CADICAL, LINGELING,
PLINGELING, TREENGELING and YALSAT
Entering the SAT Competition 2018

Armin Biere
Institute for Formal Models and Verification
Johannes Kepler University Linz

Abstract—This note documents the versions of our SAT solvers
submitted to the SAT Competition 2018, which are CADICAL,
LINGELING, its two parallel variants TREENGELING and PLIN-
GELING, and our local search solver YALSAT.

LINGELING,PLINGELING, TREENGELING, YALSAT

Compared to the version of LINGELING submitted last
year [l] we added Satisfication Driven Clause Learning
(SDCL) [2], which however due to its experimental nature is
disabled (option “——-prune=0"). We further disabled blocked
clause removal (option “~-block=0") [3], binary blocked
clause addition (option “~-bca=0") [4]], as well as on-the-fly
subsumption (option “~-ot £s=0") [3], since all of them can
not be combined with SDCL style pruning.

As in our new version of CADICAL we also experimented
with bumping reason side literals too, as suggested in [6]. See
below for the motivation to include this feature. There is also a
slight change in the order how literals are bumped: previously
they were bumped in trail order and are now bumped in
variable score order.

Since already last year’s version of LINGELING [1] was
almost identical to that from the SAT 2016 Competition [7]], it
is fair to say that LINGELING and also its parallel extensions
PLINGELING and TREENGELING essentially did not change
since 2016. This applies even more to the submitted version
of YALSAT, which surprisingly won the random track in 2017,
even though it did not change since 2016.

CADICAL

As explained in our last year’s solver description [1] the goal
of developing CADICAL was to produce a radically simplified
CDCL solver, which is easy to understand and change. This
was only partially achieved, at least compared to LINGELING.
On the other hand the solver became competitive with other
state-of-the-art solvers, actually surpassing LINGELING in per-
formance in the last competition, while being more modular,
as well as easier to understand and change.

We also gained various important new insights starting to
develop a SAT solver (again) from scratch [[1], particularly how
inprocessing attempts for variable elimination and subsump-
tion should be scheduled, and how subsumption algorithms
can be improved (see again [1] for more details).

Supported by FWF, NFN Grant S11408-N23 (RiSE).

On the feature side not much changed, since CADICAL still
does not have a complete incremental API (assumptions are
missing). However, the non-incremental version was used as
back-end of BOOLECTOR in the SMT 2017 Competition [8]
in the quantifier-free bit-vector track (QF_BYV), where it con-
tributed to the top performance of BOOLECTOR (particularly
compared to the version with LINGELING as back-end).

Our analysis of the SAT 2017 Competition [9] results
revealed that the technique of bumping reason side literals [6]
of MAPLESAT [6] and successors [10]], [[L1] has an extremely
positive effect on the selected benchmarks. It consists of going
over the literals in learned (minimized 1st UIP) clauses and
“bumping” [[12] all other literals in their reason clauses too.
Even though MapleSAT actually only uses this technique with
the new variable scoring scheme proposed in [6], it is already
effective in combination with the VMTF scheme [12] used
in CADICAL (and probably for VSIDS too).

Last year’s success of the MapleLCM solver [[L1], which is
an extension of MapleSAT by a different set of authors, also
showed that vivification [13] of learned clauses as described
by the authors of MapleLCM in their IICAI paper [14] can be
quite useful. In last year’s version of CADICAL we already
had a fast implementation of vivification [1]], but only applied
it to irredundant clauses. During inprocessing [15] our new
version of CADICAL has two vivification phases, the first
phase working on all including redundant clauses and the
second phase works as before only on irredundant clauses.

Furthermore, all the top performing configurations of
MapleSAT and MapleLCM made use of the observation of
Chanseok Oh [16], that a CDCL solver should alternate
between “quiet” no-restart phases and the usual fast restart
scheduling [[17]. This also turns out to be quite beneficial
for last year’s selection of benchmarks and we added such
“stabilizing” phases scheduled in geometrically increasing
conflict intervals.

Then, we experimented with “rephasing”, which in arith-
metically increasing conflict intervals overwrites all saved
phases [18]] and either (¢) restores the initial phase (default true
in CADICAL), (i) flips the current saved phase, (7i¢) switches
to the inverted initial phase (thus false), or (iv) picks a
completely random phase. This technique gives another (but
smaller) boost to the performance of CADICAL on last year’s
benchmarks compared to the other new techniques above.

Finally, we observed, that for very long running instances
(taking much longer than the 5000 seconds time limit used
in the competition), the standard arithmetic increase [19] of
the limit on kept learned clauses increases memory usage
over time substantially and slows down propagation. Therefore
we flush all redundant clauses (including low glucose level
clauses) in geometrically increasing conflict intervals too.
This should happen less than a dozen of times during each
competition run though.

LICENSE

The default license of YALSAT, LINGELING, PLINGELING
and TREENGELING did not change in the last three years. It
allows the use of these solvers for research and evaluation
but not in a commercial setting nor as part of a competi-
tion submission without explicit permission by the copyright
holder. However, as part of our new open source release of
BOOLECTOR 3.0 [20] we also plan to release LINGELING
under an open source MIT style license, which for CADICAL
continues to be the case.

REFERENCES

[1]1 A. Biere, “Deep Bound Hardware Model Checking Instances, Quadratic
Propagation Benchmarks and Reencoded Factorization Problems Sub-
mitted to the SAT Competition 2017,” in Proc. of SAT Competition 2017
— Solver and Benchmark Descriptions, ser. Department of Computer
Science Series of Publications B, T. Balyo, M. Heule, and M. Jarvisalo,
Eds., vol. B-2017-1. University of Helsinki, 2017, pp. 40-41.

[2] M. J. H. Heule, B. Kiesl, M. Seidl, and A. Biere, “Pruning through
satisfaction,” in Haifa Verification Conference, ser. Lecture Notes in
Computer Science, vol. 10629. Springer, 2017, pp. 179-194.

[3] M. Jidrvisalo, A. Biere, and M. Heule, “Blocked clause elimination,”
in Tools and Algorithms for the Construction and Analysis of Systems,
16th International Conference, TACAS 2010, Held as Part of the Joint
European Conferences on Theory and Practice of Software, ETAPS
2010, Paphos, Cyprus, March 20-28, 2010. Proceedings, ser. Lecture
Notes in Computer Science, J. Esparza and R. Majumdar, Eds., vol.
6015. Springer, 2010, pp. 129-144.

[4] M. Jarvisalo, M. Heule, and A. Biere, “Inprocessing rules,” in Auto-
mated Reasoning - 6th International Joint Conference, IJCAR 2012,
Manchester, UK, June 26-29, 2012. Proceedings, ser. Lecture Notes in
Computer Science, B. Gramlich, D. Miller, and U. Sattler, Eds., vol.
7364. Springer, 2012, pp. 355-370.

[5] H. Han and F. Somenzi, “On-the-fly clause improvement,” in Theory
and Applications of Satisfiability Testing - SAT 2009, 12th International
Conference, SAT 2009, Swansea, UK, June 30 - July 3, 2009. Proceed-
ings, ser. Lecture Notes in Computer Science, O. Kullmann, Ed., vol.
5584. Springer, 2009, pp. 209-222.

[6] J. H. Liang, V. Ganesh, P. Poupart, and K. Czarnecki, “Learning rate
based branching heuristic for SAT solvers,” in Theory and Applications
of Satisfiability Testing - SAT 2016 - 19th International Conference,
Bordeaux, France, July 5-8, 2016, Proceedings, ser. Lecture Notes in
Computer Science, N. Creignou and D. L. Berre, Eds., vol. 9710.
Springer, 2016, pp. 123-140.

[71 A. Biere, “Splatz, Lingeling, Plingeling, Treengeling, YalSAT Entering
the SAT Competition 2016,” in Proc. of SAT Competition 2016 — Solver
and Benchmark Descriptions, ser. Department of Computer Science
Series of Publications B, T. Balyo, M. Heule, and M. Jérvisalo, Eds.,
vol. B-2016-1. University of Helsinki, 2016, pp. 44-45.

[8] “Boolector at the SMT competition 2017, FMV Reports Series, Insti-
tute for Formal Models and Verification, Johannes Kepler University,
Altenbergerstr. 69, 4040 Linz, Austria, Tech. Rep., 2017.

[9] T. Balyo, M. Heule, and M. Jirvisalo, Eds., Proc. of SAT Competition
2017 — Solver and Benchmark Descriptions, ser. Department of Com-
puter Science Series of Publications B, vol. B-2017-1. University of
Helsinki, 2017.

[10]

(11]

[12]

[13]

[14]

[15]

[16]

(17]

(18]

[19]

[20]

J. H. Liang, C. Oh, V. Ganesh, K. Czarnecki, and P. Poupart, “Maple-
COMSPS_LRB_VSIDS and MapleCOMSPS_CHB_VSIDS,” in Proc. of
SAT Competition 2017 — Solver and Benchmark Descriptions, ser.
Department of Computer Science Series of Publications B, T. Balyo,
M. Heule, and M. Jérvisalo, Eds., vol. B-2017-1. University of Helsinki,
2017, pp. 20-21.

F. Xiao, M. Luo, C.-M. Li, F. Manya, and Z. Lii, “MapleLRB_LCM,
Maple_LCM, Maple_LCM_Dist, MapleLRB_LCMoccRestart and
Glucose-3.0+width in SAT Competition 2017,” in Proc. of SAT
Competition 2017 — Solver and Benchmark Descriptions, ser.
Department of Computer Science Series of Publications B, T. Balyo,
M. Heule, and M. Jirvisalo, Eds., vol. B-2017-1. University of
Helsinki, 2017, pp. 22-23.

A. Biere and A. Frohlich, “Evaluating CDCL variable scoring schemes,”
in SAT, ser. Lecture Notes in Computer Science, vol. 9340. Springer,
2015, pp. 405-422.

C. Piette, Y. Hamadi, and L. Sais, “Vivifying propositional clausal
formulae,” in ECAI, ser. Frontiers in Artificial Intelligence and Appli-
cations, vol. 178. 10S Press, 2008, pp. 525-529.

M. Luo, C. Li, F. Xiao, F. Manya, and Z. Lii, “An effective learnt clause
minimization approach for CDCL SAT solvers,” in Proceedings of the
Twenty-Sixth International Joint Conference on Artificial Intelligence,
IJCAI 2017, Melbourne, Australia, August 19-25, 2017, C. Sierra, Ed.
ijcai.org, 2017, pp. 703-711.

M. Jarvisalo, M. Heule, and A. Biere, “Inprocessing rules,” in IJCAR,
ser. Lecture Notes in Computer Science, vol. 7364. Springer, 2012, pp.
355-370.

C. Oh, “Between SAT and UNSAT: the fundamental difference in CDCL
SAT,” in Theory and Applications of Satisfiability Testing - SAT 2015
- 18th International Conference, Austin, TX, USA, September 24-27,
2015, Proceedings, ser. Lecture Notes in Computer Science, M. Heule
and S. Weaver, Eds., vol. 9340. Springer, 2015, pp. 307-323.

A. Biere and A. Frohlich, “Evaluating CDCL restart schemes,” in
Proceedings POS-15. Sixth Pragmatics of SAT workshop, 2015, to be
published.

K. Pipatsrisawat and A. Darwiche, “A lightweight component caching
scheme for satisfiability solvers,” in Theory and Applications of Sat-
isfiability Testing - SAT 2007, 10th International Conference, Lisbon,
Portugal, May 28-31, 2007, Proceedings, ser. Lecture Notes in Computer
Science, J. Marques-Silva and K. A. Sakallah, Eds., vol. 4501. Springer,
2007, pp. 294-299.

G. Audemard and L. Simon, “Predicting learnt clauses quality in modern
SAT solvers,” in IJCAI, 2009, pp. 399-404.

A. Niemetz, M. Preiner, C. Wolf, and A. Biere, “Btor2, BtorMC and
Boolector 3.0,” in Computer Aided Verification - 30th International Con-
ference, CAV 2018, ser. Lecture Notes in Computer Science. Springer,
2018, to appear.

