
CNF Encodings of Complete Pairwise
Combinatorial Testing of our SAT Solver SATCH

Armin Biere
Institute for Formal Models and Verification

Johannes Kepler University Linz, Austria

Abstract—This note describes the benchmarks we have sub-
mitted to the SAT Competition 2021 encoding the existence of a
list of configurations of a given size k which covers pairwise all
combinations of configurations of our SAT solver SATCH.

The submitted DIMACS files encode feasibility of a list of
configurations of a given size k for complete combinatorial
pairwise testing [1], [2] of one internal version of our SAT
solver SATCH available at https://github.com/arminbiere/satch.
The encodings were generated by the tool GENCOMBI that
comes with SATCH.

The configure script of SATCH has many different build
options. Given a test suite (in case of SATCH the included
test suite) the basic idea of two-way or pairwise testing is
to run the suite on all combinations of all possible pairs of
configuration options under the constraint that incompatible
configuration options are avoided. Thus we want to produce a
smallest possible list of configuration options satisfying these
criteria. The DIMACS files encode the existence of such a list
for a given size k. By default we also make sure that each
pair of options is not used in at least one configuration.

Beside the size k of the test set, which corresponds to
the number of different configurations, the instances vary in
terms of dropping certain sorting constraints for symmetry
breaking (option --unsorted and suffix ‘u’) or dropping
the requirement that all pairs of features should also not occur
in a least one configuration (option --weak and suffix ‘w’).

For the considered version of SATCH there does exist a list
of configurations of size k = 20 satisfying all criteria. For
size k = 20 all four instances are easy to satisfy including
dropping inclusion of sorting constraints (‘u’) or dropping the
requirement that pairs should also not occur (‘w’). The smaller
ones are getting hard at around k = 14 and are expected to
be all unsatisfiable.

Note that in practical use GENCOMBI generates a new CNF
for each considered k and first doubles k until an instance
becomes satisfiable, where solving time is limited. Then the
tool decreases k trying to reduce the upper bound or to find a
lower bound where solving time takes 10 times more than
for the upper bound. If a new upper bound is found the
process repeats. The individual instances are actually kept in
memory and solving is simply resumed if necessary (the only
incremental way of solving supported for SATCH at this point).

Supported by the Austrian Science Fund (FWF) under projects W1255-N23,
S11408-N23 and by the LIT AI Lab funded by the State of Upper Austria.

REFERENCES

[1] D. M. Cohen, S. R. Dalal, M. L. Fredman, and G. C. Patton, “The
AETG system: An approach to testing based on combinatiorial design,”
IEEE Trans. Software Eng., vol. 23, no. 7, pp. 437–444, 1997. [Online].
Available: https://doi.org/10.1109/32.605761

[2] A. Yamada, A. Biere, C. Artho, T. Kitamura, and E. Choi,
“Greedy combinatorial test case generation using unsatisfiable cores,”
in Proceedings of the 31st IEEE/ACM International Conference on
Automated Software Engineering, ASE 2016, Singapore, September 3-7,
2016, D. Lo, S. Apel, and S. Khurshid, Eds. ACM, 2016, pp. 614–624.
[Online]. Available: https://doi.org/10.1145/2970276.2970335

https://github.com/arminbiere/satch
https://doi.org/10.1109/32.605761
https://doi.org/10.1145/2970276.2970335

