can use three valued logic for fast simulation of AIGs under partial two-valued input assign-
ments. Beside two-valued logic constants “0” and “1”, we also use the logic constant “x”. Operations in this
three-valued logic are as usual:

a !a & 0 1 x

0 1 0 0 0 0

1 0 1 0 1 x

x x x 0 x x

A vector of values or short vector of size “n” is a list of “n” three-valued constants. A vector of size “n” is
represented by an ASCII string of length “n” containing only the characters “0”, “1”, and “x”.

In the following fix an AIG in AIGER format of type “M I L O A”. An input vector is a vector of size “I”,
an output vector is a vector of size “O”, and a state vector is a vector of size “L”.

A stimulus for an AIG in AIGER format is a list of input vectors. The file format for a stimulus consists
of lines of ASCII strings that represent the input vectors separated and terminated by exactly one new line
character.

A transition contains, in this order, a current state, input, output, and next state vector. A transition is
consistent with the logic of the given AIG if the result of simulating the current state vector under the
input vector in three-valued logic produces the given output and next state. In the ASCII representation of
a transition, the strings representing the four vectors are separated by space characters, exactly one space
character between two strings. This implies that a transition for a combinational circuit with “L = 0” starts
and ends with one space character. A combinational circuit without any input would even have two leading
space characters.

A trace consists of a list of transitions. A trace is consistent if all its transitions are consistent, and the
current state vector of all transitions except the first has the same value as the next state vector of its
previous transition. A trace is initialized if the current state vector of the first transition only contains “0”.

10

Each line of a trace file consist of exactly one transition. Again we use exactly one new line character to
separate and terminate the list of lines.

Note that we only consider “cycle accurate simulation” here. Furthermore the definitions also make sense
for combinational circuits with “L = 0”. In this case, the state vectors will just be vectors of length 0 and
represented by empty strings.

A simulator thus takes as input an AIG and a stimulus matching the type of the AIG and produces an
initialized and consistent trace. A randomized simulator will use randomized input vectors and does not
need a stimulus.

The “x” value should not be interpreted as don’t care. For instance, if the literal “l” is assigned to the
value “x”, then “l & !l” produces “x” in three-valued simulation and not “0”. This standard semantic of
three-valued logic allows linear time simulation of a circuit under a total three-valued assignment to the
inputs. Simulating partial assignments in two-valued logic, more specifically checking whether an output is
forced to a certain value, is an NP complete problem. On the other hand three-value simulation is purely
syntactic. For instance, optimizing an AIG does not need to preserve three-valued simulation semantics.

Because of this syntactic nature of three-valued simulation we define the concept of a grounded stimulus,
which does not contain “x” values. A stimulus is an instance of another stimulus if the former is identical to
the latter, except where the latter has “x” values. Instead of “x” the former can have any of the three values
(“0”, “1”, or “x”).

A witness that a bad state can be reached and also a solution to a structural SAT problem is in both cases
just a not necessarily grounded stimulus for which any grounded instance produces through simulation a
trace in which the output vector of at least one transition contains “1”. This simulation is of course over
two-valued logic. The whole discussion on three-valued logic and simulation is only included here to explain
that even though that ’x’ can be used in a stimulus, we do not actually use three-valued semantics in the
definition of a witness. In the context of ATPG, or where reset states are unknown (which would differ from
AIG semantics), these definitions using three-valued semantics are still useful.

In order to distinguish successful from failing model checking respectively SAT solver runs we define the
concept of solutions. A solution file may contain a result line and an optional stimulus part. The result line
either is made up of the single character ’0’ to denote that the solver proved that the output of the AIG
can never become one or ’1’ which means that the solver produced a witness that at least one output can
become one starting from the initial state. Invalid result lines or empty files are interpreted as unknown. If
the result is ’1’ then the rest of the file should contain a witness as defined in the previous paragraph.

The definition of a witness for the existence of a fair cycle is not covered yet.

15 Proposal for Future Extensions

There was not much enthusiasm about an earlier proposal to extend AIGER to the word level. Instead, we
plan to include two other things for the next major version of AIGER. First there is a suggestion by Alan
Mishchenko to encode with binary delta encoding not only the AND gates but also the next state and output
section. The reason is that in large industrial applications, the size of that part can be large.

Furthermore, we plan to add in a downward compatible way, optional sections. The number of literals of
these sections would be listed after the MILOA numbers. These sections contain references to as many literals
as the number denotes and have the semantics of ’probes’ into the circuit. These probes, we also call them
’secondary outpus’, are not part of the input/output behavior, but for instance a simplifier has to treat them
as ordinary outputs. A synthesis tool can just ignore these sections.

We will define a couple of standard sections, for constraints resp. assumptions, fairness constraints, and
maybe even for representing structural QBF problems. The intention is that users of the AIGER format can
use their own section types or even intrepret ’standard’ sections differentely.

11

16 Related Work

AIGs and similar data structures have been around for a while. AIGs are described in [4,5], RBCs in [1]
and BEDs in [2]. Recently AIG based algorithms have been used very successfully as alternative to classical
synthesis algorithms in [6] using ideas from [3]. The former paper also contains additional references not
listed here.

1 P. Abdulla, P. Bjesse, and N. Een. Symbolic reachability analysis based on SAT-solvers. In Proc. TACAS’00.
2 H. Andersen and H. Hulgaard. Boolean expression diagrams. In Proc. LICS’97.
3 P. Bjesse and A. Boralv. DAG-Aware Circuit Compression For Formal Verification. In Proc. ICCAD’04.
4 A. Kuehlmann, V. Paruthi, F. Krohm, and M. Ganai. Robust boolean reasoning for equivalence checking

and functional property verification. IEEE Trans. on CAD, 21(12), 2002.
5 A. Kuehlmann, M. Ganai, and V. Paruthi. Circuit-based Boolean Reasoning. In Proc. DAC’01.
6 A. Mishchenko, S. Chatterjee, and R. Brayton. DAG-Aware AIG Rewriting - A Fresh Look at Combina-

tional Logic Synthesis. In Proc. DAC’06.

12

This paper may be used under the Creative Commons Attribution 4.0 licence.

