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Abstract

In this paper, we study the application of propositional deci-
sion procedures in hardware verification. In particular, we apply
bounded model checking, as introduced in [1], to equivalence and
invariant checking. We present several optimizations that reduce
the size of generated propositional formulas. In many instances,
our SAT-based approach can significantly outperform BDD-based
approaches. We observe that SAT-based techniques are particularly
efficient in detecting errors in both combinational and sequential
designs.

1 Introduction

A complex hardware design can be error-prone and mistakes are
costly. Formal verification techniques such as symbolic model
checking are gaining wide industrial acceptance. Compared to tra-
ditional validation techniques based on simulation, they provide
more extensive coverage and can detect subtle errors. Representing
and manipulating boolean expressions is critical to many formal
verification techniques. BDDs [3] have traditionally been used for
this purpose. In this paper, we investigate an alternative approach
based on propositional decision procedures.

Model checking [5] is an important technique for verifying se-
quential designs. In model checking, the specification of a design is
expressed in temporal logic and the implementation is described as
a finite state machine. Symbolic model checking uses boolean rep-
resentation for the finite state machine. By replacing explicit state
representation with boolean encoding, symbolic model checking
[4, 10] can handle much larger designs than explicit state model
checking.

With the introduction of bounded model checking [1], we are
able to use efficient propositional decision procedures for sym-
bolic model checking. In bounded model checking, only paths of
bounded length k are considered. Bounded model checking is thus
concerned with finding bugs (or counterexamples) of limited length
k. Given a specification in temporal logic and a finite state machine,
we construct a propositional formula which is satisfiable iff there is
a counterexample of length k. In practice, we look for longer and
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longer counterexamples by incrementing the bound k, and after a
certain number of iterations, we may conclude that no counterex-
ample exists and the specification holds. For example, to verify
safety properties, the number of iterations is bounded by the diam-
eter of the finite state machine. However, to determine the diameter
automatically involves a decision procedure for quantified boolean
expressions.

There are known tradeoffs between SAT procedures and BDDs.
These tradeoffs are also reflected in SAT-based model checkers and
BDD-based model checkers. In particular, BDDs are canonical rep-
resentations. Once the BDDs are constructed, operations on two
boolean expressions can be done very efficiently. On the other
hand, by not using a canonical representation, SAT-based model
checkers avoid the exponential space blowup of BDDs. They can
detect a counterexample without searching through the entire state
space. BDD-based approaches often require a good variable or-
dering. The ordering is either manually generated or by dynamic
variable reordering which can be time consuming. In SAT-based
model checkers, automatic splitting heuristics are often sufficient.

Invariant checking and equivalence checking can both be
treated as special cases of bounded model checking. It can be eas-
ily shown that invariant checking corresponds to bounded model
checking where the bound k equals 1. Equivalence checking is a
special case of bounded model checking where the bound k equals
0. The tradeoffs mentioned earlier are also reflected in SAT-based
invariant checking and equivalence checking techniques.

We have implemented a tool BMC to demonstrate our ap-
proach. It accepts a subset of the SMV language in which the
user can specify a finite state machine and a temporal specification.
Given a bound k, BMC outputs a propositional formula which is
satisfiable iff there is a counterexample of length k. Currently, we
use SATO [16], an efficient implementation of the Davis-Putnum
technique, and PROVER [2] based on Stålmarck’s Method [15]
to decide propositional satisfiability. If a counterexample exists,
SATO or PROVER generates a model of the propositional for-
mula produced by BMC. We have run a number of examples using
BMC. We show cases where BMC detected a counterexample in
seconds where BDD-based approaches failed due to memory lim-
its.

The paper is organized as follows. In the following section, we
present the concept of bounded model checking with an example.
In section 3, we present a number of optimization techniques in
generating propositional formulas. They help to reduce the com-
plexity of the propositional formula generated by BMC. In section
4, we show some experimental results. We have tested BMC on
a number of examples from symbolic model checking, invariant
checking and equivalence checking. Finally, we conclude the pa-
per with some directions for future work.
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Figure 1: A two-bit counter with an erroneous transition

2 Bounded model checking

We now briefly describe our techniques for bounded model check-
ing. First, we give some background and notational conventions.
Then we illustrate our approach with a simple example. More de-
tails can be found in [1].

2.1 Background

The specification of a system is expressed in linear temporal logic
(LTL). In this paper we only consider the eventuality operator ‘F’,
and the globally operator ‘G’. The techniques can also be applied
to a more general class of operators [1]. To simplify our discus-
sion, we consider only existential LTL formulas, i.e. formulas of
type E f where E is the existential path quantifier and f is a tem-
poral formula that contains no path quantifiers. Note that E is the
dual of the universal path quantifier A. Finding a witness for E f is
equivalent to finding a counterexample for A � f .

The implementation of a system is described as a Kripke struc-
ture. A Kripke structure is a tuple M � �

S � I � T ����� with a finite set of
states S, the set of initial states I � S, a transition relation between
states T � S 	 S, and the labeling of the states � :S 
 P

�
A � with

atomic propositions A .
In symbolic model checking, we assume that S ��� 0 � 1  n and

each state can be represented by a vector of state variables s ��
s
�
1 ����������� s � n ��� where s

�
i � for i � 1 ��������� n are propositional vari-

ables. The labeling function can be omitted if every atomic propo-
sitions corresponds to a state variable.

An infinite sequence of states π � �
s0 � s1 ������� � is a path iff�

si � si � 1 ��� T for all i � N . An LTL formula E f is true in a Kripke
structure M (M � � E f ) iff there exists a path π in M with π � � f
and π

�
0 ��� I. Model checking is concerned with the problem of

determining the truth value of an LTL formula in a given Kripke
structure, or equivalently, the problem of determining the existence
of a witness for the LTL formula. We now illustrate bounded model
checking with a simple example.

2.2 Example

Let’s consider a two-bit counter. The implementation of the counter
is shown as a Kripke structure in Figure 1. There are four states in
the Kripke structure. Each state s is represented by two state vari-
ables s

�
1 � and s

�
0 � , denoting the value of the high bit and the low

bit respectively. Initially, the value of the counter is
�
00 � . Thus

the initial state predicate I
�
s � is defined as � s

�
1 ����� s

�
0 � . The

transition relation T
�
s � s ��� describes the increment of the counter

at each step. We define inc
�
s � s � � as

�
s � � 0 ����� s

�
0 ����� �

s � � 1 ����
s
�
0 � � s

�
1 �!��� , and we define T

�
s � s � � as inc

�
s � s � � " �

s
�
1 � �#� s

�
0 � �

s � � 1 �$�%� s � � 0 ��� . We deliberately add an erroneous transition from
state

�
10 � to itself.

Suppose we are interested in the fact that the counter should
eventually reach state

�
11 � . We can specify the property as AFq,

where q
�
s � is defined as s

�
1 � � s

�
0 � . Namely, for all possible exe-

cution paths, there exists a state such that q
�
s � holds. Equivalently,

we can check whether there exists a path in which the counter never

reaches state
�
11 � . The new property is expressed as EGp, where

p
�
s � is defined as � s

�
1 �&"'� s

�
0 � . Note that EGp is the dual of AFq.

In bounded model checking, we restrict our attention to paths
of length k, that is, paths with k ( 1 states. We start with k � 0, and
increment k until a witness is found. Let’s consider the case where k
equals 2. We name the k ( 1 states as s0, s1, s2. We now formulate
a set of constraints on s0 � s1 and s2 in propositional logic. The
constraints guarantee that a path consisting of s0 � s1 � s2 is indeed a
witness of EGp, or equivalently, a counterexample for AFq.

First, we constrain s0 � s1 � s2 to be a valid path starting from the
initial state. Unrolling the transition relation for 2 steps, we de-
rive the propositional formula ) ) M * * 2 defined as I

�
s0 �+� T

�
s0 � s1 � �

T
�
s1 � s2 � , where I and T are predicates for the initial state and the

transition relation defined earlier.
Second, in order to be a witness for Gp, the path must contain

a loop. Therefore there is a transition from s2 to the initial state
s0, s1 or itself. We define L2 : � T

�
s2 � s0 ��" T

�
s2 � s1 ��" T

�
s2 � s2 � .

Additionally, property p must hold on every state of the path. We
derive a corresponding propositional formula ) ) Gp * * 2 defined as
L2 � p

�
s0 �,� p

�
s1 �-� p

�
s2 � . The combination of both constraints,

) ) M * * 2 ��) ) Gp * * 2, is the result of the translation.
In this example, the resulting propositional formula is indeed

satisfiable. The satisfying assignment corresponds to a counterex-
ample that is a path from the initial state

�
00 � over

�
01 � to

�
10 �

followed by the self-loop at state
�
10 � . If the erroneous transition

from state
�
10 � to itself is removed then the propositional formula

becomes unsatisfiable.
This idea can be generalized to arbitrary LTL formulae. The

details are described in [1] together with the following theorem.

Theorem 1 M � � E f iff ) ) M * * k ��) ) f * * k is satisfiable for some k �
N .

3 Conversion to Clause Form

Many propositional decision procedures assume the input problem
to be in conjunctive normal form, or equivalently clause form (CF).
In this section, we focus on techniques for converting arbitrary
boolean formulas to CF. In particular, we investigate optimization
techniques that reduce the number of variables and clauses in the
CF generated.

Satisfiability test for propositional problems is NP-complete.
All known propositional decision procedures are exponential in the
worst case. However, they may use different heuristics in guid-
ing their search and exhibit different complexity in subsets of the
propositional problems. Precise characterization of the “hardness”
of propositional problems is difficult and is likely to be dependent
on specific propositional decision procedures used. Reducing the
size of CF may not always reduce the complexity of the problem.
Our optimization techniques are heuristics in nature as well. Ex-
perimental results show that these optimization techniques reduce
the size of the CF as well as the time for satisfiability test.

A formula f in CF is represented as a set of clauses, each clause
is a set of literals, and each literal is either a positive or negative
propositional variable. In other words, a formula is a conjunction
of clauses, and a clause is a disjunction of literals. For example,���

a ".� b " c �+� �
d ".� e ��� is represented as �&� a �/� b � c +� � d �0� e & .

Given a boolean formula f , one may replace boolean operators
in f with �1�0� and " and apply distributivity rule and De Morgan’s
law to convert f into CF. The size of the resulting CF can be expo-
nential with respect to the size of f . For example, the worse case
occurs when f is in disjunctive normal form. To avoid the expo-
nential explosion, we use a structure preserving CF transformation
[13].



procedure bool-to-cf( f , v f )�
case

cached( f , v):
return clause(v f � v);

atomic( f ):
return clause( f � v f );

f == h � g:
C1 = bool-to-cf(h, vh);
C2 = bool-to-cf(g, vg);
assert cached( f , v f );
return clause(v f �

�
vh � vg � ) � C1 � C2;

esac;�

Figure 2: An algorithm for generating CF. f , g and h are boolean
formulas. v, vh and vg are boolean variables. ‘ � ’ represents a
boolean operator.

Figure 3 outlines our procedure. Given a boolean formula f ,
bool-to-cf( f ,�����
	 ) returns a set of clauses C which is satisfiable iff
f is satisfiable. The procedure traverses the syntactic structure of
f , introduces a new variable (e.g. vh, vg) for each subexpression,
and generates clauses that relate the new variables. If v, vh, vg are
boolean variables and ‘ � ’ is a boolean operator, v � �

vh � vg � has a
logically equivalent CF, clause(v f �

�
vh � vg � ), with no more than 4

clauses, each of which contains no more than 3 literals. Note that C
is not logically equivalent to the original formula f , but it preserves
the satisfiability.

We represent a boolean formula f as a directed acyclic graph
(DAG), i.e., common subterms of f are shared. The DAG repre-
sentation is important in practice. For example, the size of formula
inc

�
a � is linear with a DAG representation, and is quadratic with a

tree representation. In the procedure bool-to-cf(), we preserve the
sharing of subterms. Namely, for each subterm in f , only one set of
clauses is generated. The sharing is reflected in line 1 of bool-to-cf.
For any boolean formula f , bool-to-cf( f , �����
	 ) generates a clause
set with O

� � f � � variables and O
� � f � � clauses, where � f � is the size

of the DAG for f .
In Figure 2, we assume that f only involves binary opera-

tors. Unary operators, i.e. negation, can be handled similarly.
We also extended the procedure to handle operators with multi-
ple operands. In particular, we treat conjunction and disjunction
as N-ary operators. For example, let us assume that v f repre-
sents the formula � n

i � 0 ti. We can generate CF for v f �� n
i � 0 ti as�&� � v f � t0  � � � v f � t1  ��������� � � v f � tn  � � v f �0� t0 �������!�0� tn & . If we treat

� as a binary operator, we need to introduce n � 1 new variables
for the subterms in � n

i � 0 ti. For instance, this optimization is useful
in generating CF for the comparison between two 16 bit registers r
and s � 15

i � 0
�
r ) i *+� s ) i * � .

4 Experimental Results

We have implemented a model checker BMC based on bounded
model checking. Its input language is a subset of the SMV lan-
guage [10]. It outputs a propositional formula. Two different for-
mats for the propositional formula are supported. The first format
is the DIMACS format for satisfiability problems. The SATO tool
[16] is an efficient implementation of the Davis & Putnam Proce-
dure [6] and it uses the DIMACS format. We also support the in-
put format of the PROVER Tool [2] which is based on Stålmarck’s
Method [15]. As comparisons, we use the official version of the
CMU model checker SMV and a version by Bwolen Yang from

SMV1 SMV2 SATO PROVER
cells sec MB sec MB sec MB sec MB

5 1661 14 24 57 0 1 0 2
7 5622 38 74 137 0 1 0 2
9 seg. fault 172 220 0 1 1 2

11 413 702 0 1 0 3
13 843 702 0 2 1 3
15 1429 702 0 2 1 3

Table 1: Counterexample for liveness in a buggy DME (sec = sec-
onds, MB = Mega Bytes).

CMU with improvements including support for conjunctive parti-
tioning. We refer to them as SMV1 and SMV2 respectively.

4.1 Model Checking

In [1] we reported the results of applying bounded model check-
ing to some academic examples. We showed that model check-
ing safety properties for a sequential shift and add multiplier and
finding short counterexamples for liveness properties of an asyn-
chronous circuit could be done much faster with SAT than with
BDD based methods. In particular, we studied the design of an
asynchronous circuit for distributed mutual exclusion [9]. We in-
troduced a bug by removing some fairness constraints. The buggy
design violated the liveness property that a request for a resource
will be eventually acknowledged, and there is a counterexample of
length 2. We applied model checkers to find the counterexample.
Table 1 shows the results of this experiment.

4.2 Invariant Checking

Safety properties can be verified by proving an inductive invariant
that holds at the initial state, is preserved by the transition rela-
tion and implies the safety property [7]. These three conditions can
all be formulated as propositional satisfiability problems and ver-
ified by a propositional decision procedure. Of course, being an
inductive invariant is a sufficient but not necessary condition for a
safety property. We implemented this approach in the tool BMC
as follows. The user formulates the model as usual and specifies
the invariant as a safety property (with AG). Then BMC generates
two instances of a satisfiability problem. One formula for checking
that the invariant is preserved by the transition relation and another
formula for checking that the invariant holds initially. The third
condition has to be formulated by the user.

As an example for this technique we verified that the equiva-
lence between two different implementations of a queue of a par-
ticular length. This example is taken from [11] and it is known that
no variable ordering exists such that the (RO)BDDs for the set of
reachable states remain small. In the experiments of Table 2 an
invariant that relates the contents of the two queues was manually
constructed. As discussed above, three conditions have to be ver-
ified for each particular length of the queues. We compared the
results of SAT-based and BDD-based techniques.

4.3 Equivalence Checking

Recently, there has been a lot of progress in boolean equivalence
checking[8, 12]. State-of-the-art equivalence checkers can handle
designs with more than 1 million gates. These tools utilize the cor-
respondence between internal signals and partition large circuits
into much smaller ones. If the two circuits to be compared have
significantly different structures, equivalence checkers can perform



SMV1 SMV2 SATO PROVER
l sec MB sec MB sec MB sec MB

15 82 40 36 81 102 10 19 2
16 207 66 80 197 411 6 6 2
17 573 119 191 393 1701 16 45 3
18 1857 223 422 754 302 14 58 3
19 5765 430 1101 817 1551 20 70 3
20 30809 845 9136 977 1377 20 86 3
21 � 1GB � 1GB � 40h 99 3
22 120 3

Table 2: Comparison between queues (l = length of queues, MB =
Mega Byte, sec = seconds).

Circuit #ins #outs #gates sec
Industry1 203 8 738 233
Industry2 317 232 15242 8790
Industry3 96 32 1032 210

Table 3: Equivalence checking using SAT procedures (sec = sec-
onds).

poorly even on much smaller designs. Most equivalence check-
ers are BDD-based. We have investigated how propositional deci-
sion procedures (SAT procedures) can be used instead of BDDs for
equivalence checking.

We use BMC to convert the equivalence checking problem to
a propositional satisfiability problem. The output of BMC is a for-
mula in CF which is fed into SATO. In Table 3, we list some in-
dustrial circuits that cannot be processed by some state-of-the-art
equivalence checkers within 24 hours.

In Industry1 and Industry2, the logic of one circuit has been
considerably optimized and the other is unoptimized. For both ex-
amples, we applied logic optimization using SIS [14] on the circuits
before submitting them for equivalence checking. This extra step
of logic optimization greatly speeds up our verification. Without
it, Industry1 takes 8246 seconds and Industry2 takes more than 1
day. The use of logic transformation to speed up SAT procedures
seems promising for future research. In Industry3, some outputs of
the two circuits are not equivalent. However, only a small fraction
of the input patterns can differentiate the two circuits (220 out of
296). There is little hope that random simulation can identify the
non-equality. SATO was able to identify counterexamples in a few
seconds for every non-equivalent output! This example supports
our belief that SAT-based approaches can detect errors efficiently.

5 Conclusion

Our results demonstrate the potential of SAT-based techniques in
various domains of hardware verification. We believe that SAT-
based approaches complement the existing BDD-based approaches
well. There are some promising directions of future research. Op-
timization techniques in generating propositional formulas need to
be further investigated. Previous work from other fields such as ar-
tificial intelligence may be relevant as well. Also, heuristics of SAT
procedure need to be studied for the domain of hardware verifica-
tion. For instance, in BDDs, interleaving the bits often provides a
good variable ordering. Similar techniques may work well as split-
ting heuristics for SAT procedures.
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