Proceedings of SAT Competition 2014: Solver and Benchmark Descriptions, volume B-2014-2 of Department of Computer Science Series of Publications

B, University of Helsinki 2014. ISBN 978-951-51-0043-6.

Yet another Local Search Solver and
Lingeling and Friends Entering the
SAT Competition 2014

Armin Biere
Institute for Formal Models and Verification
Johannes Kepler University Linz

Abstract—This paper serves as solver description for the SAT
solvers Lingeling and its two parallel variants Treengeling and
Plingeling, as well as for our new local search solver YalSAT
entering the Competition 2014. For Lingeling and its variants we
only list important differences to earlier version of these solvers
as used in the SAT Competition 2013. For further information
we refer to the solver description [1] of the SAT Competition
2013 or source code.

YALSAT

Recent SAT competitions witnessed a new generation of
several efficient local search solvers including Sparrow [2]
and ProbSAT [3], which surprisingly were able to solve some
non-random instances. Fascinated by this success and the
simplicity of the ProbSAT solver [3] we started to implement
Yet Another Local Search SAT Solver (YalSAT). At its core it
implements several variants of ProbSAT’s algorithm and recent
extensions [4]. These variants are selected randomly at restarts,
scheduled by a reluctant doubling scheme (Luby).

Beside initializing the assignment at each restart with a
randomly picked assignment among previously saved best
assignments within one restart round, it is also possible to
assign all variables to false, to true or to a random value. At
each restart the submitted version further varies the base cby,
for the exponential score distribution between either using the
original base values of ProbSAT, where k is determined by
the maximum length of the clause in the instance, or using
the default of cb, = 2. Then clause weights are either chosen
to be the same for all clauses or are chosen as linear function
depending on the clause length (with either larger clauses
having larger weight or alternatively smaller clauses). The
maximum weight is also picked randomly.

With this set-up we were able to solve a surprisingly large
number of satisfiable crafted instances from last year’s com-
petition. For uniform random instances YalSAT is supposed to
work almost identical to last year’s version of ProbSAT.

LINGELING

This year’s version ayv of Lingeling is slightly improved
in several ways. Compared to other solvers in the last com-
petition, last year’s version agw of Lingeling performed not
well on certain unsatisfiable instances (particularly on miter
instances). Our analysis showed that this was simply due to

Supported by FWF, NFN Grant S11408-N23 (RiSE).

39

our agility based restart heuristic, which skipped too many
restarts on these instances. As first measure we increased the
agility limit slightly, but then, inspired by restart policies in
Glucose [5], incorporated a new restart policy for skipping
restarts, called “saturating”. It compares the average LBD
(glucose level) versus the average decision height. If the latter
is relatively small (70% higher at most) restarts are skipped.
Using this new restart heuristic allowed us to completely dis-
able agility based restarts without much penalty on satisfiable
instance, but with a substantial postive effect on unsatisfiable
instances. As compromise the default version still uses agility
based restarts, but we submitted an additional version “Lin-
geling (no agile)” without agility controlled restarts.

A new technique among the enabled techniques is called
“tabula rasa”. It monitors the number of remaining variables
and clauses. If these numbers drop dramatically (below 25% or
50% respectively) all learned clauses are flushed. Finally, the
covered clause elimination (CCE) inprocessor has substantially
been improved by for instance trying to eliminate large clauses
first, focusing on fast clause elimination procedures in early
inprocessing rounds, like asymmetric tautology elimination,
and then turning to ABCE and full CCE in later rounds.

PLINGELING

Based on the average number of occurrences per literal and
its standard deviation Plingeling tries to figure out whether the
instance is actually a uniform random instance. If this seems to
be the case it uses the integration of YalSAT into Lingeling and
in essence runs a local search as sub-routine until completion.
This is enabled for several worker threads, even all but one if
clauses all have the same length.

The soft memory limit is set to one third of the physically
available memory, while last year, using half the memory still
resulted in last year’s version of Plingeling to occasionally
run out of memory. This was due to excessive memory
defragmentation when using many threads, e.g. resident set
size being more than twice as large as the actual allocated
memory.

As described above, last year’s version agw of Lingeling
turned out not to work well for several unsatisfiable instances
due to skipping too many restarts. Thus the third worker thread
disables agility based restart skipping.

TREENGELING

As discussed above, local search solvers can be quite com-
petetive on a subset of crafted instances. Thus we integrated
YalSAT into Lingeling, which by default is disabled but in
Treengeling enabled in the already previously existing single
parallel top-level worker thread. It is not run until completition
though, but simply scheduled as another inprocessor, limited
by the number of memory operations. In this set-up the local
search sub-routine exports the best solution found to the CDCL
part, by setting default phases accordingly.

Another important change in Treengeling was to use an
internal cloning function after simplifying the top-level node
for several rounds (10 rounds of inprocessing). This is based
on the observation, that heavy preprocessing is useful for
crafted instances, even though it requires some warm-up time.

After initial preprocessing the number of variables and
clauses is usually substantially reduced. Thus much memory
is wasted during cloning the full solver. This for instance
includes the clauses on the reconstruction stack as well as the
mapping of all original variables to those in reduced instances.
Our current solution is to clone the initially simplified formula
only internally. Then the root solver can not be reused, but will
be needed to reconstruct a solution of the original instance.
Further solver instances are cloned from this first internal
clone. As a consequence, we have three solver instance after
the first look-ahead: the root solver, the first internal clone for
the first branch, and its dual for the second branch, both with
a unit literal added. In last year’s version there would be only
two solver instances at this point.

Finally, if the available cores are not utilized, Treengeling
will split more eagerly, to produce more workers, by simply
keeping the conflict limit for CDCL small.

LINGELING DRUPLIG

A substantial amount of work went into improving DRUP
tracing for version azd of Lingeling, as submitted to the UN-
SAT tracks. In Lingeling many clauses are implicitly added,
deleted or strengthened at various places. In order to find all
these places, we implemented a library Druplig, which can be
used to dump DRUP traces, but also, in debugging and testing
mode, contains a forward online DRUP checker.

This allowed us to reuse our model-based testing and de-
bugging frame work for the incremental API of Lingeling [6]
for developping more complete DRUP support. This approach
is in our experience much more effective in finding bugs and
debugging them, compared to file based fuzzing and delta-
debugging [7].

Compared to previous year’s DRUP tracing version, we now
also trace clause deletion and further were able to enable
many more inprocessing algorithms. Most of the probing
based inprocessors can produce traces now. Equivalent literal
reasoning is enabled too.

However, no form of extended resolution is traced, e.g. only
plain DRUP, no DRAT proofs are supported yet. This means
blocked clause addition, cardinality reasoning, gaussian elim-
ination, and variable elimination based on irredundant covers

40

all had to be disabled. Further disabled inprocessors are double
look-head based equivalence extraction (lifting), congruence
closure for equivalences, as well as unhiding. Even though
these resolution based inprocessors can all in principle be
mapped to DRUP, the effort for adding trace support is much
higher and left as future work.

LICENSE

For the competition version of our solvers we use the same
license scheme as introduced last year for our solvers. It
allows the use of the software for academic, research and
evaluation purposes. It further prohibits the use of the software
in other competitions or similar events without explicit written
permission. Please refer to the actual license, which comes
with the source code, for more details.

REFERENCES

[11 A. Biere, “Lingeling, Plingeling and Treengeling entering the SAT
Competition 2013, in Proc. of SAT Competition 2013, ser. Department
of Computer Science Series of Publications B, University of Helsinki,
A. Belov, M. Heule, and M. Jérvisalo, Eds., vol. B-2013-1, 2013, pp.
51-52.

[2] A. Balint and A. Frohlich, “Improving stochastic local search for SAT
with a new probability distribution,” in SAT, ser. Lecture Notes in Com-
puter Science, O. Strichman and S. Szeider, Eds., vol. 6175. Springer,
2010, pp. 10-15.

[3] A. Balint and U. Schoning, “Choosing probability distributions for

stochastic local search and the role of make versus break,” in SAT, ser.

Lecture Notes in Computer Science, A. Cimatti and R. Sebastiani, Eds.,

vol. 7317. Springer, 2012, pp. 16-29.

A. Balint, A. Biere, A. Frohlich, and U. Schoning, “Improving implemen-

tation of SLS solvers for SAT and new heuristics for k-SAT with long

clauses,” in SAT, ser. Lecture Notes in Computer Science. Springer,

2014.

[5] G. Audemard and L. Simon, “Refining restarts strategies for SAT and
UNSAT,” in CP, ser. Lecture Notes in Computer Science, M. Milano,
Ed., vol. 7514. Springer, 2012, pp. 118-126.

[6] C. Artho, A. Biere, and M. Seidl, “Model-based testing for verification
back-ends,” in TAP, ser. Lecture Notes in Computer Science, M. Veanes
and L. Vigano, Eds., vol. 7942. Springer, 2013, pp. 39-55.

[7]1 R. Brummayer, F. Lonsing, and A. Biere, “Automated testing and debug-
ging of SAT and QBF solvers,” in SAT, ser. Lecture Notes in Computer
Science, O. Strichman and S. Szeider, Eds., vol. 6175. Springer, 2010,
pp. 44-57.

[8] O. Strichman and S. Szeider, Eds., Theory and Applications of Satis-
fiability Testing - SAT 2010, 13th International Conference, SAT 2010,
Edinburgh, UK, July 11-14, 2010. Proceedings, ser. Lecture Notes in
Computer Science, vol. 6175. Springer, 2010.

_
B

