
Splatz, Lingeling, Plingeling, Treengeling, YalSAT
Entering the SAT Competition 2016

Armin Biere
Institute for Formal Models and Verification

Johannes Kepler University Linz

Abstract—This paper serves as solver description for our new
SAT solver Splatz and further documents the versions of our
other solvers submitted to the SAT Competition 2016, which are
Lingeling, its two parallel variants Treengeling and Plingeling,
and our local search solver YalSAT.

LINGELING

Our sequential solver Lingeling version bbc was submitted
to all but the RandomSAT track. For the Main track we linked
it with our Druplig library to print proof traces. For the other
tracks the library was not included. This results in two different
solvers according to the competition rules. In essence the same
effect could have been achieved by changing command line
options, but would result in a small overhead for those checks
that skip trace generation.

This version bbc of the submission is in essence the same as
version bal of Lingeling submitted to the SAT Race 2015 last
year. It incorporates insights from [1], [2] and is described in
the corresponding SAT Race 2015 solver description [3]. There
is a small improvement in cardinality reasoning. Another
new technique, which resets the reduce interval is disabled.
The same applies to restart blocking and parameter selection
through bucket classification, using a k-means classifier, which
all do not seem to pay off, and are disabled.

As Lingeling has many preprocessing and inprocessing
algorithms implemented we expect certain benchmarks to be
uniquely solved by it. Because of this feature the amount of
time Lingeling is allowed to spend in preprocessing and inpro-
cessing is high. As a consequence this high effort parameter
setting used in the submission may not work well for the Agile
track even though it could be tuned to do so. It should be
beneficial for long runs in the other tracks though.

Since proof trace generation through Druplig is still not
completely implemented for all preprocessing and inprocess-
ing techniques yet, only a subset of techniques is enabled in
the Main track. For instance cardinality and XOR reasoning
are disabled in the Main track.

PLINGELING, TREENGELING

The parallel solvers Plingeling and Treengeling are based
on Lingeling and use exactly the same version bbc as the
submitted sequential version. The front-ends have not changed.

Further, as before, the submitted Treengeling solver links
to YalSAT version 03r, which is run during inprocessing in a

Supported by FWF, NFN Grant S11408-N23 (RiSE).

small fraction of parallel Lingeling instances. This is expected
to be beneficial for crafted instances used in past competitions.

YALSAT

To the RandomSAT track we submitted our sequential
local search solver YalSAT version 03r. Even though we
experimented with focusing on eagerly flipping break zero
variables, the submitted version 03r does not incorporate
algorithmic nor heuristic changes and should behave as the
previous version 03l used in 2014 [4].

Since YalSAT solves some hard satisfiable crafted but
also application instances used in past competitions, we also
submitted it to the other tracks (Agile,Main,NoLimit). As
YalSAT does not use any preprocessing nor any portfolio
style combination with a CDCL solver, we do not expect top-
class performance in the RandomSAT track, compared to other
participating solvers.

The main purpose of submitting YalSAT is to see whether
a local search solver can solve some interesting non-random
benchmarks, for which other solvers have a hard time to solve
them and on the other hand determine its base performance
for the random track.

SPLATZ

First, it is pretty challenging to make changes to Lingeling
and thus new ideas are hard to add and explore. Further, as
in SAT solving, we argue that restarts are valuable and might
trigger new ideas. Finally, it is important to consolidate already
existing ideas in order to understand their effectiveness.

This lead to the development of our new SAT solver Splatz,
with version 03v submitted to the competition. This solver
is developed from scratch in C++. It is a sequential stand-
alone SAT solver, with static data-structures, non-reentrant and
without API nor incremental usage. However, it is much better
documented than say Lingeling and contains many cross-
references and explanations.

More specifically, we wanted to implement a new solver,
which first has a slightly less optimized, but easier to change
clause storage and watching mechanism than Lingeling. This
enabled us to implement an inprocessing version of blocked
clause decomposition and SAT sweeping, which was left as
future work in [5].

The decision heuristics uses stamping based VMTF instead
of VSIDS as proposed in [1]. Restart scheduling follows [2].



As in the submitted version of Lingeling we further replaced
Glucose style restart blocking by delaying restarts, which
works as follows. Assume a restart is supposed to occur.
This is called “forced” in Glucose terminology, and according
to [2] is triggered if the fast moving glucose level average is
above the slow moving average. If in this situation the current
decision level is smaller than 50% of the (exponential moving)
backjump level average, then restarting is delayed.

We also made the subsumption phase, usually interleaved
with bounded variable elimination [6], more efficient by incor-
porating ideas from [7]. This allows to apply subsumption and
shrinking to learned clauses as well. The major benefit is that
this in turn allows to remove subsumed (and shrink) “sticky”
clauses. As in Glucose [8] these sticky clauses, or low glucose
level (LBD) clauses, are clauses which are never removed
during learned clause cleaning (also called “reduction”), for
instance clauses of glucose level 2. In MiniSAT [9] subsumed
learned clauses become inactive and thus by activity based
clause cleaning get removed automatically.

On the other side we realized that using a static limit on
the glucose level to determine which clauses are sticky, can be
replaced by a dynamic limit, by measuring the average glucose
level and size of clauses resolved during conflict analysis.
Clauses are considered important and become sticky if their
glucose level and size is below these measured averages.

This new solver is lacking preprocessing and inprocessing
techniques implemented in Lingeling, which we consider to
be useful and eventually should be added. Thus the perfor-
mance of Splatz is not expected to match the performance of
Lingeling yet.

A (probably partial) list of implemented data-structures and
algorithms is provided here:

• arena based memory allocation for clauses and watchers
• blocking literals (BLIT)
• special handling of binary clause watches
• literal-move-to-front watch replacement (LMTF)
• learned clause minimization
• on-the-fly hyper-binary resolution (HBR)
• learning additional units and binary clauses
• on-the-fly self-subsuming resolution (OTFS)
• decision only clauses (DECO)
• failed literal probing on binary implication graph roots
• eager recent learned clause subsumption
• stamping based VMTF instead of VSIDS
• subsumption for both irredundant and learned clauses
• blocked clause decomposition (BCD) enabling . . .
• . . . SAT sweeping for backbones and equivalences
• equivalent literal substitution (ELS)
• bounded variable elimination (BVE)
• blocked clause elimination (BCE)
• dynamic sticky clause reduction
• exponential moving average based restart scheduling
• delaying restarts
• trail reuse

For details about these and other ideas implemented in the
solver, which due to space constraints can not all be discussed
nor referenced here, we recommend to consult the source code
and its documentation with more references and explanations.

LICENSE

The default license of YalSAT, Lingeling, Plingeling and
Treengeling did not change. It allows the use of these solvers
for research and evaluation but not in a commercial setting
nor as part of a competition submission without explicit
permission by the copyright holder. For the new solver Splatz
we use an MIT style license which is far less restrictive.

REFERENCES

[1] A. Biere and A. Fröhlich, “Evaluating CDCL variable scoring schemes,”
in Theory and Applications of Satisfiability Testing - SAT 2015 - 18th
International Conference, Austin, TX, USA, September 24-27, 2015,
Proceedings, ser. Lecture Notes in Computer Science, M. Heule and
S. Weaver, Eds., vol. 9340. Springer, 2015, pp. 405–422.

[2] ——, “Evaluating CDCL restart schemes,” in Proceedings POS-15. Sixth
Pragmatics of SAT workshop, 2015, to be published.

[3] A. Biere, “Lingeling and friends entering the SAT Race 2015,” Johannes
Kepler University, Linz, Austria, FMV Report Series Technical Report
15/2, April 2015.

[4] ——, “Yet another local search solver and Lingeling and friends entering
the SAT Competition 2014,” in Proc. of SAT Competition 2014, ser.
Department of Computer Science Series of Publications B, A. Belov,
M. J. H. Heule, and M. Järvisalo, Eds., vol. B-2014-2. University of
Helsinki, 2014, pp. 39–40.

[5] M. Heule and A. Biere, “Blocked clause decomposition,” in Logic for
Programming, Artificial Intelligence, and Reasoning - 19th International
Conference, LPAR-19, Stellenbosch, South Africa, December 14-19, 2013.
Proceedings, ser. Lecture Notes in Computer Science, K. L. McMillan,
A. Middeldorp, and A. Voronkov, Eds., vol. 8312. Springer, 2013, pp.
423–438.

[6] N. Eén and A. Biere, “Effective preprocessing in SAT through variable
and clause elimination,” in Theory and Applications of Satisfiability
Testing, 8th International Conference, SAT 2005, St. Andrews, UK, June
19-23, 2005, Proceedings, ser. Lecture Notes in Computer Science,
F. Bacchus and T. Walsh, Eds., vol. 3569. Springer, 2005, pp. 61–75.

[7] R. J. Bayardo and B. Panda, “Fast algorithms for finding extremal sets,”
in Proceedings of the Eleventh SIAM International Conference on Data
Mining, SDM 2011, April 28-30, 2011, Mesa, Arizona, USA. SIAM /
Omnipress, 2011, pp. 25–34.

[8] G. Audemard and L. Simon, “Predicting learnt clauses quality in modern
SAT solvers,” in IJCAI 2009, Proceedings of the 21st International Joint
Conference on Artificial Intelligence, Pasadena, California, USA, July
11-17, 2009, C. Boutilier, Ed., 2009, pp. 399–404.

[9] N. Eén and N. Sörensson, “An extensible sat-solver,” in Theory and
Applications of Satisfiability Testing, 6th International Conference, SAT
2003. Santa Margherita Ligure, Italy, May 5-8, 2003 Selected Revised
Papers, ser. Lecture Notes in Computer Science, E. Giunchiglia and
A. Tacchella, Eds., vol. 2919. Springer, 2003, pp. 502–518.


