
EPiC Series in Computing

Volume 38, 2016, Pages 29–32

Proceedings of the 1st and 2nd Vampire Workshops

SAT Solving Experiments in Vampire∗

Armin Biere1, Ioan Dragan2, Laura Kovács2,3, and Andrei Voronkov4

1 Johannes Kepler University, Linz, Austria
biere@jku.at

2 Vienna University of Technology, Vienna, Austria
ioan.dragan@tuwien.ac.at

3 Chalmers University of Technology, Gothenburg, Sweden
laura.kovacs@chalmers.se

4 University of Manchester, Manchester, U.K.
andrei@voronkov.com

Abstract

In order to better understand how well a state of the art SAT solver would behave in the framework

of a first-order automated theorem prover we have decided to integrate Lingeling [2], best performing

SAT solver, inside Vampire’s AVATAR [5] framework. In this paper we propose two ways of integrating

a SAT solver inside of Vampire and evaluate overall performance of this combination. Our experiments

show that by using a state of the art SAT solver in Vampire we manage to solve more problems.

Surprisingly though, there are cases where combination of the two solvers does not always prove to

generate best results.

Extended Abstract

Automated theorem proving attracted a lot of attention both from academia and industry in
recent years. Today automated theorem proving is used in many industry branches. Most of its
applications are related to verification of correctness for software. This approach has proven to
be essential in safety-critical systems, like airplane software verification and validation. Another
emerging market for theorem provers is the automotive industry, where program verification
is also a must. But as in most of the verification fields, theorem proving alone cannot solve
all the problems arising in industry. For this purpose a lot of effort was spent on integrating
different technologies into a single solver. Recently a new architecture for theorem provers,
called AVATAR (Advanced Vampire Architecture for Theories And Resolution), was proposed.
This architecture facilitates the integration of different solvers, e.g. SAT, SMT, QBF solvers,
inside of a theorem prover.

Within the AVATAR framework a SAT solver is mainly used for helping the theorem prover
in splitting and asserting clauses. The base observation for splitting a first-order clause comes
from the following idea. Assume that we have a set S of first-order clauses and a clause C1∨C2

such that all the variables in C1 and C2 are disjoint. Then the clause ∀ (C1 ∨C2) is equivalent

∗This work was partially supported by the Wallenberg Academy Fellowship 2014, the Swedish VR grant
D0497701 and the Austrian research projects FWF S11408-N23, S11409-N23, and S11410-N23.

L.Kovács and A.Voronkov (eds.), Vampire 2014 and 2015 (EPiC Series in Computing, vol. 38), pp. 29–32

SAT solving experiments in Vampire Biere, Dragan, Kovács and Voronkov

to ∀ (C1) ∨ ∀ (C2), which implies that the set S ∪ {C1, C2} is unsatisfiable if and only if both
S ∪ {C1} and S ∪ {C2} are unsatisfiable. By doing this operation the search space is split into
two search spaces that operate on shorter and light-weighter clauses and each of them can be
saturated separately.

In a nutshell the AVATAR framework works as follows: the first-order reasoning part works
as usual, using a saturation algorithm. Whereas the main difference comes from the use of a
SAT solver for deciding splittings. Assume that we have a clause C1 ∨ C2 ∨ · · · ∨ Cn that is
splittable into components C1, C2, . . . , Cn and the clause passes the retention test, this clause is
not added to the set of passive clauses but rather a new propositional clause [C1]∨[C2]∨· · ·∨[Cn]
is added to the SAT solver and the solver is asked for a solution. In case the problem is proven
to be unsatisfiable, then we report the result to the first-order reasoning part, which in turn
returns unsatisfiability of the original problem. If the problem is proven to be satisfiable then
a model for the propositional part is generated and passed to the first-order part. This model
acts as an component interpretation and guides the assertion of components in the first order
reasoning part. More details about how the mapping from first-order clauses to propositional
clauses is done and how components are used can be found in [5, 3].

As the majority of SAT solvers, Lingeling allows the users to add clauses in an incremental
manner, in the case of AVATAR this kind of behavior is desired. We will now briefly describe
how Lingeling was integrated inside Vampire’s AVATAR architecture and how we can add
clauses to the solver. We devised two ways of adding the propositional clauses to the SAT
solver. First, we call it ”almost” incremental, takes the set of propositional clauses generated
by the first-order part and adds them to the SAT solver. After adding all of the clauses it
checks whether the problem is satisfiable or not. If the propositional problem proves to be
satisfiable it returns the model generated by the SAT solver. Whereas if the problem proves to
be unsatisfiable then unsatisfiability result is sent to the first-order reasoning part. The other
proposed way of adding clauses to the SAT solver, called incremental, iterates over the set of
generated propositional clauses and after adding each of the clauses to the SAT solver calls for
satisfiability check and decides whether to report satisfiability (return a model) or to return
unsatisfiability of the propositional problem. When integrating the SAT solver in Vampire
we added some options to Vampire so that we can easily control the underlying SAT solver
behavior. Details about these options and how they can be combined can be found in [3].

All together there are five new options that control the SAT solver behavior implemented
in Vampie. Using combinations of these options and default Vampire options we evaluated the
integration on a subset of problems coming from the TPTP library [4]. In order to evaluate
performance we considered 300 problems from the CASC 2013 first-order division and another
set of 6637 problems selected from the TPTP library. The 6637 problems where selected based
on their ranking. That is, we selected only problems that had rank greater than .2 and less or
equal than 1. Ranking .2 means that 80% of state of the art theorem provers can solve this
problem, while ranking 1 means that no state of the art solver can solve this problem with its
default strategy (it could happen that by using a solver in portfolio mode the problem can be
solved). On these sets of problems we ran Vampire with all the implemented options both with
default values for built-in options of Vampire and in competition mode. Vampire in competition
mode is a special mode of running Vampire which attempts to solve a problem by launching
a cocktail of strategies with very little time limit. Our experiments where conducted on the
Infragrid [1] infrastructure and each run was limited to 60 seconds and a 2GB memory limit.
A summary of the results obtained by running these strategies on the 300 CASC problems and
running Vampire in competition mode can be found in Table 1.

The table is structured as follows, on first row the abbreviations for all the used strategies

30

SAT solving experiments in Vampire Biere, Dragan, Kovács and Voronkov

Strategy Vamp L L S L I L I S

Average Time 3.4679 3.0615 4.2701 2.8139 3.7852
of solved instances 230 233 240 232 232

different 1 8 13 8 7

Table 1: Results of running Vampire using a cocktail of strategies on the 300 CASC problems.

are presented. Second row presents the average time used by each of the strategies in order to
solve the problems. Here we take into account only the time spent on the problems that can be
solved using a particular strategy. Third row presents the total number of problems solved by
each strategy where last row presents the number of different problems. By different problems
we mean problems that could be solved either by Vampire with the default SAT solver and
not solved by any of the strategies involving Lingeling and those problems that can be solved
only by at least one strategy that involves Lingeling but cannot be solved by Vampire using
the default SAT solver.

The abbreviations that appear in the header of Table 1 stand for the following: vamp stands
for Vampire using the default SAT solver, L stands for Vampire using Lingeling as background
SAT solver, in an “almost” incremental way, L S similar to L but turning the generation of
similar models on the SAT solver side on, L I stands for Vampire using Lingeling as background
SAT solver in pure incremental way and L I S is similar to L I but with the change that it turns
similar model generation on the SAT solver side. Each of these options is better documented
in [3].

Our experiments show that in general using a state of the art SAT solver for guiding the
splitting process in AVATAR proves to perform better with regard to number of solved problems.
Although this is the trend there are still situations where using the default SAT solver proves
to behave best. We believe that further refinements on the SAT solver part and better fine
tuning of the SAT solver alongside with better collaboration with the first-order reasoning part
will produce even better results. We are currently investigating different ways of combining the
Vampire built-in SAT solver with external ones such that we can obtain better performance by
using the default solver for small problems and deploy the external solver on harder instances.
Besides splitting, Vampire uses a SAT solver also for instance generation and indexing. We are
therefore interested in finding out whether the use of a state of the art SAT solver improves the
overall performance of Vampire.

References

[1] Infragrid. http://hpc.uvt.ro/infrastructure/infragrid/.

[2] Armin Biere. Lingeling essentials, A tutorial on design and implementation aspects of the the
SAT solver lingeling. In POS-14. Fifth Pragmatics of SAT workshop, a workshop of the SAT 2014
conference, part of FLoC 2014 during the Vienna Summer of Logic, July 13, 2014, Vienna, Austria,
page 88, 2014.

[3] Armin Biere, Ioan Dragan, Laura Kovács, and Andrei Voronkov. Experimenting with SAT solvers
in vampire. In Human-Inspired Computing and Its Applications - 13th Mexican International Con-
ference on Artificial Intelligence, MICAI 2014, Tuxtla Gutiérrez, Mexico, November 16-22, 2014.
Proceedings, Part I, pages 431–442, 2014.

[4] G. Sutcliffe. The tptp problem library and associated infrastructure: The fof and cnf parts, v3.5.0.
Journal of Automated Reasoning, 43(4):337–362, 2009.

31

http://hpc.uvt.ro/infrastructure/infragrid/

SAT solving experiments in Vampire Biere, Dragan, Kovács and Voronkov

[5] Andrei Voronkov. AVATAR: the architecture for first-order theorem provers. In Computer Aided
Verification - 26th International Conference, CAV 2014, Held as Part of the Vienna Summer of
Logic, VSL 2014, Vienna, Austria, July 18-22, 2014. Proceedings, pages 696–710, 2014.

32

