
LINGELING and Friends
Entering the SAT Challenge 2012

Armin Biere
Institute for Formal Models and Verification

Johannes Kepler University, Linz, Austria

This note describes our SAT solvers submitted to the SAT
Challenge 2012, all based on the same LINGELING backend.

I. LINGELING

Compared to the version submitted to the SAT competition
2011 and described in [1], we removed complicated algorithms
and features, which did not really have any observable impact
on the run-time for those benchmarks we tried. In particular,
various versions of distillation inprocessors were removed.

Regarding inprocessing [4], there are two new probing
variants. One is called simple probing and tries to learn
hyper binary resolutions eagerly. The other variant is based
on tree-based look-ahead, which is a simplified version of
the implementation in March [2]. These two techniques are
complemented by gaussian elimination and a new congruence
closure algorithm, which both use extracted gates to generate
and propagate equivalences.

We also switched to one merged inprocessing phase, called
simplification, where all inprocessors run one after each other,
instead of allowing each inprocessor to be scheduled and
interleaved with search individually.

Furthermore, for most inprocessors we have now a way
to save the part of the formula on which the inprocessor
did not run until completion (actually currently only “untried
variables”). In the next simplification phase, the algorithm
can be resumed on that part, such that eventually we achieve
the same effect as really running the various algorithms until
completion. Previously we used randomization to achieve a
similar effect. This technique also allowed us to remove certain
limits, such as the maximum number of occurrences or the
maximum resolvent size in variable elimination.

We moved to an inner-outer scheme for the size of kept
learned clauses, also called reduce schedule. The inner scheme
follows the previously implemented LBD resp. glue based
scheme as in Glucose. As in the previous version the solver
might switch to activities dynamically, if the glue distribution
is skewed. The outer schedule is Luby controlled and resets
the learned clause data based limit to its initial size. This idea
is particularly useful for crafted instances.

Another new feature is to occasionally use the opposite of
the saved phase for picking the value for the decision variable.
These flipping intervals start at the top-level and while flipping
is enabled the phases of assigned variables are not saved (as
in probing) in order not to counteract the effect of the phase
saving mechanism.

The exponential VSIDS scheme of MiniSAT has been
replaced by a new variant of a variable-move-to-front strategy
with multiple queues ordered by priority. This seems to be
at least as effective as the previous scheme, but updating and
querying the queue turns out to be substantially faster.

In general we simplified internal data structures with the
hope to make the code a little bit more accessible.

II. PLINGELING

The parallel version of LINGELING has not changed much.
Still only units and equivalences are shared among multiple
solver instances. Actually, we even removed most options
previously set differently for each instance of the LINGELING
core library, except of course for the seed of the random
number generator and in addition kept the different choices
for the default phase. Last but not least we only use one
instance during parsing. This first solver instance is cloned
after preprocessing. This reduces the memory usage on certain
instances considerably, particularly, since we can stop cloning
as soon too much memory is already in use.

III. CLINGELING

CLINGELING is based on our new Concurrent Cube and
Conquer (CCC) approach [5]. This is an extension of our
previous Cube and Conquer (CC) technique [3]. The new idea
is to run a CDCL solver and a look-ahead solver concurrently.

CLINGELING uses the new lglfork API call, provided by
the LINGELING library for copying a solver instance. It addi-
tionally uses a global LINGELING instance with assumptions
to partially simulate what ILINGELING does in the original
CC approach (but in an interleaving fashion and with only
one worker thread). The look-ahead literal is computed by the
tree-based probing algorithm discussed already above.

In the current version of CLINGELING, the CDCL part and
the look-ahead are interleaved, and thus not really run in
parallel. Which also means that there is no benefit from multi-
core machines as in the original CC (and CCC) approach. But
compared to CC we can find better cut-off limits for switching
from look-ahead to pure CDCL with inprocessing this way,
which is one of the motivations behind CCC.

Another drawback of this online approach is that the global
solver, can not determine up-front the set of variables that can
be eliminated in pre- and inprocessing.



IV. FLEGEL

FLEGEL can be seen as a poor man’s version of CLIN-
GELING. It uses the fork system call for backtracking and in
principle such a front-end should be easy to build for any SAT
library, which can produce a look-ahead decision. It just runs
preprocessing and a limited amount of search of the CDCL
solver (with inprocessing) at each node before calculating the
next look-ahead literal. Then the process is forked. The child
process adds the look-ahead literal as unit and continues the
same procedure recursively. Currently parents wait for their
child to terminate, before adding the negation of the original
look-ahead literal as unit. So even FLEGEL uses as many
processes as active search nodes, i.e. the height of the search
tree, no parallelism is used.

V. TREENGELING

TREENGELING is our latest SAT solver with LINGELING
backend and tries to capture the positive aspects of PLIN-
GELING, FLEGEL and CLINGELING and actually to some
extend also ILINGELING [3]. To simulate forking in FLEGEL
we implemented a clone function lglclone as part of
LINGELING. This function in contrast to lglfork, which is
used in CLINGELING, generates an identical behaving solver
instance, instead of just copying clauses and assumptions. In
the context of TREENGELING this allows to additionally copy
saved phases, variable queue, etc., so all the state, from the
original solver instance to the clone.

The clone has all information for reconstructing a solution.
So there is no need to propagate the solution back by merging
a forked copy with the lgljoin API call, as it is necessary if
the copy was generated by lglfork, e.g., as in CLINGELING.

Up to this point TREENGELING is very similar to FLEGEL.
However, since we have all the cloned solver instances in one
address space (as in CLINGELING) we can easily use multiple
threads to run the updated clones in parallel. TREENGELING
is a parallel solver and uses the infra-structure for parallel
execution also used in PLINGELING and ILINGELING.

Solver instances are stored in nodes and we start with one
single solver instance with the original formula, which is then
first simplified in a simplification phase. If there are less open
nodes than a predefined limit, a decision literal is selected by
tree-based look-ahead from the smallest solver instance in a
look-ahead phase. This instance is cloned and saved in a new
node during the splitting phase. The decision is added as unit
to the clone and negated to the original solver instance.

Lookahead and then splitting existing solvers this way is
actually performed in parallel. After splitting, the solvers of
open nodes are run for a certain conflict limit in a search
phase. If a solver instance finds a solution it is printed and the
whole search terminates. If the solver instance of one node
proves unsatisfiability, it is closed. After all solver instances
terminated their limited search, closed nodes are flushed. If
no more nodes remain, the search terminates with proving
unsatisfiability.

Then the conflict limit is updated in an update phase.
If a node was closed in this round the limit is decreased

and otherwise increased, both in a geometrical way. Due to
the potential exponential increase of the conflict limit over
multiple rounds, TREENGELING with one worker behaves very
similar to the base LINGELING solver. It does not behave
identically though, as it is the case for PLINGELING with one
worker. The pseudo-code of this procedure looks as follows:

search(lim);
while (!flush) {
simp; lookahead; split; upd(lim); search;

}
Sub-procedures work in parallel, e.g. simplification (simp)
is run in parallel for the minimum of still open nodes and
number of cores. The default is to use both the number of
cores as maximum limit on the number of open nodes and
worker (threads). For multiple workers units are added and
tree-based lookahead has to be performed, but otherwise, since
the workers run in parallel independently, the (wall-clock time)
performance is not expected to be much worse than for plain
LINGELING. Preliminary experiments justify this claim. This
does not seem to hold for CLINGELING nor FLEGEL.

TREENGELING is deterministic, e.g. always traverses the
same search space and produces the same number of conflicts
(actually only for unsatisfiable instances) etc., as long the
maximum number of active nodes stays the same and the same
memory limit is used. The number of threads available to work
in parallel during simplification, search or lookahead does not
influence the search. With more available cores, more threads
can be run in parallel, without run-time penalty.

However, in order to use more threads, more active nodes
have to exist in parallel. In preliminary experiments we un-
fortunately saw a negative effect on wall-clock time, if more
open nodes are used than available cores (except when hyper-
threading is available). Thus the effectiveness of this approach
w.r.t. speed-up is not really understood yet. On processors
with four cores and no hyper-threading, TREENGELING with
a maximum of four open nodes, is expected to perform
slightly better than PLINGELING, e.g., substantially, but not
dramatically better than plain LINGELING.

VI. ACKNOWLEDGEMENTS

This work heavily depends on research results obtained with
my collaborators Marijn, Matti, Oliver, Siert, and Peter, and
of course the whole SAT community. A full list of proper
references can be found in the following papers.

REFERENCES

[1] Armin Biere. Lingeling and friends at the SAT Competition 2011. FMV
Report Series Technical Report 11/1, Johannes Kepler University, Linz,
Austria, 2011.

[2] Marijn Heule, Mark Dufour, Joris van Zwieten, and Hans van Maaren.
March eq: Implementing additional reasoning into an efficient look-ahead
SAT solver. In SAT 2004 Selected Papers, volume 3542 of LNCS, pages
345–359. Springer, 2005.

[3] Marijn J.H. Heule, Oliver Kullmann, Siert Wieringa, and Armin Biere.
Cube and Conquer: Guiding CDCL SAT solvers by lookaheads. In
Proc. HVC 2011, 2012. To appear.

[4] Matti Järvisalo, Marijn Heule, and Armin Biere. Inprocessing rules. In
Proc. IJCAR’12. To appear.

[5] Peter van der Tak, Marijn Heule, and Armin Biere. Concurrent Cube-
and-Conquer. Submitted.


	Lingeling
	Plingeling
	Clingeling
	Flegel
	Treengeling
	Acknowledgements
	References

