
CADICAL, LINGELING,
PLINGELING, TREENGELING and YALSAT

Entering the SAT Competition 2017
Armin Biere

Institute for Formal Models and Verification
Johannes Kepler University Linz

Abstract—This paper serves as a first solver description for our
new SAT solver CADICAL and documents the versions of our
other solvers submitted to the SAT Competition 2017, which
are LINGELING, its two parallel variants TREENGELING and
PLINGELING, and our local search solver YALSAT.

LINGELING,PLINGELING, TREENGELING,YALSAT

Our focus in the SAT Competition 2016 was on our new
SAT solver SPLATZ [1]. It tried to simplify the LINGELING
design, and further implemented a first inprocessing [2] ver-
sion of blocked clause decomposition for SAT sweeping to
detect equivalences. In the same spirit, we focus on a new
solver called CADICAL in the SAT Competition 2017.

We submitted to the agile, main, and no-limit tracks of the
SAT Competition 2017 the LINGELING version bbe, which
except for some minor bug fixes in the code for picking
random decisions is the same as the version entering the SAT
Competition 2016 [1]. Its parallel extensions PLINGELING and
TREENGELING submitted to the parallel track have the same
version bbe accordingly. They were were marking the state-of-
the-art in the parallel track of the SAT Competition 2016 [3]
and have not changed at all.

The same applies to our local search solver YALSAT which
also did not really change and was submitted as version 03s
to the random track only.

CADICAL

The goal of the development of CADICAL was to obtain
an inprocessing solver [2], which is easy to understand and
change, while at the same time not being much slower than
other state-of-the-art solvers. Originally we also wanted to
radically simplify the design and internal data structures. But
that goal was only achieved partially, for instance compared to
LINGELING. On the other hand, after adding, what we believe,
are essential ingredients of a state-of-the-art solver, the solver
did become competitive with other state-of-the-art solvers, for
instance surpassing LINGELING on many instances. The name
of the solver has its roots in “radical(ly)” and “CDCL” [4].

The main search loop interleaves inprocessing [2] and
CDCL [4] search. The inprocessing part consist of three
individually scheduled inprocessing methods: probing, sub-
sumption, and (bounded) variable elimination.

Supported by FWF, NFN Grant S11408-N23 (RiSE).

During (failed literal) probing only roots of the binary
implication graph are probed and binary clauses are learned
through hyper binary resolution [5]. These are used to elim-
inate equivalent literals after decomposing the binary impli-
cation graph into strongly connected components, which is
scheduled right before and after probing. Hyper binary clauses
tend to be generated many and thus will only survive at most
one clause reduction. We also explicitly remove duplicated
binary clauses before probing.

As in SPLATZ we also remove subsumed learned clauses
during subsumption in regular intervals. Due to a new much
faster subsumption algorithm than in previous solvers [6]
we can afford to apply subsumption checking to redundant
learned clauses with small glucose level [7] too, which might
otherwise be kept forever. Of course, we also perform self-
subsuming resolution [6] to strengthen clauses. We also have
a second propagation based subsumption check, similar to
vivification [8], in each subsumption phase, which however is
restricted to irredundant clauses only. For binary clauses there
is a specialized transitive reduction algorithm for the binary
implication graph at the end of each subsumption phase.

As in other solvers (bounded) variable elimination [6]
is one of the most effective inprocessing techniques and is
carefully scheduled as in LINGELING [9], except that we wait
for an initial interval (of 1000) conflicts before being triggered.
Variable elimination is interleaved with subsumption for a
bounded number of rounds and as long something changes.

More precisely, the solver carefully monitors variables
which occurred in removed irredundant clauses or in added (ar-
bitrary redundant or irredundant) clauses. Removed variables
trigger variable elimination attempts, while added variables
trigger subsumption checks. This information is kept persistent
across CDCL search and inprocessing phases and allows the
solver to restrict the effort in subsumption checking and vari-
able eliminations to those part of the formula which changed.

On the search side, we incorporated the idea of saving the
position of the last replaced watch in large clauses [10], use
VMTF instead of VSIDS as explained in [11], schedule restarts
based on exponential moving averages [12] and alternate and
reset the default phase of decisions, starting with picking true
as initial phase of yet unassigned decision variables.



The version sc17 of CADICAL, which in essence is
identical to our internal version 058, was submitted to the
agile, main and no-limit track. In contrast to LINGELING
generating proofs for the main track should not change how the
solver works and in our experiments adds negligible overhead.
Currently only DRUP proofs are generated.

We have also made some minor effort to come up with pa-
rameter settings, which improve CADICAL on the agile track
compared to its otherwise used default configuration. From the
benchmarks of the agile track of the SAT Competition 2016
substantially more could be solved, if the base restart interval
is increased from 6 to 400 conflicts and flipping and resetting
the default decision phase is disabled. We have also submitted
this “agile” version to the agile, main and no-limit tracks.

The solver is implemented from scratch in a modular way in
C++. There is also an API interface for C, but the core library
is not ready for incremental usage yet, since it is lacking
assumption handling. The source code strives to be carefully
documented and consists of roughly 10 000 lines of code.

LICENSE

The default license of YALSAT, LINGELING, PLINGELING
and TREENGELING did not change in the last two years. It
allows the use of these solvers for research and evaluation but
not in a commercial setting nor as part of a competition sub-
mission without explicit permission by the copyright holder.
For the new solver CADICAL we use an MIT style license
which is far less restrictive.

REFERENCES

[1] A. Biere, “Splatz, Lingeling, Plingeling, Treengeling, YalSAT Entering
the SAT Competition 2016,” in Proc. of SAT Competition 2016 – Solver
and Benchmark Descriptions, ser. Department of Computer Science
Series of Publications B, T. Balyo, M. Heule, and M. Järvisalo, Eds.,
vol. B-2016-1. University of Helsinki, 2016, pp. 44–45.

[2] M. Järvisalo, M. Heule, and A. Biere, “Inprocessing rules,” in IJCAR,
ser. Lecture Notes in Computer Science, vol. 7364. Springer, 2012, pp.
355–370.

[3] T. Balyo, M. J. H. Heule, and M. Järvisalo, “SAT competition 2016:
Recent developments,” in AAAI. AAAI Press, 2017, pp. 5061–5063.

[4] J. P. M. Silva, I. Lynce, and S. Malik, “Conflict-driven clause learning
SAT solvers,” in Handbook of Satisfiability, ser. Frontiers in Artificial
Intelligence and Applications. IOS Press, 2009, vol. 185, pp. 131–153.

[5] M. Heule, M. Järvisalo, and A. Biere, “Revisiting hyper binary resolu-
tion,” in CPAIOR, ser. Lecture Notes in Computer Science, vol. 7874.
Springer, 2013, pp. 77–93.

[6] N. Eén and A. Biere, “Effective preprocessing in SAT through variable
and clause elimination,” in SAT, ser. Lecture Notes in Computer Science,
vol. 3569. Springer, 2005, pp. 61–75.

[7] G. Audemard and L. Simon, “Predicting learnt clauses quality in modern
SAT solvers,” in IJCAI, 2009, pp. 399–404.

[8] C. Piette, Y. Hamadi, and L. Sais, “Vivifying propositional clausal
formulae,” in ECAI, ser. Frontiers in Artificial Intelligence and Appli-
cations, vol. 178. IOS Press, 2008, pp. 525–529.

[9] A. Biere, “Lingeling essentials, A tutorial on design and implementation
aspects of the the SAT solver lingeling,” in POS@SAT, ser. EPiC Series
in Computing, vol. 27. EasyChair, 2014, p. 88.

[10] I. P. Gent, “Optimal implementation of watched literals and more general
techniques,” J. Artif. Intell. Res. (JAIR), vol. 48, pp. 231–251, 2013.

[11] A. Biere and A. Fröhlich, “Evaluating CDCL variable scoring schemes,”
in SAT, ser. Lecture Notes in Computer Science, vol. 9340. Springer,
2015, pp. 405–422.

[12] ——, “Evaluating CDCL restart schemes,” in Proceedings POS-15. Sixth
Pragmatics of SAT workshop, 2015, to be published.


