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Abstract

Modern CDCL (conflict-driven clause learning) SAT solvers are used for many practical applications.

One of the key ingredients of state-of-the-art CDCL solvers are efficient restart schemes. The main

contribution of this work is an extensive empirical evaluation of various restart strategies. We show that

optimal static restart intervals are not only correlated with the satisfiability status of a certain instance,

but also with the more specific problem class of the given benchmark. We further compare uniform

restart intervals with the performance of non-uniform restart schemes, such as Luby restarts. Finally,

we revisit the dynamic restart strategy used in Glucose and propose a new variant thereof, which

is based on the concept of exponential moving averages. The resulting implementation in Lingeling

improves state-of-the-art performance in SAT solving.

1 Introduction

On application benchmarks, conflict-driven clause learning (CDCL) [22] solvers are considered
to be the state-of-the-art in SAT solving and, e.g., the application track of SAT competitions [4,
5] is dominated by CDCL solvers.

Beside learning [23], the most important features of these solvers are dynamic decision
heuristics, such as the variable state independent decaying sum (VSIDS) decision heuristic [24]
or variants thereof [6], as well as efficient restart schemes [15, 6, 27, 2]. In this paper, we focus
on the latter. For related work on evaluating CDCL variable scoring schemes, see [9, 20].

While earlier restart schemes either used larger intervals or focused on alternating between
intervals of different length [15], the particular benefit of frequent restarts has dominated with
the introduction of phase saving [26], and has further been improved by reusing (parts of) the
trail [28]. Nevertheless, frequent restarts come at an additional cost and, thus, techniques for
dynamic restarts often are particularly effective [6, 27, 2]. In Glucose, for example, restarts are
performed whenever the importance of the latest learned clauses appears to be smaller than
the average contribution [1, 2].

Further, it turned out that frequent restarts are particularly important for unsatisfiable
instances, whereas restarting can actually even be harmful for satisfiable ones in many cases [2].
This can be improved by blocking restarts if the current search seems to be close to a solution,
e.g., whenever a relatively large fraction of the variables is assigned [2]. Other options are
to use agility as a heuristic for delaying restarts [6], or perform local restarts [27], which are
triggered if too many conflicts occurr along a branch. In general, the idea of dynamic restarts
for DPLL [11] has already been proposed in [18].

In this paper, we analyze different restart schemes in more detail. We first evaluate restart
schemes with fixed intervals on different classes of benchmarks. It is well-known that runtime
distributions of satisfiable and unsatisfiable instances differ significantly [13]. While earlier work
already discussed the general influence of restart intervals related to the satisfiabilty of an in-
stance [2], the effect of restarts on particular classes of instances from the SAT competition [5]
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has not been analyzed before. We show that, even among satisfiable (SAT) and unsatisfiable
(UNSAT) instances, there are classes of benchmarks (buckets) that profit from shorter and
longer restart intervals, respectively. Furthermore, with new benchmarks and the steady de-
velopment of SAT solvers, it is not clear whether evaluations, such as done in [15], still apply
to current state-of-the-art solvers. For example, we show that solvers with fixed size restart
intervals can actually perform equally well to those based on the Luby series [21]. A similar
conjecture is given in [2], pointing out that the original role of restarts in DPLL based solvers
as, e.g., discussed in [14], has changed with the introduction of clause learning.

We also revisit Glucose restarts and discuss their effect compared to static restart intervals.
Whereas the original implementation of the Glucose restart scheme requires to keep track
of certain values by using a queue, we propose a new variant that does not need additional
data structures but, instead, uses the concept of exponential moving averages. An additional
advantage of this technique is the fact that a stronger influence is naturally given to more recent
activities. We show that, beside simpler implementation, this further increases the performance
of our implementation in Lingeling [8].

The rest of the paper is structured as follows. In Section 2, we first introduce the ex-
perimental setup used throughout our paper. We then evaluate static restart strategies in
Section 3, analyzing the correlation of optimal interval size with particular benchmark classes
in Section 3.1, as well as strategies with non-uniform intervals in Section 3.2. Afterwards, in
Section 4, we discuss dynamic restart strategies. We first describe the original Glucose restart
scheme in Section 4.1 and then introduce a modified version by using the concept of exponential
moving averages in Section 4.2. We also provide details on our implementation in Lingeling in
Section 4.3. Finally, we conclude in Section 5.

2 Experimental Setup

The largest part of our work consists of a substantial empirical evaluation, giving various
experimental results, distributed throughout the whole paper, and each used to motivate follow-
up discussion. In this section, we therefore want to introduce the experimental setup used at
different places throughout the remaining part of the paper.

All experiments were performed on our benchmark cluster, consisting of 30 nodes with
Intel Q9550 Core 2 Quad CPUs running at 2.83GHz and 8 GB of main memory. Each job,
e.g., pair of solver (configuration) and benchmark, had exclusive access to one node and CPU,
respectively. The time limit was set to 1000 seconds, which is substantially smaller than the
original competition time-out of 5000 seconds (competition hardware was further roughly 1.2
times faster). As memory limit, we used 7GB.

As solvers, we used variants of Lingeling that evolved from the SAT competition 2014 ver-
sion ayv [8] (sc14ayv)1 and Glucose version 4.0 (glu), with small modifications. In the SAT
competition 2014, sc14ayv solved the largest number of instances in the SAT+UNSAT applica-
tion track. This success of Lingeling can be contributed to the rather long time limit of 5000
seconds as used in the competition. For shorter time limits, Glucose version 2.3 [1, 3] from
2013 and particularly its 2014 derivative SWDiA5BY A26 [25] show much better performance,
despite lacking many effective preprocessing and inprocessing techniques [16].

Our post competition analysis, see also [9], showed that this effect can be contributed to
two different aspects. On the one hand, the benchmark selection scheme used in the SAT
competition 2014 (and already in 2013) had a strong influence on those results. Benchmarks

1acronyms in sans serif font denote SAT solver versions and configurations
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were selected in such a way to level out performance of solvers. The goal of the organizers
was to make the competition as interesting as possible, with the unfortunate effect, however,
that unique solving capabilities, such as inprocessing [16], are deemphasized. On the other
hand, our analysis showed that there is indeed an algorithmic feature implemented in all the
Glucose variants taking part in the competition, which on these competition benchmarks is
quite effective: the Glucose restart strategy [2]. Analyzing and understanding the latter is
part of our motivation for this work. Details on the Glucose restart strategy will be given in
Section 4.1.

To allow a clear comparison, we therefore implemented all techniques used in Glucose 2.3
and SWDiA5BY A26 which were not available in Lingeling, previously. Beside incorporating
effective techniques from Glucose and SWDiA5BY, the base line version ba2 of Lingeling, as
used in this evaluation, differs from the 2014 version sc14ayv mainly in small pre-processing
techniques. Further, reusing the trail [28] and agility [6] are switched off in version ba2, since
Glucose 2.3 does not use these features either, and since combining several different heuristics
for blocking restarts would conflict with the goal of a clean evaluation of the particular effects.

These modifications allow to solve several unsatisfiable combinational hardware equivalence
checking “miter” benchmarks [10], submitted 2013. Some of those are solved by our new ba2
version of Lingeling during the first preprocessing phase, without any search. Several others
can now be solved because agility was sometimes harmful for those benchmarks. The latter
effect, however, might again be partially contributed to the benchmark selection.

Another difference to sc14ayv is the initialization of variable phases. In version ba2, all
phases are now initially set to false, as it is also done in Glucose 2.3. This alone allows to solve
13 satisfiable “argumentation” instances [29], submitted 2014, with name prefix “complete. . .”.
These 13 instances have a simple solution, with all variables set to false. In contrast, if this is
not detected and a more sophisticated phase initialization heuristic like Jeroslow-Wang [17] is
triggered before switching to phase saving [26], they become very hard.

For all experiments, we use the 300 instances of the SAT+UNSAT application track of the
SAT competition 2014 [5]. With one of our goals being to analyze the correlation between
certain benchmark set and the optimal restart strategy of a SAT solver, we split the whole
instance set into buckets. We use the same partitioning as the one suggested by the competition
organziers [5], which groups the 300 instances into the following 23 buckets, each containing
between 1 and 30 instances (in parenthesis): 2d-strip-packing (4), argumentation (20), bio (11),
crypto-aes (8), crypto-des (7), crypto-gos (9), crypto-md5 (21), crypto-sha (29), crypto-vpmc
(4), diagnosis (28), fpga-routing (1), hardware-bmc (4), hardware-bmc-ibm (18), hardware-cec
(30), hardware-manolios (6), hardware-velev (27), planning (19), scheduling (30), scheduling-
pesp (3), software-bit-verif (9), software-bmc (6), symbolic-simulation (1), termination (5).

In the following sections, we describe additional specifics of the configurations used in our
experiments on top of what has been explained in detail and further provide experimental
results as well as conclusions at the corresponding places. All experimental data, including
source code, is available at http://fmv.jku.at/evalrestart/evalrestart.7z (90MB).

3 Static Restarts

In this section, we consider static restarts, i.e., we perform a restart exactly after a certain
number r of conflicts has occured since the last restart. In this context, we distinguish between
r being given as a fixed constant and r being a function of the number of restarts that have
already been performed. The first setting results in uniform restart intervals, the latter one can
be realized, e.g., by implementing a geometric policy [12, 6], or based on the Luby series [21, 15].
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r 002 004 008 016 032 064 128 256 512

tot 122 127 139 144 144 161 163 168 158
sat 40 41 49 56 56 73 76 83 79
uns 82 86 90 88 88 88 87 85 79

Table 1: static-r, number of solved instances on the full SAT competition 2014 benchmark set.
The overall results (tot) are also split into SAT (sat) and UNSAT (uns).

3.1 Uniform Restart Intervals

We implemented a simple uniform restart strategy in Lingeling, resulting in the solver versions
static-r, with r = 2k for k ∈ {1, . . . , 9}. Obviously, solvers with small r perform frequent restarts
and, therefore, many restarts in total, whereas solvers with large r perform less frequent restarts
and, therefore, fewer restarts in total. Table 1 summarizes the results we obtained for all
different r on the full benchmark set.

We can see that the version with r = 256 solves the largest number of instances in total.
Even more, the number of solved instances is increasing steadily with growing r, up to r = 256.
Therefore, larger r seem to perform better, in general. However, Table 1 also shows that the
largest number of unsatisfiable instances is actually solved for r = 8, and that this number is
decreasing for growing r. This general trend has been observed before. In particular, it has
been conjectured that the optimal number of restarts is correlated with the satisfiability status
of a given instance [13, 2].

Note that this is a very rough classification. For example, it is not clear whether the different
versions actually solve the same set of “easier” problems or if there are instances, e.g., even
among the SAT and UNSAT instances, which actually require more frequent or less frequent
restarts, respectively. Further, if different versions solved different instances, the observed effect
could just be due to introducing non-determinism in the sense of r representing a random seed.
Figure 1 and Figure 2 give more details on the effect of restart intervals by splitting the full set of
instances into the buckets presented in the previous section. This allows us to see two different
aspects. First, both plots immediately allow us to rule out the seed effect. For most buckets, the
runtime between its instances is clearly correlated. Second, there is also a significant correlation
between the performance of a solver version on certain buckets and its restart interval size r.

r 002 004 008 016 032 064 128 256 512

2d-strip-packing 0/2 0/2 0/2 0/2 0/2 1/2 1/2 1/2 2/2
crypto-sha 0/0 0/0 0/0 0/0 1/0 7/0 11/0 13/0 10/0

hardware-cec 0/22 0/23 0/24 0/22 0/22 0/23 0/22 0/21 0/21
hardware-manolios 0/4 0/5 0/5 0/5 0/6 0/6 0/6 0/6 0/6

hardware-velev 5/9 6/10 8/11 8/12 8/12 8/13 8/12 8/11 8/6
planning 6/3 6/5 7/4 7/4 8/4 9/3 9/4 11/4 10/4

scheduling 1/7 0/7 1/7 4/7 6/7 9/7 9/7 11/7 12/7

Table 2: static-r, number of solved instances (sat/uns) on some of the individual buckets. The
best SAT/UNSAT results are underlined, and the best overall result is given in bold. Note that
planning is the only bucket where the best r for SAT differs from the best r for UNSAT.
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Figure 1: Comparing static-008 and static-256. Being worse in general, the version with r = 8 is
particularly efficient for several bmc, hardware-cec, and software-bit-verif instances.

For example, Figure 1 shows that the instances only solved by static-008 and not by static-256
(or those, where the latter is significantly slower) are mainly bmc, hardware-cec, and software-
bit-verif instances. In contrast, scheduling and crypto-sha benchmarks clearly require a larger r.
Similarly, Figure 2 depicts a clear advantage for static-064 on instances from the hardware-velev
bucket. Those seem to require a moderately large r (not as small as 8 but not as large as 512).
Most of the scheduling benchmarks are still solved faster with larger r, but the difference in
performance is much smaller now. In contrast, crypto-sha instances apear to punish smaller r
much stronger while being solved by static-512.

Table 2 shows the exact number of solved instances for some buckets in combination with
each static restart interval size. For satisfiable instances, the effect seems to be rather inde-
pendent from the particular bucket. The number of solved SAT instances usually increases
with growing r for each bucket up to a certain point. The variation between the different
buckets is when exactly this point is reached. For example, the satisfiable instances from the
hardware-velev bucket do not profit anymore from restart intervals already with r > 8. In
most cases, e.g., as for crypto-sha, the maximum number of solved instances is reached for
r = 256, and possibly even decreases afterwards. In contrast, e.g., for scheduling, the number
of solved SAT instances increases further with r = 512. The numbers for unsatisfiable instances
are less determined. For example, hardware-cec shows the expected behaviour, i.e., versions
with smaller restart intervals perform better (with r = 8 being the optimum). However, for
hardware-manolios, the trend is reversed, making it profit from r ≥ 32. In a similar way, more
UNSAT instances from the hardware-velev bucket are solved with growing r, up to r = 64 (and

5



Evaluating CDCL Restart Schemes Armin Biere, Andreas Fröhlich
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Figure 2: Comparing static-064 and static-512. With similar overall results (see Table 1), us-
ing a moderate r is significantly better for hardware-velev instances, whereas crypto-sha and
scheduling require a larger r.

performance decreasing afterwards). Actually, for the hardware-velev bucket, using a larger
restart interval is more important for the unsatisfiable instances than for the satisfiable ones.
Note that the hardware-velev bucket takes another special role in our benchmark set, in the
sense that it favours moderate values of r, while most of the other buckets usually profit most
from either low or high values.

This different behaviour of satisfiable and unsatisfiable instances also gives an explanation
for the overall gain in the number of solved instances with growing r. While the number of
solved SAT instances increases, the number of solved UNSAT instances only decreases for some
buckets but also increases for others. This divergence, however, might allow to solve even more
instances if the behaviour for a specific benchmark class can be predicted by some heuristic.
This can be leveraged by parallel SAT solvers, such as Plingeling [8], or by portfolio approaches.

3.2 Non-Uniform Restart Intervals

Non-uniform restart schemes are motivated by two different aspects. First, the optimal size of
restart intervals for a given instance is usually not known in advance. Second, a solver might
profit from frequent restarts by learning good clauses (e.g., respresenting equivalences, as in the
case of “miter” benchmarks) but might still require larger intervals for finding actual solutions.

A simple version of non-uniform restart intervals can be realized by using a geometric
function. In the most straightforward approach, the size of each different restart interval is just
gradually increased. This kind of restart scheme, e.g., has already been used in earlier versions
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luby-b 01 02 04 08 16 32 io-b 001 002 004 008 032 128

tot 156 168 161 163 160 159 161 161 158 153 154 150
sat 72 80 74 77 74 74 80 81 77 74 76 76
uns 84 88 87 86 86 85 81 80 81 79 78 74

avg-r 9 17 31 58 108 203 443 509 601 732 1084 1740

Table 3: luby-b and io-b, number of solved instances on the full SAT competition 2014 benchmark
set. Additionally, the average restart interval size (over all instances) is given.

of Minisat [12]. Given the ith restart interval, the Minisat scheme defined its length to be 1.5i.
It is easy to see that this function grows very fast and the search is dominated by the largest
restart interval, which can contain up to 50% of the total number of conflicts. This leads to very
few restarts (logarithmic in the number of conflicts) and, in most cases, this does not represent
the desired behaviour. A much better restart scheme is based on the Luby series [21] and was
first proposed in [15]. The Luby series is given by 1, 1, 2, 1, 1, 2, 4, 1, 1, 2, 1, 1, 2, 4, 8, . . . , and the
ith element of the series (i ∈ N) is formally defined as follows:

luby(i) :=

{
2k−1 if i = 2k − 1

luby(i− 2k−1 + 1) if 2k−1 ≤ i < 2k − 1
, for some k ∈ N.

Note that later versions of Minisat, starting from 2.0, also used a Luby restart policy. Due
to the large number of short intervals, the Luby series only grows linearly in the number of
restarts, i.e., much slower than the original Minisat scheme. Another interesting property of
the Luby series is given by the fact that, assuming we group together all intervals of a specific
size r, the sum over all conflicts in each group will be equal (assuming the total number of
restarts is 2k − 1 for some k ∈ N).

For further adjustment, the size of all intervals can be scaled by a certain factor b, which
is considered to be the base interval size. We implemented this strategy in the ba2 version of
Lingeling, yielding the set of solvers luby-b. Table 3 shows the results for several base interval
sizes on the full benchmark set. Additionally, the average number of conflicts per restart (over
all instances), i.e., the average restart interval length, is given. Interestingly, the best results
are obtained for b = 2. This corresponds to an average restart interval length of r ≈ 16, which
performed significantly worse for the uniform restart interval version. This emphasizes the
larger role of the restart interval size distribution compared to the one of its average length.
Also note that the size of the largest interval for the Luby strategy is independent from the base
interval b, but only depends on the total number of conflicts that occur during the search. This
maximum interval can be relatively large and, e.g., was often larger than 216 in our experiments.

In Figure 3, we compare the best Luby version, luby-02 with the best uniform version, static-
256. While showing a similar overall performance (see Table 1 and Table 3), the performance on
individual instances differs significantly. As already pointed out, a fixed interval size of r = 256
seems to be particularly beneficial for crypto-sha instances. In contrast, the strongly varying
interval size of the Luby strategy allows to improve on a broader range of buckets.

Another well-known geometric variant is the so-called inner/outer strategy [6]. In this
scheme, the size of the current restart interval (“inner”) is multiplied by a factor a after each
restart until a certain bound (“outer”) is reached. In the latter case, the inner value is reset to
a base interval size b and the outer value is multiplied by a. Initially, inner and outer values
are set to b. Using a = 1.1, which is the common value of a, we implemented this strategy in
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Figure 3: Comparing luby-02 and static-256. The performance on individual instances differs
significantly. The Luby version, in general, performs better for a broader range of buckets,
whereas the uniform version is particularly strong on the crypto-sha bucket.

our Lingeling versions io-b. With a = 1.1, the size of the restart intervals for the inner/outer
scheme at first grows slower than those for the Luby strategy, but then starts to take over at
a certain point due to its exponential nature (if runs are sufficiently long). In contrast to the
Luby strategy, the total number of conflicts is not distributed evenly between different interval
sizes in the inner/outer scheme. Table 3 also shows that, on average, restart intervals tend to
be relatively large, even for small b. This also explains why the inner/outer versions solved
significantly fewer unsatisfiable instances in our experiments (see Table 3).

4 Dynamic Restarts

In the past, most CDCL solvers mainly used static restart schemes, most commonly with
non-uniform restart intervals. However, over the last years, certain approaches for dynamic
scheduling of restarts have started to play a larger role. For example, PicoSAT [7] first intro-
duced the concept of agility to prohibit restarts under certain restrictions [6] in combination
with the inner/outer scheme. Similarly, the latest competition version of Lingeling, sc14ayv,
uses a Luby scheme with base interval size 5, and also uses agility to potentially delay restarts.
A further dynamic scheme was introduced by Glucose [2], in the following referenced as Glucose
restarts. With the better performance of the Glucose restart strategy, agility based approaches
are not the focus of this paper. As already pointed out in Section 2, agility is switched off in
all our experiments. We also leave comparison with local restarts [27] to future work.
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●

●

●

●

0 200 400 600 800 1000

0
20

0
40

0
60

0
80

0
10

00

ema−14 versus static−256

ema−14

st
at

ic
−

25
6

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●●

●

●

● ●

●
●

●

●

●●

●

●●●●●●●●●●●●●●●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●●●●●

●

●

●

●

●
●

●

●●●

●

●

●

●

●

●

●

●

●

●●●

●●

●

●

●

●

●

●

●

●

2d−strip−packing
argumentation
bio
crypto−aes
crypto−des
crypto−gos
crypto−md5
crypto−sha
crypto−vpmc
diagnosis
fpga−routing
hardware−bmc
hardware−bmc−ibm
hardware−cec
hardware−manolios
hardware−velev
planning
scheduling
scheduling−pesp
software−bit−verif
software−bmc
symbolic−simulation
termination

Figure 4: Comparing ema-14 and static-256. The version with dynamic restarts (previously not
part of Lingeling), based on exponential moving averages, is significantly better.

4.1 Glucose Restarts

In Glucose, restarts are based on the literal block distance (LBD) of learned clauses, which is
the number of different decision levels in the learned clause [2]. It compares a current “short
term average” LBD of learned clauses with a “long term average”. If the short term average is
substantially larger than the long term average (say 25%), a restart is triggered, unless a restart
happened very recently (less than 50 conflicts earlier). We will make the notion of “average”
more precise in the following.

It has been shown that the contribution of a clause is strongly correlated with its LBD [1].
In general, clauses with a small LBD are more important in solving a SAT formula. Due to
this, a search in Glucose continues (i.e., no restart takes place) as long as the set of recently
learned clauses seems to be “good” according to this measure. Whenever the LBD of recently
learned clauses becomes too large, the current search is considered to be less beneficial and,
therefore, a restart is performed [2]. We refer to this as forcing a restart.

This dynamic restart strategy already was part of Glucose 1.0. Since this earlier version
turned out to be particularly effective for unsatisfiable instances, a further refinement was added
in Glucose 2.1. This refinement aimed to improve performance on satisfiable instances [2] as
follows. As satisfiable instances sometimes require larger restart intervals, Glucose 2.1 allowed
blocking of restarts. A restart is blocked whenever the solver might be close to finding a
satisfying assigment. The concrete policy for blocking restarts is similar to the one for forcing
restarts. In particular, the current number of assigned variables is compared with an average
of the number of assigned variables over the last 5000 conflicts [2]. This refined version is still
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part of the most current version of Glucose. As seen from the results of the SAT competition
2014, this dynamic restart strategy turned out to be very effective.

To implement the forcing part of Glucose restarts, two values are needed: The overall
average LBD (corresponding to the long term average) and the average LBD over a set of
recently learned clauses. Tracking the first one is easy, while calculating the latter one requires
a queue of length 50, with 50 being the number of recent clauses to be considered. For blocking
restarts, an additional queue of length 5000 is needed [2].

4.2 (Exponential) Moving Averages

We now want to formalize Glucose restarts by introducing the concept of moving averages.
In statistics, a moving average is the principle of evaluating a certain window of recent data
points related to time series data. It is, e.g., often used in technical analysis of financial data
in connection with stock prices. The unweighted mean of the previous w data points is often
called a simple moving average (SMA).

Let n be the index of the current conflict (starting at 1), w be a window size (e.g., the size
of the queue in Glucose), and let ti donate the LBD of the conflict clause learned in the ith
conflict. The SMA is then defined by

SMA(n,w) :=
1

w
· (tn + tn−1 + · · ·+ tn−w+1), with n ≥ w ≥ 1.

For n < w, the value is usually approximated by using all available data points, i.e., by
setting SMA(n,w) := SMA(n, n). Similarly, the average over all previous values, is often
referred to as the cumulative moving average (CMA). We define CMA(n) := SMA(n, n).

The concept of forcing restarts in Glucose, therefore, can be formalized by checking whether
SMA(n,w) > c · CMA(n), for a specific constant c > 1 2. Saving all data points is usually not
possible, and maintaining their sum as in Glucose might overflow. An alternative is to compute
a CMA iteratively. This can be done in a numerically robust way, by using the equation

CMA(n) = CMA(n− 1) +
tn − CMA(n− 1)

n

as, e.g., proposed by Donald Knuth [19, p.216, Eq.(15)]. This cannot be done for an SMA, in
general. While it is possible to use the equation

SMA(n,w) = SMA(n− 1, w) +
tn
w
− tn−w

w
, (1)

this requires to explicitely save the last w data points (e.g. in a queue, as done in Glucose) in
order to evaluate tn−w. This is often considered to be a drawback of an SMA.

A typical effect that occurs when using an SMA is the fact that data points can have a
strong impact on the current SMA value at the time they drop out of the window. This can
easily be seen when considering Equation (1). However, this effect is often not desired. First,
it is difficult to argue why a data point should have “full” influence for exactly w steps, and
then no influence at all. Second, a stronger focus on more recent data points is preferred in
many applications. This is often solved by by using an exponential moving average (EMA) 3.
The update rule for an EMA is defined by

EMA(n, α) := α · tn + (1− α) · EMA(n− 1, α), with 0 < α < 1. (2)

2c = 1/K in [2], with K = 0.8, and thus c = 1.25 in their final implementation (and w = 50).
3explicitly weighted moving averages exist as well, but are not focus of this paper.
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solver Glucose 4.0 Lingeling ba2
restarts ss es ee avg e8 e10 e12 e14 e16 e18 e20

tot 163 163 165 178 167 170 180 181 180 177 171
sat 72 73 76 83 80 78 86 86 86 82 77
uns 91 90 89 95 87 92 94 95 94 95 94

avg-r 192 166 167 145 230 204 195 186 172 147 108

Table 4: Number of solved instances on the full SAT competition 2014 benchmark set. Glucose
columns ss, es, and ee correspond to the original Glucose version (ss) and our two-step extension
by adding EMAs for only forcing restarts (es), or for forcing and blocking restarts (ee). Column
avg is the Lingeling version average of Glucose version ee, and columns eX correspond to
Lingeling versions ema-X, additionally using a slow EMA with αs = 2−X , instead of a CMA,
for the long time average. Lingeling with dynamic restarts improves the state-of-the-art.

The value of α implicitely defines the weight that is given to each data point in the time
series and is also called the smoothing parameter. The influence of α can easily be seen by
iteratively expanding the previous formula. In theory, this defines a geometric series, yielding

EMA(n, α) = α · Σ∞i=0(1− α)i · tn−i. (3)

From Equation (3), it can directly be seen that the influence of earlier data points decreases
exponentially. Note that only a finite history is available in practice. Equation (2), therefore,
requires n > N for a specific N . For n ≤ N , a boundary condition has to be defined. A simple
version can be realized by setting N = 1 and EMA(1, α) := t1. The expansion in Equation (3)
then reduces to the finite sum α·Σn−2

i=0 (1−α)i ·tn−i+(1−α)n−1 ·t1. However, this causes a strong
bias between the influence of t1 and the remaining data points. In practice, more sophisticated
initializations are usually used. Details on our implementation are given in Section 4.3.

In contrast to an SMA, an EMA does not require to remember previous data points, i.e., it
does not require a queue implementation. Furthermore, an EMA does not exhibit the before-
mentioned behaviour of older data points changing the average value when leaving the window,
because the influence of older data points is gradually smoothed in an exponential way. At the
same time, this implicitely causes all previous data points to contribute to the current EMA,
since (1 − α)i > 0, for all i with 0 ≤ i < n. The overall contribution of older data points,
however, obviously depends on the exact value of α. Usually, a setting of α = 2

w+1 is used to
realize an EMA that is comparable to an SMA with window size w. This value for α is derived
from setting the average age of the data points from both kind of averages to the same value.

Note that the concepts of moving average also relate to variable scoring schemes. For exam-
ple, the normalized VSIDS (NVSIDS) [12, 24, 6, 20] heuristic corresponds to an EMA. Similarly,
the INC heuristic, discussed in [9], realizes a CMA. Experimental results showed that, in the
context of variable scoring, variants of VSIDS/EMA outperform INC/CMA dramatically [9].

4.3 Implementation

We implemented an EMA version of Glucose restarts in Glucose version 4.0 (ss) in two steps.
Considering a window size w = 50, as the one for the short term average for forcing restarts
in Glucose, this yields an EMA with α = 2

51 ≈ 2−5. We use the latter because it does not
necessarily require a floating point representation. In our first modification, es, the original
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SMA, using a queue of LBDs, is replaced by an EMA with α = 2−5. Note, in order to stay
close to the original implementation, we still use a counter to enforce a lower limit of 50 conflicts
between restarts (instead of 32 = 25). The second modification, ee, also replaces the SMA for
blocking restarts. This SMA with a window size of w = 5000 is replaced by an EMA with
α = 2−12. The resulting version does not require a queue anymore, but performs equally well.
Actually, ee even solves 2 more instances than ss (see Table 4).

We also implemented the EMA variant of Glucose restarts (ee) in Lingeling, version average.
In contrast to our Glucose modification, which continues to use floating points, the implemen-
tation in Lingeling was done with fixed point arithmetic. This version of Lingeling solves 178
instances, and significantly outperforms all static ones discussed before. A further extension
is introduced in Lingeling versions ema-X. For these versions, the overall average of all LBDs
is replaced by an EMA (with α depending on X) as well. Results for different X are given
in Table 4. Version ema-14 turns out to be the best performing one, solving a total of 181
instances. All reimplementations of the original Glucose restart scheme in Lingeling, using an
EMA instead of an SMA, improve state-of-the-art in SAT solving. Using a further EMA with
2−18 ≤ α ≤ 2−12 instead of a CMA seems to work equally well, while lower or higher value
for α decrease performance. Beside simpler implementation (no queue), using an EMA avoids
the risk of producing an overflow. Note that we only optimized the α value for the slow EMA
replacing the original CMA, but simply adopted the other α values from Glucose by converting
the corresponding SMA window sizes. Further tuning those values might actually produce even
better results.

A scatter plot, comparing ema-14 to the best uniform version static-256, is given in Fig-
ure 4. It is easy to see that ema-14 outperforms static-256 significantly. Beside solving several
more instances from the hardware-cec bucket (UNSAT), as well as some crypto-sha (SAT)
and scheduling benchmarks (SAT+UNSAT), the performance increases on almost all instances,
when using this dynamic restart strategy with Lingeling. Only few benchmarks perform worse
or cannot be solved anymore, compared to the static version.

Note that a virtual best solver of all uniform versions static-r would only solve a total of
191 instances. For practical considerations, a more interesting version of a virtual best solver
might be obtained as follows. For each different bucket, pick the version static-r that performs
best on the specific bucket. This probably comes close to the performance a portfolio solver,
consisting of all static-r, would achieve in practice. In our experiments, this kind of virtual
best solver would have solved 180 instances. This further emphasizes the effectiveness of the
dynamic restart strategy in finding optimal restart intervals. To give an overall impression,
Figure 5 contains a cactus plot for a selected subset of the discussed solvers.

In the following, we give more details on the concrete EMA implementation that we used in
Lingeling. To be independent from a specific floating point representation, EMA calculation in
Lingeling is based on fixed point operations. In our actual implementation of forcing restarts
in ema-X, we compute two EMAs, a slow (low frequency) EMA s and fast (high frequency)
EMA f , both over the actual glucose level g (the LBD). The slow EMA will fluctuate less (with
lower frequency), since it is smoothing more, while the fast EMA will fluctuate more (with
higher frequency), since it is smoothing less. Recent glucose levels are less important for the
slow version and more important for the fast one.

As already mentioned, we use αf = 2−5 for the short term EMA f , replacing the SMA for
forcing restarts. For Lingeling versions ema-X, we further rely on a slow EMA s for representing
the long term average, instead of using an overall average (i.e., a CMA). In particular, we choose
αs = 2−X , which corresponds to a window size of 2X+1 − 1. The EMA implementation for
blocking restarts uses α′ = 2−12. Note that this part only requires a single EMA, because the
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average value is compared with the current number of assigned variables. The constants for the
margin ratios for forcing and blocking restarts are set to c = 1.15 and c′ = 1.4, respectively.
The 64 bit fixed point calculation of the two EMA values for forcing restarts looks as follows:

Fi+1 = 227gi + (1− 2−5)Fi Si+1 = 232−Xgi + (1− 2−X)Si,

This is following Donald Knuth’s implementation of our agility based restart strategy using fix
point arithmetic, e.g., with f = 2−32F and s = 2−32S:

fi+1 = 2−5gi + (1− 2−5)fi si+1 = 2−Xgi + (1− 2−X)si,

If we abstract from the actual values, we have

fi+1 = αfgi + (1− αf )fi si+1 = αsgi + (1− αs)si,

with αf = 2−5 and αs = 2−X being the fast exponential smoothing factor and the slow one,
respectively. The basic idea is now, after at least a certain number of conflicts has passed (we
use 50, as in the Glucose 2.3 implementation [3, 2]), to restart if f > 1.15 · s or, equivalently,
if F > 1.15 · S. The same kind of implementation is used for blocking restarts, with the
corresponding values of α′ = 2−12 and c′ = 1.4, but comparing a single EMA to the current
number of assigned variables.

As discussed above, initialization is non-trivial for an EMA. W.l.o.g., let us again consider
the case of forcing restarts. To smooth the bias that is introduced by initializing the EMA value
with the first glucose level g1, we use a larger value for α in the beginning and only gradually
reduce it. In particular, for calculating the (i + 1)th EMA, we use α(i) := 2−i, until α(i) ≤ α.
This removes part of the bias from the first glucose level and distributes it in a smoother way.
This kind of initialization is used for all EMAs in our implementation.

5 Conclusion

In this paper, we provided an extensive empirical evaluation of different restart strategies in the
context of modern CDCL solvers. We first looked at static restart schemes. Our results show
that, for uniform restart policies, the optimal interval size not only depends on the satisfiability
status of a given instance, but also on the specific problem class. In particular, our solver
version static-256 was the best performing one, regarding intervals with fixed size.

Comparing those results with non-uniform restart schemes, it turned out that previously
most successful strategies, such as Luby restarts, did not give an additional benefit in com-
bination with the current state-of-the-art solver Lingeling on recent competition benchmarks.
Our best non-uniform version, luby-02, solved exactly as many instances as the best uniform
one. Interestingly, the equally well-known inner/outer scheme actually performed worse. This
emphasizes the need for occasional re-evaluation of well-known techniques in consideration of
the steady changes made in modern CDCL solvers due to the ongoing development.

In a second part, we revisited the Glucose restart scheme, being the currently most successful
dynamic strategy. Since solvers that used Glucose restarts were able to solve a substantial
number of instances in the SAT competition 2014 that Lingeling version sc14ayv was not able
to solve, we implemented a similar strategy in our new version average. Our experimental
results show, that this version of Lingeling significantly outperforms all versions with static
restart schemes, as well as the SAT competition version of Glucose.

We also gave a formalization of the Glucose restart strategy in the context of moving aver-
ages, widely used in statistics. We argued that the original implementation of Glucose restarts
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Figure 5: Cactus plot for a selected subset of solvers.

is actually a combination of simple moving averages with cumulative moving averages. We then
proposed to use exponential moving averages, because of several desirable properties. In par-
ticular, exponential moving averages do not require the implementation of a queue and, more
important, gradually smooth the influence of earlier values.

The concerete implementation of the proposed exponential moving average version of Glu-
cose restarts into Lingeling uses fixed point representation, which we described in detail. We
further presented a possible technique for smoother initialization. Our evaluation shows that
the resulting Lingeling versions improve state-of-the-art. For future work, further improve-
ments of the current implementation, e.g., more sophisticated intialization techniques might
be of interest. We also experimented with related concepts from statistical analysis, such as
DEMAs (double exponential moving averages) and the MACD (moving average convergence/-
divergence) indicator but, so far, were not able to achieve further improvements by doing so.
Continuing research into this direction could also be part of future work. Aside from this,
exhaustive evaluations on a broader range of benchmarks will increase robustness of solvers
and prevent overtuning. Similarly, considering larger timeouts will be of interest. Preliminary
experiments using older competition instances and a timeout of 5000 seconds seem to confirm
the previous results also in a more general setting.
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