
Experimenting with SAT solvers in Vampire ?

Armin Biere1, Ioan Dragan2, Laura Kovács2,3, and Andrei Voronkov4

1 Johannes Kepler University, Linz, Austria
2 Vienna University of Technology, Vienna, Austria

3 Chalmers University of Technology, Gothenburg, Sweden
4 The University of Manchester, Manchester, UK

Abstract. Recently, a new reasoning framework, called AVATAR, integrating
first-order theorem proving with SAT solving has been proposed. In this paper,
we experimentally analyze the behavior of various SAT solvers within first-order
proving. For doing so, we first integrate the Lingeling SAT solver within the first-
order theorem prover Vampire and compare the behavior of such an integration
with Vampire using a less efficient SAT solver. Interestingly, our experiments on
first-order problems show that using the best SAT solvers within AVATAR does
not always give best performance. There are some problems that could be solved
only by using a less efficient SAT solver than Lingeling. However, the integration
of Lingeling with Vampire turned out to be the best when it came to solving most
of the hard problems.

1 Introduction

This paper aims to experimentally analyze and improve the performance of the first-
order theorem prover Vampire [8] on dealing with problems that contain propositional
variables and also other clauses that can be splitted. The recently introduced AVATAR
framework [15], proposes a way of integrating a SAT solver in the framework of an au-
tomatic theorem prover. The main task that a SAT solver has in this framework is to help
the theorem prover in splitting clauses. Although initial results obtained by using this
framework in Vampire proved to be really efficient, it is unclear whether efficiency of
AVATAR depends on the efficiency of the used SAT solver. In this paper we address this
problem using various SAT solvers and experimentally evaluate AVATAR as follows.
We first integrate the Lingeling [3] SAT solver inside Vampire and compare its behavior
against a less efficient SAT solver already implemented in Vampire. Our experiments on
a large number of problems show significantly different results when using Lingeling
and/or the default SAT solver of Vampire for splitting clauses in AVATAR.

Splitting clauses is a well studied problem in the community of automated theo-
rem provers. First, the method introduced in the SPASS [16] theorem prover tries to
do splitting and uses backtracking to recover from a bad split. Another way of deal-
ing with splittable clauses was introduced in Vampire [10] and takes care of splitting
without backtracking. Both ways of splitting on a clause are highly optimized for these
theorem provers. Implementation of these splitting techniques is not trivial and can
? This work was partially supported by Swedish VR grant D0497701 and the Austrian research

projects FWF S11410-N23, FWF S11408-N23 and WWTF ICT C-050.

highly influence the overall performance of the prover. Therefore, in [6] the authors
are performing an extensive evaluation of different ways of doing splitting and evalu-
ate other methods using BDDs and SAT solvers for clause splitting. Although the use
of splitting improves performance these splitting techniques cannot compete against
the methods used in SAT solvers on propositional problems or even in SMT solver on
ground instances [15].

The problem of dealing with splitting clauses in AVATAR is motivated by the way
first-order theorem provers usually work. In general first-order provers make use of
three types of inferences: generating, deleting and simplifying inferences. In practice,
using these inferences one can notice a couple of problems. Usually the complexity
for implementing different algorithms for the inference rules are dependent in the size
(length) of the clauses they operate on. As an example of simplifying inference, sub-
sumption resolution is known to be NP-complete and the algorithms that implement
it are exponential in the number of literals in a clause. Another issue arises when we
want to use generating inferences. In this case assuming we have two clauses contain-
ing l1 and l2 literals and we apply resolution on them then the resulting clause will
have l1 + l2 � 2 literals. Now if these clauses are long it means we generate even
longer clauses. This also raises the question of storage for these clauses for example by
indexing [9] .They are a couple of methods that deal with large clauses, for example
limited resource strategy [11] which is also implemented in Vampire. This method will
start throwing away clauses that slow down the prover. An alternative would be to use
splitting in order to make the clauses shorter and easy to be manipulated by the prover.

In this paper we study the use of splitting in the new AVATAR framework (see
Section 2) for first-order theorem proving, by integrating different SAT solvers into the
Vampire automated theorem prover (see Section 3). We evaluate the new approach (see
Section 4) on a large set of problems in order to better understand how does the use of
an state of the art SAT solver influences the AVATAR framework.

2 Preliminaries

This section overviews the main notions used in the paper, for more details we refer
to [8, 15]. In the framework of first-order logic, a first-order clause is a disjunction of
literals of the following form L1 _ . . . _ Ln, where a literal is an atomic formula or
the negation of an atomic formula. Usually when we speak about splitting we speak
about clauses as being sets of literals. Due to this description of a clause we can safely
assume that we do not have duplicate literals. We also assume that predicates, functions
are uninterpreted and the language might contain the equality predicate (=).

In a nutshell splitting of clauses starts from the following remark. Suppose that we
have a set S of first-order clauses and C1_C2 a clause such that the variables of C1 and
C2 are disjoint. Then 8(C1 _ C2) is equivalent to 8(C1) _ 8(C2). This transformation
implies that the set S [{C1 _ C2} is unsatisfiable if and only if both S [{C1} and
S [{C2} are unsatisfiable. In practice one can notice the fact that splittable clause
usually appear when theorem provers are used in software verification applications.

Let C1, . . . , Cn be clauses such that n � 2 and all the Ci’s have pairwise disjoint
sets of variables. We can safely say that SP def

= C1 _ . . . _ Cn is splittable into com-
ponents C1, . . . , Cn. We will also say that the set C1, . . . , Cn is a splitting of SP . An

example of such a splittable clause can be considered any ground clause that contains
multiple literals. One problem that arises in splitting is the fact that there are multiple
ways of splitting a clause. But this is not a major issue since we know that there is al-
ways a unique splitting such that each component cannot be splitted more. We call this
splitting of a clause maximal. Computation of such a splitting proves to always give the
maximal number of components of a clause, see [10] for details.

Let us first discuss how the mapping between the first-order problem and the propo-
sitional problem is done. In the propositional problem that is sent to the SAT solver we
basically keep track of clause components. In order to do that we have to use a mapping
[.] from components to propositional literals. The mapping has to satisfy the follow-
ing properties: 1. [C] is a positive literal if and only if C is either a positive ground
literal or a non-ground component; 2. for a negative ground component ¬C we have
[¬C] = ¬[C]; 3. [C1] = [C2] if and only if C1 and C2 are equal up to variable re-
naming and symmetry of equality. In order to implement this mapping Vampire uses a
component index, which maps every component that satisfies the previous conditions
into a propositional variable [C]. And for each such component C the index checks
whether there is already a stored component C‘ that are equal than it returns [C‘] as
propositional variable. Doing so we ensure that we do not have multiple propositional
variables that are mappings of equal components. In case there is no such component
stored in the index, than a new propositional variable [C] is introduced and we store the
association between C and [C]. A model provided by the SAT solver for the proposi-
tional problem is considered a component interpretation. Such a model contains only
variables of the form [C] or their negations and does not contain in the same time both
a variable and its negation. The truth definition of a propositional variable in such an
interpretation is standard. With the small difference that in case for a component C
neither [C] not ¬[C] belongs to the interpretation, than [C] is considered undefined,
meaning it is neither true nor false.

In a nutshell AVATAR works as follows. The first-order reasoning part works as
usual, using a saturation algorithm [8]. The main difference with respect to a classical
approach is the way it treats splittable clauses. In the case that a clause C1_C2 . . ._Cn

is splittable in C1, C2, . . . , Cn components and the clause passes the retention test it is
not added to the set of passive clauses. Instead we add a clause [C1]_ [C2]_ . . ._ [Cn]
to the SAT solver and check if the problem added to the solver is satisfiable. If the SAT
solver returns unsatisfiable, it means that we are done and report it to the first-order
reasoning part. In case the problem is satisfiable, we ask the SAT solver to produce a
model. This model acts as a component interpretation I. If in the interpretation a literal
has the form [C] for some component C then we pass to the first-order reasoner the
component, where C is used as an assertion. Exception from this rule are those literals
of the form ¬[C], where C is a non-ground component. This is due to the fact that such
a literal does not correspond to any component.

In our context a SAT solver has to expose an incremental behavior. By incremental
we mean that the solver receives from time to time new clauses that have to be added at
the propositional problem and checks whether the problem is satisfiable upon request
from the first-order reasoner. If the problem is satisfiable than all it has to do is to pass
back to the first-order reasoner a model (component interpretation) for all the propo-

sitional variables. Otherwise it simply has to return unsatisfiable and communicate the
unsatisfiability result to the first-order reasoning part as well.

3 Integration

We now describe how we integrated the Lingeling SAT solver in the framework of
Vampire. We also overview the options implemented in order to control the behavior
of Lingeling in Vampire. Although Lingeling is used in commercial applications, the
source code is publicly available. Also the default license allows Lingeling to be used in
non-commercial and academic context. Our main goal after integrating the new solver
in Vampire framework was to obtain better performance in the process of solving first-
order problems.

In general any SAT solver is designed to accept as its input problems described in
the DIMACS format [2]. We have decided to implement an interface that allows us to
directly control Lingeling via its API. By using the API one can also control the options
for the background SAT solver at run time depending on the strategy being deployed.

In the case when the SAT solver establishes satisfiability of a given problem, we are
interested in obtaining a model for the problem. This behavior matches the intended use
for the majority of SAT solver and in particular Lingeling. In the case of satisfiability
though there are some situations when we would be interested in obtaining similar
models. By similar models we mean that in the incremental case, if the current problem
is proved to be satisfiable, we add new clauses to the solver and the solver decides that
the problem is still satisfiable, we would like to obtain a model that has as few different
assignments from the previous model as possible.

For the purpose of our work, we use Lingeling in an incremental manner, but there
is still the question of how should we add the clauses to the solver. Incrementality in
the context of SAT solving refers to the fact that a SAT solver is expected to be invoked
multiple times. Each time it is asked to check satisfiability status of all the available
clauses under assumptions that hold only at that specific invocation. The problem to be
solved thus grows upon each call to add new clauses to the solver, for details see [5].
In the context of Vampire at some particular point the first-order reasoner can add a set
of clauses to the existing problem. In order to add these clauses to the underlying SAT
solver we implemented two versions of using Lingeling in the AVATAR architecture of
Vampire. The first version, given in Algorithm 1, iterates over the clauses that appear
in the original problem and adds them one by one to Lingeling. After we have added
the entire set of clauses to the SAT solver we call for satisfiability check. We call this
method of adding clauses “almost incremental” since it does not call for satisfiability
check after each clause is added. Algorithm 1 is very similar to non-incremental SAT
solving at each step when the first-order reasoning part asks for satisfiability check,
since the call for satisfiability is done only after all the new clauses are added to the
solver (line 6). Overall, the approach is still based on incrementality of the underlying
SAT solver, since we keep adding clauses to the initial problem.

Another way of using the underlying solver would be to simulate the pure incre-
mental approach, as presented in Algorithm 2. This approach is similar to the previous

one with the difference that now as soon as a new clause is added to Lingeling we are
also calling for a satisfiability check (line 4).

In order to be able to use any of the previous ways of integrating Lingeling in Vam-
pire one has to be careful when adding clauses to Lingeling. Internally Lingeling tries
to apply preprocessing on the problem and during preprocessing a subset of variables
could be eliminated. This can lead to some problems since we eliminate a subset vari-
ables during the preprocessing and in some future step we might add some of them back
to the solver. The issue that arises here is the fact that performing these operations can
lead to unsoundness of the splitting solution generated by the first-order reasoner. In or-
der to avoid the issue of not allowing the solver to eliminate variables while performing
the preprocessing steps, Lingeling relies on the notion of frozen literals [3]. One can
see a frozen literal as a literal that is marked as being important and not allowing the
preprocessor to eliminate it during preprocessing steps. Using freezing of literals we
are ensured that although preprocessing steps are done, it will inhibit the elimination
of marked variables. In our case it actually means that one has to freeze all the literals
that appear in the initial problem and also all the literals that are due to be added. The
process of freezing literals is done on the fly when new clauses are added to the solver.
In order to do be efficient and not freeze multiple times the same literal we keep a list
of previously added and frozen literals.

1: Input: a set of clauses to be added
2: while not all clauses added do
3: Add clause to Lingeling
4: Keep track of the added clause
5: end while
6: Call SAT procedure
7: if UNSATISFIABLE found then
8: Report Unsatisfiability
9: else

10: Return a model
11: end if

Fig. 1. “Almost” incremental version of
Lingeling in Vampire

1: Input: a set of clauses to be added
2: while not all clauses added do
3: Add clause to Lingeling
4: Call SAT procedure
5: Keep track of the added clause
6: if UNSATISFIABLE found then
7: Report Unsatisfiability
8: else
9: Return a model

10: end if
11: end while

Fig. 2. Incremental version of Lingeling in
Vampire

Although the freezing of all literals proves to be a suitable solution of enforcing
Lingeling not to eliminate some variables during the preprocessing steps, this also limits
the power of the preprocessing implemented in the solver. One improvement could be
to develop a methodology that would allow “predicting” which literals are not going to
be used later on and allow the SAT solver to eliminate them if necessary.

3.1 Integrating and using Lingeling in Vampire

In order to run Vampire5 with Lingeling as a background SAT solver one has to use
from command line the following option:

��sat solver lingeling

5 Vampire with all the features presented in this paper can be downloaded from vprover.org

By default when one enables the use of Lingeling as a background SAT solver, the
solver is used as presented in Algorithm 1. This means that we add first all the clauses
to the SAT solver and only then call for satisfiability check.

In case one wants to use Lingeling in Vampire as presented in Algorithm 2 the
following option needs to be used

�� sat lingeling incremental [on/off]

This enables the incremental use of Lingeling as presented in the algorithm. By default
this option is set to off.

We are also interested in generating similar models when we use incrementally the
underlying solver. In order to control this behavior, one should use the option:

�� sat similar models [on/off]

By default this option is set to off. As for the previous options activating similar model
generation has effect only in the case where Lingeling is used as background solver. In
the following we present the results obtained by running Vampire with combinations of
these options.

4 SAT experiments in Vampire

Currently, there are all together 5 different combinations of values for the new options
controlling the use of SAT solvers in Vampire. In order to benchmark these strategies
we used problems coming from the TPTP [13] library. The experiments where run
on the InfraGrid infrastructure of West University of Timisoara [1]. The infrastructure
contains 100 Intel Quad Core processors, each one with dedicated 10GB of RAM. All
the experiments presented in this paper are run with a time limit of 60 seconds and with
memory limit of 2GB.

4.1 Benchmarks and experiments

As a first set of problems we have considered the 300 problems from the first-order
division of the CASC 2013 competition see [14]. Besides these problems we also used
6637 problems from the TPTP library. These 6637 problems are a subset of the TPTP
library that have ranking greater than 0.2 and less than 1. Ranking 0.2 means that 80%
of the state of the art automatic theorem provers can solve this problem, while ranking
1 means that no state of the art automated theorem prover can solve the problem.

Generally using a cocktail of strategies on a single problem proves to behave al-
ways better in first-order automated theorem proving. For this purpose we have decided
to evaluate our approaches of using SAT solving in the AVATAR framework of Vam-
pire both using a mixture of options and also using the default options implemented in
Vampire.

CASC competition problems. We evaluated Vampire using all the new SAT features
and kept all other options with their default values, from now on we will call this version
of Vampire default mode. Also we evaluated the mode where we launch a cocktail of
options (strategies) with small time limits and try to solve the problem, called the casc
mode. A summary of the results obtained by running these strategies can be found in
Table 1 and Table 2. All tables presented in this paper follow the same structure: the

Table 1. Results of running Vampire with default values for parameters on the 300 CASC prob-
lems.

Strategy Vamp L L S L I L I S
Average Time 3.4747 3.0483 4.2159 2.6728 3.8490

of solved instances 142 146 156 143 144
different 2 12 16 10 11

first row presents the abbreviations for all the used strategies, the second row presents
the average time used by each of the strategies in order for solving the problems. Here
we take into account only the time spent on the problems that can be solved using a
particular strategy. The third row presents the total number of problems solved by each
strategy. The last row presents the number of different problems. By different problems
we mean problems that could be solved either by Vampire with the default SAT solver
and not solved by any of the strategies involving Lingeling and the problems that can
be solved only by at least one strategy that involves Lingeling but cannot be solved
by Vampire using the default SAT solver. The abbreviations that appear in the header

Table 2. Results of running Vampire using a cocktail of strategies on the 300 CASC problems.

Strategy Vamp L L S L I L I S
Average Time 3.4679 3.0615 4.2701 2.8139 3.7852

of solved instances 230 233 240 232 232
different 1 8 13 8 7

of each table stand for the following: vamp stands for Vampire using the default SAT
solver, L stands for Vampire using Lingeling as background SAT solver, in an “almost”
incremental way, L S similar to L but turning the generation of similar models on the
SAT solver side on, L I stands for Vampire using Lingeling as background SAT solver
in pure incremental way and L I S is similar to L I but with the change that it turns
similar model generation on the SAT solver side.

Table 1 reports on our experiments using the default mode of Vampire on the 300
CASC problems. Among these 300 problems, 23 problems can be solved only by either
Vampire using some variations of Lingeling as background SAT solver or by Vampire
using the default SAT solver. Table 2 shows our results obtained by running Vampire
in casc mode on the 300 CASC problems. Among these 300 problems there are 18

Fig. 3. Comparison of performance between Vampire with the default SAT solver and different
Lingeling strategies run in default mode. Default SAT solver is compared against: (a) Lingeling
“almost” incremental, (b) Lingeling “almost” incremental and similar models, (c) Lingeling in-
cremental and (d) Lingeling incremental and similar models

problems that can be solved only by either Vampire using some variation of Lingeling
as background SAT solver or by Vampire using the default SAT solver.

Figure 3 presents a comparison between Vampire using the default SAT solver and
each of the new strategies. The scatter plots present on the x-axis the time spent by
Vampire in trying to solve an instance, while on the y-axis the time spent by different
strategies on the same instance. In order to have more concise figures we have decided
to normalize the time spent in solving by a factor of 10. Doing so one can compare
time-wise the performance of each of the strategies. A point appearing on the diagonal
of the plot represents the fact that both strategies terminated in the same amount of time.
A point appearing on top of the main diagonal represents the fact that Vampire using
the default strategy managed to solve that instance faster than Vampire using Lingeling
variations. Similar a point below the diagonal represents the fact that Vampire using the
new strategy solved the problem faster than Vampire using the default SAT solver.

The plot presents one to one comparison between the strategies and the default
strategy. In Figure 3 we present the results obtained by running Vampire in “default”
mode but varying the SAT solver as described above. From this figure one can notice
the fact that more points appear above the diagonal, meaning that the default values
of Vampire are better. We can notice however that there are some problems on which

Vampire with default SAT solver time out while using Lingeling they can be solved
in very short time. From these plots one could conclude that taken individually these
strategies and compared to the default one, they seem to be have similar behavior as
the default one. Nevertheless, if we take them together and compare them to the default
strategy we notice the fact that indeed they behave better.

Table 2 and Figure 4 present a similar comparison on the same problems, using
the same variations of the underlying SAT solver and the same limits as for the default
mode.

Fig. 4. Comparison of performance between Vampire with the Default SAT solver and different
Lingeling strategies run in casc mode. Default SAT solver is compared against: (a) Lingeling
“almost” incremental, (b) Lingeling “almost” incremental and similar models, (c) Lingeling in-
cremental and (d) Lingeling incremental and similar models

Other TPTP problems. In a similar manner as for the 300 CASC problems we have
evaluated our newly added features on a big subset of TPTP problems. The problems
that have been selected for test have ranking in the interval [0.2, 1), having the status of
either: Unsatisfiable, Open, Theorem or Unknown.

In Table 3 we present the summary of obtained results from running Vampire with
all the variations on the set of problems in default mode. Table 4 presents the summary
of our results obtained by running Vampire in casc mode on the same set of problems
using the same variations as above described.

Table 3. Results of running Vampire using default values for parameters on the 6.5K problems.

Strategy Vamp L L S L I L I S
Average Time 6.0440 5.9982 6.5992 5.6805 6.5025

of solved instances 2672 2810 2925 2750 2788
different 104 350 422 328 334

From our experiments we noticed that using Lingeling as a background SAT solver
in the “almost” incremental and with the similar model generation turned on proves to
perform the best among the newly implemented strategies. This sort of behavior can
be due to multiple reasons. First it could be due to the fact that the solver tries to keep
the model for as long as possible, due to similar model generation option. Another
explanation for best performance can be the fact that using this options we do not call
the SAT solver after each clause is added, but rather only after we add all the clauses
generated by the first-order reasoning part, hence decreasing the time spent by the SAT
solver in solving.

Table 4. Results of running Vampire using a cocktail of strategies on the 6.5K problems.

Strategy Vamp L L S L I L I S
Average Time 6.1019 6.0895 6.1139 6.3069 6.0638

of solved instances 4788 4822 4881 4809 4792
different 81 212 245 207 194

4.2 Analysis of experimental results

While integrating the new SAT solver inside Vampire and during the experiments we
observed some issues that might increase the performance of future SAT solvers inside
the Vampire’s AVATAR architecture. (i) It is not necessary that a state of the art SAT
solver, as Lingeling, behaves better inside the AVATAR framework. (ii) Integration of
new solvers is less complicated than fine tuning the newly integrated solvers in order to
match the performance of the default SAT solver, which is hard. (iii) Using an external
SAT solver just in case the SAT problems are hard enough could be a good trade-off.
We discuss these issues below.
(i) First, let us discuss the performance issue. At least in the case of Lingeling upon
integration we have noticed that it behaves really nice on some of the problems while
on some others it seems to fail. There are a couple of factors that could influence the
behavior of such a performant tool. (1) Calling the solver many times decreases its per-
formance. Although the solver is designed to be incremental upon adding new clauses
to the problem and call for satisfiability check, it restarts. Now the problem appears
when we call many times the solver. For example in the case of “pure” incremental
way, we call the solver after each clause is added. Although the speed with which the
check is done is incredibly fast, calling it n times makes it n times slower. (2) Due to
this behavior in the worst case we have n restarts on the SAT solver side, where n is the
number of clauses added to the solver. Both these points showed up in the statistics from

the experiments we have performed. It is not uncommon that the first-order reasoning
part will create a problem containing 10K or even 100K clauses. Now even if for one
call the SAT solver spends 0.01 seconds it results in a timeout.
(ii) The default SAT solver implemented in Vampire follows the general structure of
the MiniSAT [5] SAT solver. This architecture is an instantiation of the Conflict-Driven
Clause Learning (CDCL) [12] architecture. Although it is incremental, it deals with
incrementality in a different manner. Assuming that we add a clause to the solver, first
we check whether we can extend the current model so that we can satisfy also the newly
added clause if the clause gets satisfied by the current model we keep the model and
add the clause to the database. In case the clause is not directly satisfied by the model
but does not contain any variable that is used in the model we try to satisfy the clause
by extending the model. If we cannot do that, we do not restart, but rather backtrack to
the point where the conflict comes from. A conflict can appear only if variables that are
used in the model appear also in the newly added clause. If that is the case we take the
lowest decision level among the conflict variables and backtrack to it. From there on we
continue the classical SAT procedure and try to find a new model.

Using this approach, the SAT solver brings a couple of advantages for the first-order
reasoning part. Due to the fact that we try to keep the model with minimal changes, we
do not have to modify the indexing structures so often in the first-order part and also
from our experiments we have noted that the actual SAT solving procedure gets called
less often than in the case of calling for satisfiability check on an plugged-in solver.
(iii) Adding a new external SAT solver inside the framework of Vampire is not compli-
cated. One has to take care about how the first-order reasoning part and the SAT solver
communicate and do some book keeping. The issue arises when one has to fine-tune
the SAT solver so that it performs well in it’s new environment. Usually state of the
art SAT solvers are highly optimized in order to behave well on big problems coming
from industry but sometimes seem to get stuck in small problems. Also one important
component of a state of the art solver is preprocessing [4], which for our purpose has
to be turned off in order to ensure that we do not eliminate variables that might be used
for splitting in the first-order reasoner. Due to the fact that we do not use all the power
of a SAT solver we have to answer the question whether it is the case that state of the
art, or commercial, solvers behave better in this context. In the case of the AVATAR
architecture for an automated theorem prover producing different models for the SAT
problems means that a clause gets splitted in different ways. That also translates into
the fact that in some cases the use of an “handcrafted” SAT solver might produce the
right model, but it also means that in other cases the state of the art solver produces the
right model at the right time. This results in either solving the problem really fast or not
at all. Some interesting fact that we have noticed during the experiments is the fact that
the AVATAR architecture is really sensitive towards the models produced by the SAT
solver.

5 Conclusion and future work

Starting from the initial results of the newly introduced AVATAR framework for an
automatic theorem prover, we investigate how does a state of the art SAT solver behave

in this framework. We describe the process of integrating a new SAT solver in the
framework of Vampire using the AVATAR architecture. We also present a couple of
decisions that have been made in order to better integrate the first-order proving part
of Vampire with SAT solving. From our experiments we noticed that using a state of
the art SAT solver like Lingeling inside the framework of an automated theorem prover
based on AVATAR is useful and behaves well on TPTP problems. However there are
also cases where using Lingeling as background solver Vampire does not perform as
good as using a less efficient SAT solver.

We believe that further refinements on the SAT solver part and better fine tuning
of the solver will produce even better results. We are investigating different ways of
combining the Vampire built-in SAT solver with the external SAT solver such that we
do not restart upon every newly added clause. Besides splitting, Vampire uses SAT
solving also for instance generation [7] and indexing. We are therefore also interested
in finding out whether the use of a state of the art SAT solver improves the performance
of Vampire.

References

1. http://hpc.uvt.ro/infrastructure/infragrid/. HPC Center - West University of Timisoara
2. Biere, A.: Picosat essentials. JSAT 4(2-4), 75–97 (2008)
3. Biere, A.: Lingeling, plingeling and treengeling entering sat competition 2013. In: SAT Com-

petition 2013. pp. 51–52 (2013)
4. Eén, N., Biere, A.: Effective preprocessing in sat through variable and clause elimination. In:

SAT. pp. 61–75 (2005)
5. En, N., Srensson, N.: An extensible sat-solver. In: Giunchiglia, E., Tacchella, A. (eds.) The-

ory and Applications of Satisfiability Testing. Lecture Notes in Computer Science, vol. 2919,
pp. 502–518. Springer Berlin Heidelberg (2004)

6. Hoder, K., Voronkov, A.: The 481 ways to split a clause and deal with propositional variables.
In: CADE. pp. 450–464 (2013)

7. Korovin, K.: Inst-gen - a modular approach to instantiation-based automated reasoning. In:
Programming Logics. pp. 239–270 (2013)

8. Kovács, L., Voronkov, A.: First-Order Theorem Proving and Vampire. In: Proc. of CAV. pp.
1–35 (2013)

9. Nieuwenhuis, R., Hillenbrand, T., Riazanov, A., Voronkov, A.: On the evaluation of indexing
techniques for theorem proving. In: IJCAR. pp. 257–271 (2001)

10. Riazanov, A., Voronkov, A.: Splitting without backtracking. In: IJCAI. pp. 611–617 (2001)
11. Riazanov, A., Voronkov, A.: Limited resource strategy in resolution theorem proving. J.

Symb. Comput. 36(1-2), 101–115 (2003)
12. Silva, J.P.M., Lynce, I., Malik, S.: Conflict-driven clause learning sat solvers. In: Handbook

of Satisfiability, pp. 131–153 (2009)
13. Sutcliffe, G.: The TPTP Problem Library and Associated Infrastructure. J. Autom. Reasoning

43(4), 337–362 (2009)
14. Sutcliffe, G.: Tptp, tstp, casc, etc. In: CSR. pp. 6–22 (2007)
15. Voronkov, A.: Avatar: The architecture for first-order theorem provers. In: CAV. pp. 696–710

(2014)
16. Weidenbach, C.: Combining superposition, sorts and splitting. In: Handbook of Automated

Reasoning, pp. 1965–2013 (2001)

