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Abstract—This system description describes updates to our se-
quential SAT solvers CADICAL and KISSAT submitted to the
main track as well as updates to our distributed cube-and-
conquer solver PARACOOBA submitted to the cloud track.

CADICAL 1.4.0

The competition organizers decided to use CADICAL as
basis for a “hack track”. Version 1.4.0 of CADICAL used
in this track differs from the version submitted to the SAT
Competition 2020 [1] as follows.

First, our version of “reason side bumping” [2] not only
bumps literals in reason clauses of literals in the learned clause,
but, depending on a run-time recursion depth parameter, also
bumps reason literals of literals in reason clauses recursively.
By default the recursion depth limit was 1, which lead to the
same behaviour as [2]. Now, in “stable mode”, focusing on sat-
isfiable instances with few restarts and smoothed bumping [3],
we have increased this recursion depth limit to 2.

Second, to compute several statistics, CADICAL uses
exponential moving averages, particularly for controlling
restarts [4], [5]. Initializing these averages is non-trivial and
actually leads to biased estimates. For instance, without proper
initialization, the slow moving average of the LBD (glucose
levels) of learned clauses ramps up too slowly, trailing the fast
moving average, which in turn triggers unmotivated restarts
initially. We proposed a partial solution in [5] and imple-
mented another improvement based on over-approximating
the smoothing factor geometrically. With CADICAL 1.4.0 we
adopted the method for initializing exponential moving aver-
ages proposed in the ADAM approach [6], which maintains
and uses a correction factor to obtain an unbiased average.

Finally, and most importantly, the version of CADICAL
submitted to the SAT Competition 2020 unfortunately failed
to export the assignment found in local search minimizing the
number of falsified clauses back to the CDCL loop as saved
phases (due to a change in semantics of copy_phases),
which in essence rendered the local search component com-
pletely useless. And indeed, our post-competition experiments
showed, that this “heuristic bug” resulted in solving fewer
instances during the competition. In version 1.4.0 saved phases
are again explicitly overwritten at the end of local search with
the minimum assignment found during local search.
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CADICAL SC2021

On top of version 1.4.0 of CADICAL, as used in the
“CADICAL hack track”, we have added a light version of
(what we call) “shrinking” by Feng & Bacchus presented
at SAT 2020. Like the original version [7], our version [8]
shortens learned clauses by calculating the unique implication
point (UIP) on every level of the conflict clause, restricted to
not adding literals on lower levels. Unlike Feng & Bacchus’s
version, our algorithm is efficient enough to be executed
unconditionally and minimizes the clause at the same time.
This technique is particularly effective when long clauses are
learned as in the planning track of the SAT Competition 2020.
For more details please refer to [8].

KISSAT SC2021

We have also implemented “shrinking” [8] in KISSAT,
which beside reducing the length of learned clauses yields
the same run-time improvements on instances from the plan-
ning track, without degrading performance on other instances,
even though the percentage of time spent in conflict analysis
(including clause minimization and shrinking) goes up.

The local search procedure either imports decision phases
from the CDCL solver or in an alternating fashion uses
previously best assignments computed by local search, similar
in spirit to the “cache” component in YALSAT [9]. This allows
the local search to continue where it left off with the best
assignments it found earlier. In addition of using a fixed CB
value of 2.0 we also allow to interpolate it based on average
clause length and further use three variants of fixed clause
weights. These “strategies” are changed at each call to the
local search procedure (as during “restarts” in YALSAT).

Beside using the new method described above to initialize
exponential moving averages the new version of KISSAT

• reduced the number of rephasing methods by removing
the random and the flipped rephasing,

• computes backbones on the binary implication graph,
• schedules variable elimination without a priority queue,
• bounds reason side variable bumping, and

uses its default non-compact memory configuration for the
competition in order to allow the solver to go beyond 24 GB
main memory (as the organizers now announced to use 128 GB
main memory during the competition).

Finally, we use a new method for semantic gate extraction in
bounded variable elimination of a fixed candidate variable x.



Let F = Fx ∧ Fx̄ ∧ F ′, where F` is the CNF of clauses
of F which contain literal `, with ` ∈ {x, x̄}, and where
(Fx∧Fx̄) is called the environment of x. The remaining clauses
of F without x nor x̄ are collected in F ′. Given CNFs Hx,
Hx̄ where clauses in H` all contain `, we define the set of
resolvents

Hx ⊗Hx̄ = {(C ∨D) | (C ∨ x) ∈ Hx, (D ∨ x̄) ∈ Hx̄

and (C ∨D) not trivial}.
As usual we interpret a CNF also as a set of clauses. Our goal
is to eliminate x through resolution, that is replacing F by
(Fx ⊗ Fx̄) ∧ F ′.

Already in [10], which introduced the SATELITE preproces-
sor, it was proposed to extract subsets of “gate clauses” from
Fx and Fx̄ which encode “circuit gates” with output x, also
called definitions of x. Resolving these gate clauses against
each other results in tautological (trivial) resolvents, and, in
particular, this situation allows to ignore resolvents between
non-gate clauses (since those are implied).

Finding such gate clauses was originally based on syntactic
pattern matching, in essence inverting the Tseitin encoding.
For details and a semantic variant inspired by BDD algorithms
and implemented in Lingeling [11] see [12]. In KISSAT we
follow more recent semantic approaches with applications in
model counting [13] and QBF reasoning [14], which use a
SAT solver as oracle to find gate clauses.

Let x be a candidate variable, which is tried to be eliminated
without increasing the number of clauses much, and, for which
all necessary resolvents have to be generated. If syntactic
pattern matching for a Tseitin encoding of an AND, XOR
or IF-THEN-ELSE gate with x as output fails, then our new
version of KISSAT tries to extract gate clauses semantically
by checking satisfiability of (Fx|x̄)∧ (Fx̄|x), i.e., the formula
which is obtained by removing the occurrences of x in Fx and
of x̄ in Fx̄ and then conjoining the result. If this formula is
unsatisfiable we compute a clausal core which in turn can be
mapped back to original gate clauses Gx and Gx̄ in the envi-
ronment (by adding back x resp. x̄). Let H` be the remaining
clauses of F` with F` = G`∧H`. Then it turns out that Fx⊗Fx̄

can be reduced to (Gx⊗Gx̄)∧(Gx⊗Hx̄)∧(Gx̄⊗Hx) and thus
(Hx⊗Hx̄) can be omitted.1 The effect is that fewer resolvents
are generated and thus more variables can be eliminated.

To see that the last formula can be omitted assume that
A ∧B is unsatisfiable and thus Ā ∨ B̄ is valid. Therefore

(A∨C)∧(B∨D) ≡ (A∨C)∧(B∨D)∧(Ā∨B̄)⇒ (C∨D)

using in essence two resolution steps for the implication.
Setting (A,B,C,D) = (Gx, Gx̄, Hx̄, Hx) shows the rest.

KITTEN

In order to check satisfiability and compute clausal cores
of these co-factors of the environment of a variable we have
implemented a simple sub-solver KITTEN with in-memory
proof tracing and fast allocation and deallocation. If the con-
junction of the co-factors of the environment are unsatisfiable

1Resolvents among gate clauses are not necessarily tautological though.

we reduce through the API in KITTEN its formula to the
clausal core, shuffle clauses and run KITTEN a second time
which usually results in a smaller core and thus fewer gate
clauses (increasing chances that the variable is eliminated).

If only one co-factor contains core clauses, we derive a unit
clause instead. In this case the learned clauses in KITTEN are
traversed to produce a DRAT proof trace sequence for this
unit. This is one benefit of using a proof tracing sub-solver
in contrast to the BDD inspired approach in Lingeling [11],
which can not produce DRAT proofs easily. This KITTEN
feature of extracting proofs in memory is also essential to
produce proofs for “SAT sweeping” discussed next.

KISSAT SC2021 SWEEP

As in the SAT Competition 2020 we submitted the de-
fault configuration “KISSAT SC2021 DEFAULT” as well as
“KISSAT SC2021 SAT”. The latter uses target phases also dur-
ing focused mode [15] and usually works better for satisfiable
instances. Instead of submitting a configuration specialized
for unsatisfiable instances to the SAT Competition 2021, we
decided to submit some work in progress, which in principle
we expect to also work better on unsatisfiable instances.

Using KITTEN as sub-solver we perform semantically com-
plete “SAT sweeping” of small extended environments around
each variable, which works as follows. For each candidate
variable we allocate a fresh instance of KITTEN and traverse
in breadth first search (BFS) the variable incidence graph (in
which two variables share an edge if they occur in the same
clause) and copy all clauses up to a certain “depth” limit away
(the number of BFS generations) from the candidate variable.
We start with the default depth limit of 2 and also limit the
total number of copied clauses (1000) and variables (100).

After copying the environment clauses, we let KITTEN
compute a satisfiable assignment of the extended environment.
Note that an unsatisfiable environment actually results in the
whole formula to be unsatisfiable. From this satisfying assign-
ment we produce a candidate list of backbone variables and
a partition of equivalent literal candidates. The accumulated
time spent in KITTEN is further limited by “ticks” as in
KISSAT [15].

Then for each backbone candidate, we assume its negation
and call the sub-solver again. If the result is unsatisfiable we
learn the unit (and optionally extract a DRAT proof trace). Oth-
erwise we use the satisfying assignment provided by KITTEN
to refine both the backbone candidate list and the partition of
equivalent literal candidates. By randomizing and every third
call flipping the saved phases before calling the sub-solver the
number of necessary calls is reduced substantially.

In the last part we then try to prove for each pair of re-
maining equivalent literal pairs, whether they imply each other,
through two sub-solver calls with corresponding assumptions.
If both calls are unsatisfiable, the two literals are equivalent
and are merged in a global union-find data structures (and
again optionally a DRAT proof sequence is extracted). This
union-find data structure is consulted during the copy phase
to add additional clauses of equivalent literals (as well as the



equivalence). A failing satisfiable call refines the equivalent
literal candidate partition and the process continues until no
more equivalent literal candidates are left.

The advantage of this approach is that the effort is heavily
bounded, i.e., propagation over a large number of variables
is avoided and solving is completely decoupled from the
main solver. This version of KISSAT is still considered work
in progress and for instance lacks better (re)scheduling of
candidate variables. For more details and references on “SAT
sweeping” see [16], which tries to achieve the same effect,
but uses global blocked clause decomposition. A more sim-
ilar approach but without using a dedicated sub-solver was
implemented in our discontinued SAT solver SPLATZ [17].

PARACOOBA SC2021

A new version of our solver PARACOOBA [15], [18] has
been submitted to the cloud track. It is a distributed cube-
and-conquer solver. The input DIMACS is analyzed and split
once on the main node into multiple subproblem-branches.
Each branch produces a tree of subproblems (cubes) that
can be worked on independently. If branches of a cube-tree
finish early, the branch is converted into a clause, which
is distributed to all other solvers in the cluster. The first
cube-tree is always favored when deciding on what task to
work on next, so parallel cube trees do not starve the first
tree-instance of available executors. Problems are re-split in
case the CDCL-solver runs into a time-out depending on
other solving times. Re-splits are done using the lookahead
mechanism provided by CADICAL, which is also used as
incremental solver to work on all generated cubes. To guard
against problems that are faster to solve using a pure CDCL-
based solving approach, KISSAT is running in parallel to the
cube-and-conquer approach on the main node.

The architecture has been revised since last year, so that
no ticks or delays are required anymore before tasks can be
offloaded. Changes in a compute node’s state are analyzed,
compared to the last known received status of each known
peer and sent only when the information gain of the new status
is significant enough to warrant the transmission. This way,
scheduling is more dynamic, relying less on overcommitting
work (which lead to overfull queues) and instead offloading
only when other nodes are nearly out of work. Furthermore,
physical network connections no longer coincide with logi-
cal connections, which enables reconnects to work without
losing previously sent messages. Timeouts are specified per
peer and enforced with an improved keep-alive system that
sends small messages if a connection has been idle for too
long. This makes solving more resilient against network-based
issues, even on commodity hardware. The latter also enables
main nodes that only offload work and do not have workers
themselves, which is useful for low-powered devices that only
have wireless connections. Due to the low network bandwidth
requirements, the connected peers can also be in the cloud and
connected via SSH tunnels.

In order to test the improved offloading, the tracing tool
DISTRAC was developed. This tool generates compact binary

trace files that are concatenated after a run. A trace contains all
required metadata (names, descriptions, causal dependencies
between events) and can be analyzed using standard CLI tools,
either in binary form, or after printing it in a textual column-
based format. While analyzing the trace, events are sorted
in order of system-wide occurrence, keeping causal relations
intact. This enables easier debugging of network or solver
events compared to merging log files, as filtering and selecting
streams of data becomes easier.

One of the produced visualizations showing all offloads
between compute nodes while solving a small benchmark can
be seen below. Arrows are pointing from the compute node
that currently works on a task to the new compute node that the
task has been offloaded to. The Y-axis describes the compute
node id, the X-axis the timestamp of an event. Highly utilized
compute nodes offload their tasks to less utilized compute
nodes, resulting in small clusters of arrows pointing to the
same nodes, trying to maximize the active workers in the
system without centralized coordination.
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The solver has further been modularized into broker, com-
municator, solver, and runner components. These are either
loaded at runtime as shared objects or statically linked into
one binary. This mechanism enables using the PARACOOBA
infrastructure for other problems, e.g., by implementing a
custom solver module that uses the other mechanisms to
automatically distribute tasks, or by changing the already
provided solver to use different SAT-solvers. Automated unit-
and system-tests work with dynamically loaded shared objects
and can thus also be used to check third-party modules.

I. LICENSE

All our solvers are licensed under an MIT license and are
available at https://github.com/arminbiere/cadical, http://fmv.
jku.at/cadical for CADICAL, https://github.com/arminbiere/
kissat, http://fmv.jku.at/kissat for KISSAT, and https://github.
com/maximaximal/Paracooba for PARACOOBA.
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