
Lingeling, Plingeling and Treengeling
Entering the SAT Competition 2013

Armin Biere
Institute for Formal Models and Verification

Johannes Kepler University Linz

Abstract—This paper serves as solver description for our SAT
solver Lingeling and its two parallel variants Treengeling and
Plingeling entering the SAT Competition 2013. We only list
important differences to the version of these solvers used in the
SAT Challenge 2012. For further information we refer to the
solver description [1] of the SAT Challenge 2012 or source code.

LINGELING

The differences on the search side, that is during the
CDCL loop, are as follows. The inner-outer scheme for reduce
scheduling is not enabled by default, but only enabled dynam-
ically, if the number of remaining variables drops below 1000.
It also turned out that the previous VMTF decision scheduler,
though faster to compute, is less robust, and occasionally leads
to time-outs on otherwise easy to satisfy instances. Thus we
went back to the exponential VSIDS scheme of MiniSAT.
Costly recursive clause minimization [2] is only attempted
for clauses with small glucose level (LBD) [3]. Local clause
minimization is tried for somewhat higher glucose levels. For
even higher glucose levels and if in addition the 1st-UIP clause
is rather long then a decision-only clause is learned instead of
the (minimized) 1st-UIP clause (proposed by Donald Knuth
in private communication). The decision-only clause contains
the negations of all decisions required to generate the conflict,
except for the last decision, which is replaced by the 1st-UIP
literal (if different). The variable scores are updated based on
the generated but discarded 1st-UIP clause.

Lingeling uses various inprocessing algorithms [4], which
not only simplify the formula initially and in this case act as
preprocessors, but also in regular intervals between calls to
the CDCL search loop. All inprocessors are running as part
of one single simplification phase. The number of conflicts is
used as metric to measure the effort spent in search and if a
conflict limit is reached, the solver switches to simplification.

In principle, the conflict interval for simplification is in-
creased geometrically. However, depending on the amount of
reduction achieved in the last simplification phase, measured
in terms of the percentage of removed variables, the increment
of the simplification interval is reduced. The more variables are
removed the sooner the next simplification phase is scheduled.
Furthermore, each inprocessing algorithm monitors its effec-
tiveness individually. If an inprocessor was unsuccessful in the
previous simplification phase, the inprocessor is skipped in the

Supported by FWF, NFN Grant S11408-N23 (RiSE).

next simplification phase. If unsuccessful again, it is skipped
twice etc. Various more advanced inprocessors are delayed
until either blocked clause elimination or bounded variable
elimination is completed at least once.

Regarding changes in individual inprocessors we note the
following. Tree-based look-ahead already mentioned in [1] has
been published [5]. Bounded variable elimination is now much
more restricted. It only tries to eliminate variables with few
occurrences and thus terminates resp. runs to completion much
earlier than in previous versions.

We further realized that during literal probing, which occurs
as part of various preprocessors, clauses satisfied during prob-
ing which contain the negation of the probed literal are under
certain restrictions asymmetric tautologies [6] and can be
removed. Actually, in general, short (binary or ternary) clauses
determined to be redundant, such as these basic asymmetric
tautologies, but also blocked clauses or covered clauses, are
“moved”, i.e. they are marked as redundant resp. learned
clauses to preserve BCP as discussed in [4].

As also discussed in [4] we generate and add binary blocked
clauses. To avoid full occurrence lists for large redundant
resp. learned clauses, we only add blocked clauses with
a blocking literal, which does not occur negated in large
redundant clauses at all. Blocked clause addition is disabled
in the parallel solvers Plingeling and Treengeling.

Finally, we added a simple form of cardinality constraint
reasoning, which is similar to our previously added Gaussian
elimination procedure [1]. We first extract trivially encoded
at-most-one and at-most-two constraints by a simple and
incomplete syntactic procedure. All clauses, which contain
a literal occurring in an extracted cardinality constraint are
added as cardinality constraint too, e.g. as at-most-k constraint,
where l = k + 1 is the length of the clause. For this set of
cardinality constraints we perform a simple form of variable
elimination, as in the Fourier-Motzkin elimination procedure.
This technique allows to derive an inconsistent constraint for
large pigeon-hole formulas in a fraction of a second. Otherwise
the procedure exports derived units and binary clauses.

For the certified UNSAT track we had to disable blocked
clause addition, Gaussian elimination and cardinality con-
straint reasoning, since they can not be simulated by resolution
(polynomially). Furthermore, equivalent literal substitution
(ELS) turned out to be hard to map to (D)RUP and thus we
had to disable all inprocessors which rely on ELS.

Appears in A. Balint, A. Belov, M.J.H. Heule, and M. Järvisalo (eds.), Proceedings of SAT Competition 2013: Solver and Benchmark Descriptions,
volume B-2013-1 of Department of Computer Science Series of Publications B, University of Helsinki 2013. ISBN 978-952-10-8991-6.

51



PLINGELING

The first version of Plingeling only shared units, while more
recent versions also share equivalences. In this new version we
also share short clauses with small glucose level, i.e. clauses
with at most 40 literals and glucose level of at most 8. In
contrast to [7] all exported clauses are imported unless they
contain a “melted” literal, such as those eliminated or used
as blocking literal in blocked or covered clause elimination
during inprocessing. The same restriction was already required
for importing equivalences.

Clauses are exported to the master and copied to a global
stack. Each slave solver thread imports clauses from this global
stack in regular intervals during the CDCL loop, oldest clauses
first. Thus this global clause stack actually acts as a queue. The
procedure for importing clauses triggers garbage collection of
global clauses already imported (consumed) by all solvers in
regular intervals.

TREENGELING

Treengeling is a parallel solver based on Cube & Con-
quer [8], [9], which tries to combine the strengths of look-
ahead solving with CDCL solving and in the case of Treen-
geling also with inprocessing. The basic architecture of Treen-
geling was already described in [1].

In this new version we essentially added three improve-
ments. First, and most important, we flipped the policy for
changing the conflict limit for each search node in order to
match the original motivation for Cube & Conquer. If more
nodes are closed by a combination of CDCL and inprocessing
we double the global conflict limit. Otherwise if the number
of closed nodes is smaller than the number of added nodes
then the conflict limit is decreased with a rate of 90%. This
actually only happens if at least one node was closed and
otherwise, if no node was closed, the conflict limit is even
decreased by 50%. If the soft memory limit is hit nodes are
not split and we end up in the first case (doubling the limit).
Further there is a minimum conflict limit of 1,000 conflicts, an
initial conflict limit of 10,000 and a maximum conflict limit
of 100,000 conflicts. This limit is applied to the search phase
of one node in one round (which also includes inprocessing).

The second improvement consists of disabling full tree-
based look-ahead [5] if look-ahead alone removes less than 2%
of the remaining variables. There is a similar penalty scheme
as for inprocessors in Lingeling though. In this situation the
next full look-ahead will be skipped and only a cheap to
compute static heuristics is used instead.

Finally, Treengeling combines part of the infrastructure of
Plingeling with Cube & Conquer by using one core for running
an additional solver thread, which exports units to the worker
threads in Cube & Conquer. Thus on an 8 core machine, 7
cores are allocated to Cube & Conquer worker threads, which
work on 8 times more, thus 56 active nodes. On our 12 core
machine with hyper threading, thus 24 virtual cores, the solver
will use at most 184 = 8 ∗ 23 active nodes in parallel.

LICENSE

For the competition version of our solvers we use a new
license scheme. It only allows the use of the software for
academic and research purposes and further prohibits the use
of the software in other competitions or similar events without
explicit written permission. Please refer to the actual license,
which comes with the source code, for more details.

REFERENCES

[1] A. Biere, “Lingeling and friends entering the SAT Challenge 2012,” in
Proc. of SAT Challenge 2012: Solver and Benchmark Descriptions, ser.
Department of Computer Science Series of Publications B, University of
Helsinki, vol. B-2012-2, 2012, pp. 33–34.

[2] N. Sörensson and A. Biere, “Minimizing learned clauses,” in
Proc. SAT’09. Springer, 2009, pp. 237–243.

[3] G. Audemard and L. Simon, “Predicting learnt clauses quality in modern
SAT solvers,” in Proc. IJCAI’09. Morgan Kaufmann, 2009, pp. 399–404.

[4] M. Järvisalo, M. Heule, and A. Biere, “Inprocessing rules,” in Proc. 6th
Intl. Joint Conf. on Automated Reasoning (IJCAR’12), ser. LNCS, vol.
7364. Springer, 2012, pp. 355–370.

[5] M. Heule, M. Järvisalo, and A. Biere, “Revisiting hyper binary res-
olution,” in Proc. 10th Intl. Conf. on Integration of Artificial Intelli-
gence and Operations Research Techniques in Constraint Programming
(CPAIOR’13), ser. LNCS, vol. 7874. Springer, 2013, pp. 77–93.

[6] M. J. H. Heule, M. Järvisalo, and A. Biere, “Clause elimination pro-
cedures for CNF formulas,” in Proc. LPAR-17, ser. LNCS, vol. 6397.
Springer, 2010, pp. 357–371.

[7] G. Audemard, B. Hoessen, S. Jabbour, J.-M. Lagniez, and C. Piette,
“Revisiting clause exchange in parallel SAT solving,” in Proc. SAT’12,
ser. LNCS, vol. 7317. Springer, 2012, pp. 200–213.

[8] P. van der Tak, M. Heule, and A. Biere, “Concurrent cube-and-concur,”
in Proc. 3rd Intl. Work. on Pragmatics of SAT (POS’12), 2012.

[9] M. Heule, O. Kullmann, S. Wieringa, and A. Biere, “Cube and conquer:
Guiding CDCL SAT solvers by lookaheads,” in Proc. HVC’11, ser. LNCS,
vol. 7261. Springer, 2012, pp. 50–65.

52


