
SmacC: A Retargetable Symbolic Execution Engine ∗

Armin Biere1, Jens Knoop2, Laura Kovács3, and Jakob Zwirchmayr2

1 JKU Linz, 2 TU Vienna, 3 Chalmers University of Technology

Abstract. SmacC is a symbolic execution engine for C programs. It can be used
for program verification, bounded model checking and generating SMT bench-
marks. More recently we also successfully applied SmacC for high-level timing
analysis of programs to infer exact loop bounds and safe over-approximations.
SmacC uses the logic for bit-vectors with arrays to construct a bit-precise memory-
model of a program for path-wise exploration.

1 Introduction

Symbolic execution executes a program by using symbolic instead of concrete data.
Typically, the program is analyzed path-wise, i.e. paths are analyzed one-by-one in iso-
lation. Splitting the analysis to focus on single paths can be exploited to track important
information about the path under analysis and allows to check properties where other
techniques fail, for example as illustrated in Fig. 2(c). However, for whole program
analysis the costs of path-wise symbolic execution are often prohibitive because of the
so-called path-explosion problem that the number of paths grows exponentially with
the number of conditionals in a program. Fortunately, even analyzing only parts of the
program, such as focusing on all paths within a certain function, still allows to infer
valuable properties and catch subtle errors.

In this paper we present SmacC, a retargetable symbolic execution engine. SmacC is
an acronym for SMT Memory-model and Assertion Checker for C. Retargebility, a term
borrowed form [4] inspired the front-end implementation of SmacC, and refers to its
capability of being retargetable to conceptually quite different applications in program
analysis. SmacC supports a relevant fragment of (ANSI) C analyzing such programs
by path-wise symbolic execution. It derives verification conditions for program state-
ments and expressions, expressed as satisfiability modulo theory (SMT) formulas in the
logic of bit-vectors with arrays. This allows bit-precise reasoning about the program,
including reasoning about memory accesses and arithmetic overflow. The generated
verification conditions precisely capture the memory-model of the program. Proving
them to hold guarantees that the supported runtime- and memory-errors cannot occur.
Violations in the symbolic representation constitute actual violations.

SmacC can be applied in a number of program analysis settings. The tool can prove
absence of runtime-errors if full symbolic coverage is achieved. Further, it allows to
perform bounded model checking by exhaustive symbolic execution up to a provided
bound. Functional correctness, e.g. equivalence checking, is supported via assertions.
Generated verification conditions can be dumped to files and used as SMT benchmarks

∗This research is supported by the FP7-ICT Project 288008 T-CREST, the FWF RiSE projects
S11408-N23 and S11410-N23, the WWTF PROSEED grant ICT C-050, the FWF grant T425-
N23, and the CeTAT project of TU Vienna.



Fig. 1. Architecture of SmacC: path-wise execution leads to partial symbolic coverage if there
are more paths to be executed. Exhaustive execution of all paths yields full symbolic coverage.

for testing or performance evaluation of SMT solvers. A new application for SmacC is
the high-level worst-case execution time (WCET) analysis of programs. More specifi-
cally, the tool finds flow-facts, such as infeasible paths and safe loop bounds, required
for successful WCET analysis. We use SmacC in combination with the WCET analysis
toolchain r-TuBound [5].

SmacC is implemented in 10Klocs of C and is available at http://www.complang.
tuwien.ac.at/jakob/smacc/

2 Tool Architecture

Figure 1 shows the architecture of SmacC. SmacC reads a C program as input file,
which is then tokenized (Lexer) and parsed to abstract syntax trees according to the
C expression grammar (Parser). The abstract syntax trees are stored as elements of
a code-list. Paths through the program are extracted (PathGen) and symbolically ex-
ecuted (BtorGen), which consists of updating the symbolic representation of the ex-
ecuted path. This symbolic representation is used to generate verification conditions in
form of SMT formulas, which express runtime-safety of statements occurring on the
path. We use the SMT solver Boolector [2] for checking these SMT formulas in the
quantifier-free logic of bit-vectors with arrays. In the sequel, we overview the main
ingredients of SmacC, and refer to [6] and the url for further details.
PathGen. In the path-generation phase, in order to remove loops, the code-list is flat-
tened, by unwinding program loops up to a certain bound. This way, for each program
path, a code-list is constructed. Conditionals, which require to split the control-flow,
will produce two paths to explore both branches of the condition. Each fully extracted
path is then symbolically executed in BtorGen.
BtorGen, Memory-model and Verification Conditions. This step constructs a sym-
bolic SMT representation of the memory used in the program, faithfully covering the
semantics of each statement on the program path. Additionally, verification conditions
are constructed as SMT formulas. The program memory is a collection of symbolic
values and modeled by a contiguous array. The memory layout, e.g. the set of declared
addresses, is represented by bit-vector variables indexing the memory array. Additional
bit-vector variables symbolically track allocated memory regions. Unwritten memory
is treated as uninitialized. Verification conditions supported by SmacC include reason-
ing about return statements (check if the program can or returns a specified value),
path conditions (check satisfiability of conditionals), division by zero, and overflow of
arithmetic operations. Our bit-precise memory-model allows us to construct verification
conditions for memory accesses as follows: an access is considered out-of-allocated if
the address can evaluate to an unallocated array index, i.e. outside the region constrained
by global beg , global end , heap beg , heap end , stack beg and stack end .

http://www.complang.tuwien.ac.at/jakob/smacc/
http://www.complang.tuwien.ac.at/jakob/smacc/


Output results. SmacC produces as output a textual report for each statement symboli-
cally executed along all analyzed paths. For each verification condition, the tool reports
whether the property is safe or violated on a specific path. If a verification condition is
violated on at least one path, then the corresponding property can be violated by an ac-
tual run. If the verification condition holds on all paths, then the corresponding program
property cannot be violated by any actual run.

3 Applications of SmacC

We have successfully applied SmacC to verify C programs and generate SMT bench-
marks using our precise memory-model [6]. We illustrate the bit-precise memory-model
and generation and proving of verification conditions using the examples in Fig. 2(a)
and (b) below. We also integrated SmacC with r-TuBound to support timing analysis,
and show its use on Fig. 2(c). For more details, we refer to the url of our tool.

1: int a[4];
2: int main () {
3: int i;
4: a[0] = 1;
5: for(i=0; i<4; i++)
6: if (a[i] > 0)
7: i = i + 1;
8: assert(i >= 4); }

int main () {
int x, y;
if (x > 0) {
y = x * x;
if (y == 0)
assert(0); }}

int main() { :1
int i, flag; :2
for(i=0; i<5; i++) :3
if(i==4 && flag){ :4
i = 0; :5
flag = 0; }} :6

:7
:8

(a) (b) (c)

Fig. 2. (a) a program with an assertion and a conditional update; (b) a program with a reachable,
failing, assertion; (c) SmacC finds the loop bound, CBMC keeps unwinding the loop.

Example. The variable declarations in the program of Fig. 2(a) in lines 1 and 3 (a:1,3),
result in the following SMT variable declarations, where variables that do not occur
in the source are used to track allocated memory: global beg , global end , heap beg ,
heap end , stack beg , stack end , mem, i, x, a, where mem is an array and models
memory. Symbolic execution of a path tracks declared memory constructing the for-
mula (a = global beg)∧ (global end = global beg + 16) ∧ (heap end = heap beg) ∧
(i = stack beg)∧ (stack end = stack beg − 4), while (read(mem[i]) < 0 . . . 100) is
the verification condition for the assertion (a:8). The assertion holds for any variable
assignment valid on the current path if the conjunction of the formulas is unsatisfiable.
Fig. 2(b), taken from [1], illustrates the need for a bit-precise memory-model: both con-
ditions (b:3,5) must evaluate to true to reach the failing assertion (b:6). When reasoning
about unbounded integers the assertion is unreachable due to unsatisfiable path condi-
tions. SmacC infers overflow for the multiplication and thus a satisfiable path condition
guarding the failing assertion, therefore the failing assertion is reachable.
Experiments. We analyzed a memcopy and a stringcopy implementation for bounded
runtime-and memory-safety (with bounded array-size 50, respectively 40), verified the
functional correctness of a palindrome check and checked equality of two power-of-3
implementations. Path-wise verification of the memcopy implementation up to bound
50 takes approximately two hours. Functional correctness for the palindrome check
(bounded by word length 16) exhibits high run-times (4.5h), and complete equality
checking of two power-of-3 implementations (with 32bit int) times out (10h). Varying



the bound of the input problems and dumping a conjunction of the verification condi-
tions thus allows to generate SMT benchmarks with varying runtime.

We also integrated the memory-model of SmacC in r-TuBound and extended ver-
ification conditions to express arithmetic properties about conditional updates to the
loop counter. This allows us to compute loop bounds in cases where the loop bound
computation step of r-TuBound would fail. For example, the loop counter i in Fig. 2(a)
is conditionally updated, therefore no safe loop bound can be computed initially. Veri-
fying that the conditional update can never decrease the loop counter allows us to use
the constant increment in the loop header to compute a safe over-approximation. For
the conditional update i′ = upd(i), e.g. i = i + 1 in Fig.2(a), (a:7), we verify that
executing it can only increase the loop counter for the next iteration i′, i.e. i′ < i must
be unsatisfiable for arbitrary values of i, as for example in Fig. 2(a) where a loop bound
of 4 can be computed using the update i++ (a:5) in the loop header.

Fig. 2(a) illustrates another usage of SmacC for loop bound detection. Here, SmacC
is called with an initial loop bound. If it reports that the negation of the loop condition is
satisfiable along a path, the bound is increased. Upon termination, no execution of the
program exhibits a higher loop bound. The loop counter i in Fig. 2(c) is reset in iteration
5 (c:5), therefore the loop is executed 4 more times. SmacC infers the exact loop bound
9, while a WCET analysis using the model checker CBMC [3] without SmacC does not
terminate and keeps unwinding the loop.

4 Conclusion
SmacC has successfully been used in a number of applications, ranging from program
verification to high-level WCET analysis. A key feature of SmacC is its bit-precise
symbolic execution which enables it to find a number of typical and important pro-
gram errors and to functionally verify programs via assertions. Verification conditions
that exhibit high solving time can be dumped and used as regression and performance
tests for SMT solvers. High-level WCET analysis turned out to be a another promising
application field of SmacC and we successfully retargeted SmacC and the underlying
memory-model towards integration into a WCET analysis toolchain, improving high-
level analysis results. Currently, we are working on implementing the memory-model
for binaries and extending SmacC with generation of test-inputs guiding actual pro-
gram executions towards the WCET path. To improve the runtime of SmacC, we also
investigate techniques shown effective for symbolic execution, such as query caching.

References

1. N. Bjørner, L. de Moura, and N. Tillmann. Satisfiability Modulo Bit-precise Theories for
Program Exploration. In Proc. of CFV, 2008.

2. R. Brummayer and A. Biere. Boolector: An Efficient SMT Solver for Bit-Vectors and Arrays.
In Proc. of TACAS, pages 174–177, 2009.

3. E. Clarke, D. Kroening, and F. Lerda. A Tool for Checking ANSI-C Programs. In Proc. of
TACAS, pages 168–176, 2004.

4. Christopher Fraser and David Hanson. lcc, A Retargetable C Compiler for ANSI C. The
Benjamin/Cummings Publishing Company, Inc., Redwood City, 1995.

5. J. Knoop, L. Kovács, and J. Zwirchmayr. r-TuBound: Loop Bounds for WCET Analysis. In
Proc. of LPAR, pages 435 – 444, 2012.

6. J. Zwirchmayr. A Satisfiability Modulo Theories Memory-Model and Assertion Checker for
C. Master’s thesis, JKU Linz, Austria, 2009.


	SmacC: A Retargetable Symbolic Execution Engine 

