

C32SAT:

A satisfiability checker for C expressions

MAGISTERARBEIT

zur Erlangung des akademischen Grades

DIPLOM-INGENIEUR

im Magisterstudium

INFORMATIK

Angefertigt am Institut für Formale Modelle und Verifikation

Eingereicht von:

Robert Daniel Brummayer Bakk. techn.

Betreuung:

Univ.-Prof. Dr. Armin Biere

Linz, Februar 2006

Abstract

Formal veri�cation becomes more and more important as software complexity
increases. In this thesis we propose the use of a formal veri�cation tool called
�C32SAT�. We discuss its implementation and underlying concepts. The ques-
tion which this thesis addresses is whether C32SAT's functional representation
of boolean C expressions can be used to check satis�ability e�ciently or not.

First we give a motivation for formal veri�cation. Then we discuss the sat-
is�ability problem of propositional logic, And-Inverter graphs, two level optimi-
sation and transformations into conjunctive normal form. Afterwards we discuss
C32SAT, its input language, semantics, operators, design decisions, architecture,
algorithms, related work and benchmarks.

Keywords

Formal veri�cation, Satis�ability problem (SAT problem), Conjunctive Normal
Form (CNF), Negation Normal Form (NNF), And-Inverter Graph (AIG), Two
level optimisation, Two level contradiction rules for And-Inverter graphs, Two
level subsumption rules for And-Inverter graphs, Two level idempotency rules for
And-Inverter graphs, Two level resolution rule for And-Inverter graphs, Trans-
formations into conjunctive normal form, Tseitin transformation, Tseitin Trans-
formation on And-Inverter graphs.

Contents

1 Motivation for formal veri�cation 1

1.1 Domains of formal software veri�cation 2

1.2 Examples . 2

1.2.1 Swapping . 2

1.2.2 Over�ow . 4

2 The SAT problem of propositional logic 7

2.1 Introduction . 7

2.2 Examples . 8

2.2.1 Satis�able instance . 8

2.2.2 Unsatis�able instance . 9

2.3 The complexity of the SAT problem 10

2.4 Negation normal form . 10

2.5 Conjunctive normal form . 11

2.6 SAT solver . 11

2.6.1 DIMACS �le format . 12

3 And-Inverter graphs 13

3.1 Introduction . 13

3.2 Example . 16

3.3 DAG representation . 16

3.4 Optimisation . 17

3.4.1 Two level minimisation . 17

3.4.2 Two level minimisation rules for AIGs 18

4 Transformations into CNF 25

4.1 The standard approach . 25

4.2 Tseitin transformation . 25

4.2.1 Tseitin transformation rules 26

4.2.2 Example . 26

4.2.3 Transformation on circuits 28

4.2.4 Transformation on AIGs 29

i

ii CONTENTS

5 C32SAT 33

5.1 Introduction . 33
5.2 Input language . 33
5.3 Data types . 35

5.3.1 Internal representation . 35
5.4 Unde�ned results and over�ows 35
5.5 Operators . 36

5.5.1 Pseudo code notes . 37
5.5.2 Conditional operator . 38
5.5.3 Logical operators . 39
5.5.4 Bitwise operators . 42
5.5.5 Equality operators . 44
5.5.6 Relational operators . 45
5.5.7 Shift operators . 48
5.5.8 Unary minus operator . 50
5.5.9 Additive operators . 51
5.5.10 Multiplicative operators 52
5.5.11 Unsupported operators . 56

5.6 Division by zero . 56
5.7 The four main modes . 57

5.7.1 Satis�ability mode . 58
5.7.2 Tautology mode . 58
5.7.3 De�ned result mode . 59
5.7.4 Unde�ned result mode . 59
5.7.5 Relations between the main modes 59

5.8 Architecture . 60
5.9 Related work . 63

5.9.1 Cogent . 63

6 Benchmarks 67

6.1 Two level optimisation rules for AIGs 67
6.2 COGENT . 67

7 Summary 71

A C32SAT 1.0 Tutorial 73

A.1 The four main modes . 73
A.1.1 Satis�ability mode . 73
A.1.2 Tautology mode . 76
A.1.3 De�ned result mode . 80
A.1.4 Unde�ned result mode . 83

A.2 Options . 85
A.2.1 Help . 85

A.2.2 Verbose . 85
A.2.3 Pretty print . 85
A.2.4 Bit width . 85
A.2.5 Dump CNF . 85

A.3 Over�ow treatment . 86

B Installation 87

B.1 Required software . 87
B.2 Unpacking . 87
B.3 Compiling . 88
B.4 Test cases . 88

C Propositional logic 89

C.1 Propositional logic operators . 89
C.1.1 The semantics of the propositional logic operators 89

C.2 Rules of propositional logic . 89

Chapter 1

Motivation for formal veri�cation

The complexity of software systems is steadily increasing. The main reason is that
computers are used for more complex tasks than in the past. Computers are used
for concurrent and distributed tasks like scienti�c computation, multimedia-based
computation and simulation. Thus, complex software is needed to accomplish
these requirements. Another reason is the need for more and more features.
Standard software products like operating systems are good examples.

There is an obvious relation between number of features, complexity, lines of
code and number of bugs:

1. Adding more features leads to more complex software

2. More complex software leads to more lines of code

3. More lines of code lead to more bugs

This corresponds to Tanenbaum's �rst law of software:

Adding more code adds more bugs [12].

The increasing complexity of software leads to a demand for new and more e�-
cient techniques for software veri�cation. Established methods like unit testing
are still useful, but often not su�cient for verifying complex systems. By using
formal techniques and concepts like �nite state machines, labeled transition sys-
tems and petri nets it can be shown that software has no defects and satis�es its
speci�cation.

Model checking is a popular formal veri�cation method for �nite systems. By
using model checking techniques it is possible to �nd inconsistencies already in the
model. Generally, system models are represented by automatas and speci�cations
by formulas expressed in temporal logic. The fact that inconsistencies can be
found already in the model is economically advantageous. Model checking is
discussed in [21], [19], [8] and [20].

1

2 CHAPTER 1. MOTIVATION FOR FORMAL VERIFICATION

1.1 Domains of formal software veri�cation

There are many domains where software failures are intolerable. Examples are:

• Medical systems

• Aerospace systems

• Car systems

• E-Commerce

• Operating systems

The example of the Ariane 5 rocket shows which disaster a bug can cause. This
example can be found in section 1.1 in [21]. An over�ow in a variable of the
control software caused the control system to fail and thus the rocket to explode.
The �nancial loss was enormous.

1.2 Examples

We discuss two examples which should motivate for formal veri�cation.

1.2.1 Swapping

The following software fragment shows how two integer variables can be swapped.
In the programming language C this swapping can be done without using an
additional variable:

...

int x;

int y;

/* assign arbitrary values to x and to y */

...

/* swap x with y */

x ^= y;

y ^= x;

x ^= y;

/* The values of x and y have been swapped */

...

The question is how the correctness of this code fragment can be veri�ed. Of
course every programmer could write a short program containing this fragment

1.2. EXAMPLES 3

and could try some assignments. The problem is that by trying out some assign-
ments it cannot be veri�ed that there does not exist an assignment where this
code fragment does not work correctly. If 32 bit integers are used, then there are
232 × 232 = 264 possible assignments.Trying all possible assignments explicitly is
impractical.

This is exactly the reason why formal veri�cation becomes more and more
important. The correctness of this code fragment can be shown by using a tool
for formal veri�cation like C32SAT.

Consider the static single assignment form of the code fragment:

...

int x0, x1, x2, x3;

int x1, y1, y2, y3;

/* assign arbitrary values to x0 and to y0 */

...

/* swap x with y */

x1 = (x0 ^ y0); y1 = y0; /* x ^= y; */

x2 = x1; y2 = (y1 ^ x1); /* y ^= x; */

x3 = (x2 ^ y2); y3 = y2; /* x ^= y; */

/* x3 == y0 and y3 == x0 */

...

Static single assignment (SSA) form means that every variable receives exactly
one assignment during its lifetime. This form is often used in the context of
optimising compilers. In this example the static single assignment form was
derived manually. Nevertheless it could also be done automatically. The authors
in [5] present an e�cient way for computing SSA forms.

The question if this code fragment is correct can be transformed into the
following question:

Is it always the case in the 32 bit domain that if (x1 == (x0 � y0)
and y1 == y0 and x2 == x1 and y2 == (y1 � x1) and x3 == (x2 �
y2) and y3 == y2), then (x3 == y0 and y3 == x0)?

This question can be answered by C32SAT. First, the formula has to be encoded
into the syntax of C32SAT:

(x1 == (x0 ^ y0) && y1 == y0

&&

x2 == x1 && y2 == (y1 ^ x1)

&&

x3 == (x2 ^ y2) && y3 == y2)

=>

(x3 == y0 && y3 == x0)

4 CHAPTER 1. MOTIVATION FOR FORMAL VERIFICATION

The syntax of C32SAT is discussed in section 5.2. We write this C32SAT formula
into the �le swapwithxor.c32sat. Now C32SAT can be used to verify whether this
formula is tautological or not. If this formula is tautological then there does not
exist any counter example. We call C32SAT in a speci�c mode where it veri�es
whether the input is tautological or not:

c32sat -t swapwithxor.c32sat

C32SAT yields:

FORMULA IS TAUTOLOGICAL

It has been shown by C32SAT that there does not exist any counter example
in the 32 bit domain where this code fragment does not work correctly. Thus, we
can conclude that the original code fragment is correct.

1.2.2 Over�ow

Consider the following code fragment in the programming language C:

...

int x, y, z;

/* assign an arbitrary value x0 to x */

/* assign an arbitrary value y0 to y */

...

if (y != 0) {

z = x / y;

} else {

z = x;

}

...

This simple code fragment looks safe and a programmer might think that a pro-
gram containing this code fragment always behaves as expected. Unfortunately,
this is not the case. If we assume that x, y and z are 32 bit integers then there is
one out of 264 assignments where the value of z is unde�ned after executing this
code fragment. The term �unde�ned� means in this context that the value can
be unpredictable and depends on compiler semantics. C32SAT can be used to
�nd such dangerous assignments. We encode this code fragment into the syntax
of C32SAT:

(y != 0) ? (x / y) : x

1.2. EXAMPLES 5

We write this C32SAT formula into the �le undef.c32sat. We call C32SAT in
a speci�c mode where it veri�es whether the result of this expression is always
de�ned according to the C99 standard [10]. We call C32SAT in the following way:

c32sat -ad undef.c32sat

C32SAT yields:

THE RESULT OF THE FORMULA IS NOT ALWAYS DEFINED (C99)
COUNTER-EXAMPLE:
y = -1
x = -2147483648

C32SAT has found an assignment to the variables x and y where the result of this
expression is unde�ned according to the C99 standard. This result is assigned to
the variable z in the original code fragment. If the value of z is unde�ned then
the program may behave in an unexpected way if the program uses the value of
z after the code fragment.

The explanation why this assignment leads to an unde�ned result is the fol-
lowing. If y is equal to -1 then x / y is computed and returned. The operation
-1 / -2147483648 leads to an over�ow, because the result is equal to 2147483648
which is not representable in a signed 32 bit integer variable. The behaviour on
signed integer over�ow is unde�ned according to the C99 standard. The resulting
value of an operation where a signed integer over�ow occurs can be unpredictable
[10].

If we want to port this code fragment to another platform, then we have to
be cautious. The C99 standard does not de�ne whether a C compiler has to
use sign and magnitude, one's complement or two's complement representation
[10]. Imagine the C compiler on the current platform uses two's complement
representation and we want to port our fragment to another platform where
the C compiler uses sign and magnitude representation. Then the result of the
assignment y = -1 and x = -2147483648 may lead to di�erent results which can
be a serious problem.

There is only one out of 264 assignments which can lead to a di�erent result.
Thus, it can be the case that a program containing the fragment runs for months
on both platforms as expected. Unfortunately, it may be the case that after a
certain time period the program on the other platform behaves in an unexpected
way. Finding such an inconsistency by using methods like unit testing is nearly
impossible.

6 CHAPTER 1. MOTIVATION FOR FORMAL VERIFICATION

Chapter 2

The SAT problem of propositional

logic

Before we discuss C32SAT, we have to discuss its underlying concepts. First we
introduce the concepts of the SAT domain. This section can be skipped if the
reader is already familiar with the concepts of the SAT domain.

2.1 Introduction

The satis�ability problem of propositional logic is roughly said to decide if there
exists an assignment to the variables of a propositional formula so that the for-
mula evaluates to true. The satis�ability problem is often just called the �SAT
problem�. We discuss the SAT problem formally. Let φ be an arbitrary proposi-
tional formula:

• A literal is a propositional variable or its logical negation.

• Var(φ) is de�ned as the set of all variables appearing in φ.

• A variable assignment of φ is a mapping α: Var(φ) 7→ {>,⊥} of the variable
set of φ to truth values.

• The set of all possible variable assignments of φ is denoted by Assign(φ).

• Let |S| be the number of elements of the set S, then |Assign(φ)| = 2|Var(φ)|

holds.

• The value Val(φ, α) of φ under an assignment α is the resulting truth value
to which φ evaluates under α. Val(φ) is de�ned inductively:

� If φ ≡ > then Val(φ, α) ≡ >
� If φ ≡ ⊥ then Val(φ, α) ≡ ⊥

7

8 CHAPTER 2. THE SAT PROBLEM OF PROPOSITIONAL LOGIC

� If φ is a propositional variable x, then Val(φ, α) ≡ α(x)

� Val(¬φ, α) ≡ ¬Val(φ, α)

� Val(φ1 ∧ φ2, α) ≡ Val(φ1, α) ∧ Val(φ2, α)

� Val(φ1 ∨ φ2, α) ≡ Val(φ1, α) ∨ Val(φ2, α)

� Val(φ1 → φ2, α) ≡ Val(φ1, α) → Val(φ2, α)

� Val(φ1 ↔ φ2, α) ≡ Val(φ1, α) ↔ Val(φ2, α)

• An assignment α of φ for which Val(φ, α) ≡ > holds is called a model of φ.

• The set of all models of φ is denoted by Model(φ).

• φ is called satis�able if and only if there exists a model of φ.

• φ is called unsatis�able if and only if there exists no model of φ.

Finally, the SAT problem of propositional logic can be de�ned:

Given a propositional formula φ the SAT problem is to decide whether
φ is satis�able or not [24].

There is a relation between tautology and unsatis�ability. A propositional
formula which is semantically equivalent to > is tautological. A propositional
formula which is semantically equivalent to ⊥ is unsatis�able. The logical nega-
tion of an unsatis�able formula results in a tautological formula and vice versa.
This relation is very useful. For example íf we want to show that a formula is
tautological, then it is su�cient to show that its logical negation is unsatis�able.
More Information about the SAT problem and its variants like the MAXSAT
problem can be found in [24].

2.2 Examples

Now we discuss two instances of the SAT problem of propositional logic. This
discussion should demonstrate the various aspects of the SAT problem.

2.2.1 Satis�able instance

Let φ be the following propositional formula:

(x1 ∧ x2) → (x1 ↔ x3)

The formula φ contains three propositional variables. Thus, Var(φ) has exactly
three elements:

Var(φ) = {x1, x2, x3}
The set Assign(φ) has exactly 2|Var(φ)| = 23 = 8 elements:

2.2. EXAMPLES 9

Assign(φ) = {(⊥,⊥,⊥), (⊥,⊥,>), (⊥,>,⊥), (⊥,>,>), (>,⊥,⊥), (>,⊥,>),
(>,>,⊥), (>,>,>)}

A tuple notation is used to enumerate Assign(φ). Every tuple represents an
assignment. For example the tuple (>,>,⊥) represents the assignment x1 = >,
x2 = > and x3 = ⊥.

The set Model(φ) has seven elements:

Model(φ) = {(⊥,⊥,⊥), (⊥,⊥,>), (⊥,>,⊥), (⊥,>,>), (>,⊥,⊥), (>,⊥,>),
(>,>,>)}

Due to the fact that Model(φ) * ∅ and |Model(φ)| > 0 holds, it can be concluded
that there exists at least one model of φ. Thus, φ is satis�able.

2.2.2 Unsatis�able instance

Let φ be the following propositional formula:

(x3 ∨ x4 ∨ ¬x3) → (x1 ∧ x2 ∧ ¬x1)

The formula φ contains four propositional variables. Thus, Var(φ) has exactly
four elements:

Var(φ) = {x1, x2, x3, x4}
The set Assign(φ) has exactly 2|Var(φ)| = 24 = 16 elements:

Assign(φ) = {(⊥,⊥,⊥,⊥), (⊥,⊥,⊥,>), (⊥,⊥,>,⊥), (⊥,⊥,>,>),
(⊥,>,⊥,⊥), (⊥,>,⊥,>), (⊥,>,>,⊥), (⊥,>,>,>),
(>,⊥,⊥,⊥), (>,⊥,⊥,>), (>,⊥,>,⊥), (>,⊥,>,>),
(>,>,⊥,⊥), (>,>,⊥,>), (>,>,>,⊥), (>,>,>,>)}

It can be shown that φ does not have a model. This can be done by using basic
propositional rules which can be found in table C.7.

Due to the fact that the operators ∧ and ∨ are commutative, the semantically
equivalent formula φ1 can be obtained:

(x3 ∨ ¬x3 ∨ x4) → (x1 ∧ ¬x1 ∧ x2)

By using rule 7 on the subformula x1 ∧ ¬x1 on the right side of the implication
and rule 8 on the subformula x3 ∨ ¬x3 on the left side of the implication, we
obtain the semantically equivalent formula φ2:

(> ∨ x4) → (⊥ ∧ x2)

We use the fact that the operators ∧ and ∨ are commutative and obtain the
semantically equivalent formula φ3:

(x4 ∨ >) → (x2 ∧ ⊥)

10 CHAPTER 2. THE SAT PROBLEM OF PROPOSITIONAL LOGIC

By using rule 1 on the subformula x2∧⊥ on the right side of the implication and
rule number 4 on the subformula x4 ∨ > on the left side of the implication we
obtain the semantically equivalent formula φ4:

> → ⊥

Now the result of the implication operator can be evaluated, because its operand
are constant truth values. The semantics of the implication operator can be found
in table C.5. Finally, the semantically equivalent formula φ5 can be obtained:

⊥

φ is unsatis�able, because φ is semantically equivalent to φ5 which always eval-
uates to ⊥. The assignment of the variables are of no importance, because they
do not even occur in φ5. Due to the fact that φ ≡ φ5 holds every occurrence of φ
can be substituted by φ5. This can lead to a signi�cant simpli�cation if φ occurs
itself in other formulas.

A model of φ5 cannot exist, because the formula φ5 always evaluates to ⊥.
Due to the fact that φ ≡ φ5, it can be concluded that this is also the case for φ.
Thus, φ is unsatis�able.

2.3 The complexity of the SAT problem

Cook proved in [4] that the SAT problem of propositional logic is NP complete.
The complexity class P contains all problems which can be solved by a deter-
ministic Turing machine in polynomial time. The complexity class NP contains
all problems which can be solved by a non-deterministic Turing machine in poly-
nomial time. Obviously, P ⊆ NP holds. If P = NP holds is one of the most
famous questions in computer science today.

The hardness of the SAT problem can be demonstrated by the fact that the
number of possible assignments of a given propositional formula grows exponen-
tially with the number of its variables. This is exactly the reason why even small
instances of the SAT problem cannot be solved by an exhaustive algorithm in
reasonable time. For example let φ be a propositional formula which has 100
variables. An exhaustive SAT algorithm would need to evaluate the result of 2100

= 1267650600228229401496703205376 possible assignments to the variables of φ
in the worst case. This is impractical.

2.4 Negation normal form

A propositional formula φ is in Negation Normal Form (NNF) if and only if one
of the following two cases hold:

2.5. CONJUNCTIVE NORMAL FORM 11

1. The operator ¬ does not occur in φ

2. The operator ¬ occurs in φ, but only in front of propositional variables

In section 1.5 in [20] the authors present an algorithm which takes an arbitrary
propositional formula as input and generates a semantically equivalent NNF as
result.

2.5 Conjunctive normal form

Before we discuss software in the domain of SAT, we introduce the concept of the
conjunctive normal form. Most of the tools in the domain of the SAT problem
expect the input to be in conjunctive normal form.

A propositional formula φ is in Conjunctive Normal Form (CNF) if and only if
the formula consists of a conjunction of clauses which are a disjunction of literals
[20].

Generally, the number of literals per clause can vary. A variant of the SAT
problem is characterised by the fact that the number of literals per clause is
constant. For example the problem to decide whether a given CNF where every
clause has exactly three literals is satis�able or not is called the �3-SAT problem�.
This problem is discussed in section 10.3 in [22].

It is worth mentioning that a formula in CNF is also in NNF. The opposite
does not hold. For example the formula (x ∧ y) ∨ (¬x ∧ z) is in NNF but not in
CNF.

The main advantage of CNF is that it can be determined quickly if a given
formula evaluates to ⊥ under a concrete assignment. Once a clause can be found
which evaluates to ⊥, it can be concluded that the whole formula evaluates to ⊥.

2.6 SAT solver

A SAT solver takes an arbitrary SAT problem as input. The solver computes
whether the input is satis�able or not. Additionally, if the input is satis�able,
then most solvers print the corresponding model which has been found.

Popular SAT solvers are based on the second version of the Davis-Putnam
procedure (DPLL) [17]. The �rst version of the Davis-Putnam procedure [18]
(DP) was published 1960. The second version uses unlike the �rst version Unit-
Resolution which is also called Boolean Constraint Propagation. Many of todays
algorithms in the SAT domain use the insight which was gained by the second
version of the Davis-Putnam procedure. In [1] the authors discuss various aspects
of successful SAT solvers like LIMMAT and NANOSAT.

There is an active SAT community which organises meetings and competitions
every year. During these events researchers present their latest algorithms and

12 CHAPTER 2. THE SAT PROBLEM OF PROPOSITIONAL LOGIC

tools. There is also an online resource for research on the SAT problem called
SATLIB [9]. In [2] a report of a SAT competition can be found.

2.6.1 DIMACS �le format

As already mentioned before, SAT solvers take an arbitrary SAT problem as
input. This input is a CNF which is usually represented by the DIMACS �le
format [6]. This format consists of the following two sections:

1. preamble

2. clauses

The preamble starts with a section which can be used for comments. Comment
lines begin with the character `c` and are used for human-readable information
about the SAT instance. The problem line appears after the comment section.
It has the following format:

p FORMAT VARIABLES CLAUSES

The �eld FORMAT is used to determine the format that will be expected by
the SAT solver. It should contain the word �cnf�. The �elds VARIABLES and
CLAUSES are used to determine the number of variables and clauses of the SAT
instance.

Clauses appear after the problem line. Variables are encoded as numbers
starting with 1. Logical negation is represented by a minus. Clauses are repre-
sented by sequences of numbers which are terminated by 0.

Example

Let φ be the following CNF:

(x1 ∨ ¬x2 ∨ ¬x3) ∧ (¬x1 ∨ x4) ∧ x1

The DIMACS representation of φ could be:

c This is a comment line
p cnf 4 3
1 -2 -3 0
-1 4 0
1 0

Chapter 3

And-Inverter graphs

Now we discuss And-Inverter graphs and how an acyclic directed graph represen-
tation can be used to share syntactically equivalent subformulas. C32SAT uses
And-Inverter graphs in connection with subformula sharing as internal represen-
tation of boolean C expressions.

3.1 Introduction

An And-Inverter Graph (AIG) is a directed graph which can be used to represent
propositional formulas. The logical conjunction and the logical negation are the
only operators which are available. It can be shown that these two operators
are su�cient for representing any arbitrary propositional formula. The authors
in [15] discuss boolean circuit representations like Boolean Expression Diagrams
(BEDs), Reduced Boolean Circuits (RBCs) and AIGs.

An AIG provides three kinds of nodes and two kinds of edges. The three
kinds of nodes are:

• Logical constants

• Propositional variables

• Logical conjunctions

The two kinds of edges are:

• Regular edges

• Inverted edges

An important aspect of AIGs is that the logical negation is represented as an edge
attribute. An edge can be regular or inverted. In �gures, a dot is used to represent
inversion. For example Fig. 3.3 represents the formula x → y graphically.

13

14 CHAPTER 3. AND-INVERTER GRAPHS

Operator Representation by ∧ and ¬
¬x ¬x

x ∧ y x ∧ y
x ∨ y ¬(¬x ∧ ¬y)
x → y ¬(x ∧ ¬y)
x ↔ y ¬(x ∧ ¬y) ∧ ¬(¬x ∧ y)

Table 3.1: Representation of the logical operators by ∧ and ¬

x x

Figure 3.1: Graphical representation of x (left) and ¬x (right) by an AIG

It has to be possible to represent the operators ¬, ∧, ∨, → and ↔ by the
operators ∧ and ¬ to be able to represent any arbitrary formula by an AIG. Table
3.1 shows how this representation can look like. The operator ¬ and the operator
∧ can be represented by themselves. Fig. 3.1 shows a graphical representation
of ¬x and Fig. 3.2 shows a graphical representation of x ∧ y. By using the De
Morgan rules, a representation of the operator ∨ by the operators ∧ and ¬ can
be found. Fig. 3.2 shows a graphical representation of x ∨ y. The operator →
can be eliminated by using the rule x → y ≡ ¬x ∨ y. Fig. 3.3 shows a graphical
representation of x → y. Finally, the operator ↔ can be eliminated by using the
rule x ↔ y ≡ (x → y) ∧ (y → x). Fig. 3.4 shows a graphical representation of
x ↔ y.

&&

x y

&&

x y

Figure 3.2: Graphical representation of x ∧ y (left) and x ∨ y (right) by an AIG

3.1. INTRODUCTION 15

&&

x y

Figure 3.3: Graphical representation of x → y by an AIG

&&

&& &&

x y x y

Figure 3.4: Graphical representation of x ↔ y by an AIG

16 CHAPTER 3. AND-INVERTER GRAPHS

3.2 Example

Now we discuss an example which shows the representation of a propositional
formula by an AIG. Let φ be the following propositional formula:

(a ↔ b) → ((a ∨ ¬b) ∧ (a → b))

The equivalences in table 3.1 are used to obtain a semantically equivalent formula
which uses only the operators ∧ and ¬.

First we eliminate the equivalence operator:

(¬(a ∧ ¬b) ∧ ¬(¬a ∧ b)) → ((a ∨ ¬b) ∧ (a → b))

Then we eliminate the right implication operator:

(¬(a ∧ ¬b) ∧ ¬(¬a ∧ b)) → ((a ∨ ¬b) ∧ ¬(a ∧ ¬b))

Then we eliminate the disjunction operator:

(¬(a ∧ ¬b) ∧ ¬(¬a ∧ b)) → (¬(¬a ∧ b) ∧ ¬(a ∧ ¬b))

Finally, we eliminate the implication operator:

¬((¬(a ∧ ¬b) ∧ ¬(¬a ∧ b)) ∧ ¬(¬(¬a ∧ b) ∧ ¬(a ∧ ¬b)))

This formula uses only the operators ∧ and ¬ and is semantically equivalent
to the original formula. Now this formula can be represented by an AIG. This
representation is shown in Fig. 3.5.

3.3 DAG representation

The AIGs which have been discussed so far have all been trees. A tree is a graph
which is directed, acyclic and has exactly n + 1 nodes where n is the number of
edges. Another kind of graph which can also be used to represent AIGs is called
Directed Acyclic Graph (DAG). The only di�erence between a tree and a DAG
is that a DAG does not have the restriction that it must have exactly one node
more than edges.

A DAG representation of an AIG is particularly useful if the corresponding
formula has syntactically equivalent subformulas. In a tree, equal subformulas
are represented as often as they occur in the formula. No sharing is possible.
This means a waste of computer memory. If a DAG is used instead of a tree,
then sharing syntactically equal subformulas is possible. The only disadvantage
of a DAG representation is that it has to be computed whether subformulas are
syntactically equivalent or not. This can be done by using a hash table.

3.4. OPTIMISATION 17

&&

&& &&

&& && && &&

a b a b a b a b

Figure 3.5: Graphical representation of (a ↔ b) → ((a ∨ ¬b) ∧ (a → b)) by an
AIG

Fig. 3.6 shows the DAG representation of the following formula which has
already been presented. It shows how syntactically equivalent subformulas can
be shared.

¬((¬(a ∧ ¬b) ∧ ¬(¬a ∧ b)) ∧ ¬(¬(¬a ∧ b) ∧ ¬(a ∧ ¬b)))

3.4 Optimisation

3.4.1 Two level minimisation

Local optimisation methods like the two level minimisation operate on a local area
of the graph and have only local information available. They can be combined
with global optimisation methods which work on the whole graph and have global
information available. Local optimisation methods like the two level minimisation
can be used before node creation to reduce the size of the graph. Afterwards
global optimisation methods can be applied to reduce the size even more.

Two level minimisation can be used as a local optimisation before node cre-
ation in connection with subformula sharing [15]. The following formula is an
example of a two level minimisation rule which can be found in [15]:

(a ↔ c) ∨ (a ↔ d) ∨ (b ↔ c) ∨ (b ↔ d) ` ((a ∨ b) ∧ (c ∧ d)) ↔ (c ∧ d)

If we know that at least one of the premises holds, then we can replace (a ∨ b) ∧
(c ∧ d) by c ∧ d. For example if we know that b and c represent the same shared

18 CHAPTER 3. AND-INVERTER GRAPHS

&&

&& &&

&& &&

a b

Figure 3.6: Graphical representation of (a ↔ b) → ((a ∨ ¬b) ∧ (a → b)) by an
AIG-DAG

subformula then we can conclude that (a∨ b)∧ (c∧ d) can be replaced by (c∧ d).
This example is shown in Fig. 3.7. It shows the original graph (left) and the
optimised graph (right).

3.4.2 Two level minimisation rules for AIGs

We propose not to do all possible two level optimisations for AIGs, but only
certain optimisations which do not a�ect global subformula sharing negatively.
Our rules are expected to be used as local optimisations before node creation in
connection with global subformula sharing. Benchmarks can be found in section
6.1.

&&

|| &&

a b d

&&

b d

Figure 3.7: Example of a two level minimisation rule

3.4. OPTIMISATION 19

|| ||

&&

y x z

||

&& x

y z

Figure 3.8: Distributivity rule a�ecting global subformula sharing negatively

Fig. 3.8 shows an example of a rule where global subformula sharing is a�ected
negatively. This rule is the rule of distributivity from ∨ over ∧ which can be found
in table C.7. The original graph is shown left and the graph after applying the
rule of distributivity is shown right. The additional arrows which point to the
two disjunctions indicate that the subformulas x∨ y and x∨ z are already shared
by other subformulas.

The graph after applying the rule of distributivity needs one operator node
less than the original graph. From a local point of view this is clearly an opti-
misation. Unfortunately, this need not be the case from a global point of view.
Remember that local optimisation rules are used before node creation. If we do
not apply the distributivity rule, then we have to generate only one new subfor-
mula. This new subformula is the conjunction of the two disjunctions. If we apply
the distributivity rule, then we have to generate two new subformulas. These new
subformulas are y ∧ z and x∨ (y ∧ z). Generally, this e�ect leads to more shared
subformulas and thus to a bigger CNF. This e�ect is is discussed in more detail
in [15]. This is exactly the reason why we propose the use of local optimisation
rules which do not a�ect global subformula sharing negatively.

Our optimisation rules can be divided into the following four classes:

1. Contradiction

2. Subsumption

3. Idempotency

4. Resolution

It is assumed that also one level minimisation is done. This one level minimi-
sation uses basic rules of propositional logic like the rule of idempotency which
can be found in section C.7. Additionally we assume that this one level minimi-
sation uses the fact that logical conjunction is commutative. For example the

20 CHAPTER 3. AND-INVERTER GRAPHS

&&

&&

ca

F

Figure 3.9: Example of the �rst rule of contradiction

formula (a∧ b)∧¬(b∧a) should be optimised by one level minimisation, because
the subformulas (a ∧ b) and (b ∧ a) can be represented by one shared node.

Rules of contradiction

The �rst rule of contradiction can be written in the following way:

¬(a ↔ c) ∨ ¬(b ↔ c) ` ((a ∧ b) ∧ c) ↔ ⊥

If we know that at least one of the premises holds, then we can replace (a∧ b)∧ c
by ⊥. For example if we know that b represents the logical negation of the shared
subformula c, then we can conclude that (a ∧ b) ∧ c can be replaced by ⊥. This
example is shown in Fig. 3.9. It shows the original graph (left) and the optimised
graph (right).

The second rule of contradiction can be written in the following way:

¬(a ↔ c) ∨ ¬(a ↔ d) ∨ ¬(b ↔ c) ∨ ¬(b ↔ d) ` ((a ∧ b) ∧ (c ∧ d)) ↔ ⊥

If we know that at least one of the premises holds, then we can replace (a ∧ b) ∧
(c∧d) by ⊥. For example if we know that c represents the logical negation of the
shared subformula b, then we can conclude that (a ∧ b) ∧ (c ∧ d) can be replaced
by ⊥. This example is shown in Fig. 3.10. It shows the original graph (left) and
the optimised graph (right).

Rules of subsumption

The �rst rule of subsumption can be written in the following way:

¬(a ↔ c) ∨ ¬(b ↔ c) ` (¬(a ∧ b) ∧ c) ↔ c

3.4. OPTIMISATION 21

&&

&& &&

a b d

F

Figure 3.10: Example of the second rule of contradiction

&&

&&

ca

c

Figure 3.11: Example of the �rst rule of subsumption

If we know that at least one of the premises holds, then we can replace ¬(a∧b)∧c
by c. For example if we know that b represents the logical negation of the shared
subformula c, then we can conclude that ¬(a ∧ b) ∧ c can be replaced by c. This
example is shown in Fig. 3.11. It shows the original graph (left) and the optimised
graph (right).

The second rule of subsumption can be written in the following way:

¬(a ↔ c) ∨ ¬(a ↔ d) ∨ ¬(b ↔ c) ∨ ¬(b ↔ d) ` (¬(a ∧ b) ∧ (c ∧ d)) ↔ (c ∧ d)

If we know that at least one of the premises holds, then we can replace ¬(a∧ b)∧
(c ∧ d) by c ∧ d. For example if we know that c represents the logical negation
of the shared subformula b, then we can conclude that ¬(a ∧ b) ∧ (c ∧ d) can be
replaced by c∧d. This example is shown in Fig. 3.12. It shows the original graph
(left) and the optimised graph (right).

22 CHAPTER 3. AND-INVERTER GRAPHS

&&

&& &&

a b d

&&

b d

Figure 3.12: Example of the second rule of subsumption

&&

&&

ca

&&

a c

Figure 3.13: Example of the �rst rule of idempotency

Rules of idempotency

The �rst rule of idempotency can be written in the following way:

(a ↔ c) ∨ (b ↔ c) ` ((a ∧ b) ∧ c) ↔ (a ∧ b)

If we know that at least one of the premises holds, then we can replace (a∧b)∧c by
a∧b. For example if we know that b and c represent the same shared subformula,
then we can conclude that (a ∧ b) ∧ c can be replaced by a ∧ b. This example is
shown in Fig. 3.13. It shows the original graph (left) and the optimised graph
(right).

The second rule of idempotency can be written in the following way:

(a ↔ c) ∨ (b ↔ c) ` ((a ∧ b) ∧ (c ∧ d)) ↔ ((a ∧ b) ∧ d)

If we know that at least one of the premises holds, then we can replace (a ∧ b) ∧
(c ∧ d) by (a ∧ b) ∧ d. For example if we know that b and c represent the same

3.4. OPTIMISATION 23

&&

&& &&

a c d

&&

&& d

a c

Figure 3.14: Example of the second rule of idempotency

shared subformula, then we can conclude that (a ∧ b) ∧ (c ∧ d) can be replaced
by (a ∧ b) ∧ d. This example is shown in Fig. 3.14. It shows the original graph
(left) and the optimised graph (right).

Rule of resolution

The rule of resolution can be written in the following way:

(a ↔ d) ∧ ¬(b ↔ c) ` (¬(a ∧ b) ∧ ¬(c ∧ d)) ↔ ¬a

If we know that the premise holds, then we can replace ¬(a∧ b)∧¬(c∧d) by ¬a.
For example if we know that a and d represent the same shared subformula and b
represents the logical negation of the shared subformula c, then we can conclude
that ¬(a ∧ b) ∧ ¬(c ∧ d) can be replaced by ¬a. This example is shown in Fig.
3.15. It shows the original graph (left) and the optimised graph (right).

Selection criteria

Our original selection criterion was that the optimised graph is a constant or
consists of a subformula which is already part of the original AIG. This crite-
rion guarantees that global subformula sharing is not a�ected negatively. The
rules of contradiction and subsumption accomplish this criterion. Whether the
rule of resolution accomplishes this criterion or not, depends on how negation
is implemented. For example in the programming language C, negation can be
represented by �ipping the least signi�cant bit of the pointer. If this bit is set
to one, then the pointer represents an inverted edge. If this bit is set to zero,
then the pointer represents a regular edge. Of course we have to reset this bit, if
we want to access the data to which the pointer points to. This implementation
is possible, because todays computers align memory addresses word by word. If

24 CHAPTER 3. AND-INVERTER GRAPHS

&&

&& &&

a c

a

Figure 3.15: Example of the rule of resolution

such an implementation is used, then the rule of resolution also accomplishes this
selection criterion. We veri�ed manually that we found all two level minimisation
rules which accomplish this criterion.

Nevertheless, other criteria for rules which do not a�ect global subformula
sharing negatively can be found. The rules of idempotency simply use the under-
lying concept of idempotency which leads to an optimised AIG. This optimised
AIG needs one conjunction node less than the original AIG.

Chapter 4

Transformations into CNF

Now we discuss how an arbitrary propositional formula can be transformed into
CNF. We discuss the standard approach and the Tseitin transformation. C32SAT
uses the Tseitin transformation to transform its internal expression representation
into CNF.

4.1 The standard approach

The standard way to transform an arbitrary propositional formula into CNF is
the following algorithm [20]. Let φ be an arbitrary propositional formula:

1. Eliminate every occurrence of the operator ↔ in φ by using the rule x ↔
y ≡ (x → y) ∧ (y → x).

2. Eliminate every occurrence of the operator → in φ by using the rule x →
y ≡ ¬x ∨ y.

3. Use the De Morgan rules which can be found in table C.8.

4. Finally, use the distributivity rules 11 and 12 in table C.7 to transform φ
into CNF.

This algorithm has the disadvantage that the size of the resulting formula can
explode exponentially. Fortunately, there are other transformations available. In
[14] the authors discuss how the exponential explosion can be prevented by using
heuristic techniques.

4.2 Tseitin transformation

The Tseitin transformation [13] transforms an arbitrary propositional formula
into CNF. Unlike the standard approach, the resulting formula is not semantically
equivalent to the original formula. The reason is that the Tseitin transformation

25

26 CHAPTER 4. TRANSFORMATIONS INTO CNF

introduces new propositional variables. The relation between the original and
the resulting formula is the following: If the resulting formula is satis�able, then
the original formula is satis�able and vice versa.

The Tseitin transformation works in the following way: It is assumed that the
formula is represented by a tree. First we traverse the tree and introduce a new
propositional variable for every operator. These variables are placeholders for the
results of the corresponding operations. Afterwards we traverse the tree a second
time. During this traversion we generate a CNF subformula for every operator.
Additionally, we generate a CNF subformula which binds the result of the top
level operator to >. Finally, we combine all subformulas by using conjunction.

The number of new variables grows linearly with the number of operators
in the original formula. Unfortunately, these variables lead to the e�ect that
the resulting formula is not semantically equivalent to the original formula. For
example if the original formula is tautological, then the resulting formula is not
tautological anymore. This fact is demonstrated by an example later.

4.2.1 Tseitin transformation rules

Now we introduce the rules of the Tseitin transformation. These rules are used
to generate the corresponding subformulas. The variable x represents the new
variable which is introduced for the corresponding operator. The variables y and
z represent the operands.

x ↔ ¬y ≡ (¬x ∨ ¬y) ∧ (x ∨ y)
x ↔ (y ∧ z) ≡ (¬x ∨ y) ∧ (¬x ∨ z) ∧ (x ∨ ¬y ∨ ¬z)
x ↔ (y ∨ z) ≡ (x ∨ ¬y) ∧ (x ∨ ¬z) ∧ (¬x ∨ y ∨ z)
x ↔ (y → z) ≡ (x ∨ y) ∧ (x ∨ ¬z) ∧ (¬x ∨ ¬y ∨ z)
x ↔ (y ↔ z) ≡ (¬x ∨ ¬y ∨ z) ∧ (¬x ∨ y ∨ ¬z) ∧ (x ∨ ¬y ∨ ¬z) ∧ (x ∨ y ∨ z)

4.2.2 Example

The concepts of the Tseitin transformation are demonstrated by an example. Let
φ be the following formula:

(a ↔ b) → ((a ∨ ¬b) ∧ (a → b))

The truth table 4.1 shows that this formula is tautological. This formula can be
represented by a binary tree. First we traverse1 this tree. During this traversion
we introduce a new variable for every operator. The result of this traversion is
shown in Fig. 4.1. The new variables are written in parenthesis below the op-
erators. Afterwards we traverse the tree a second time. During this traversion

1The kind of traversion is of no importance. We use in-order traversion in our examples.

4.2. TSEITIN TRANSFORMATION 27

a b a ↔ b a ∨ ¬b a → b (a ∨ ¬b) ∧ (a → b) φ

⊥ ⊥ > > > > >
⊥ > ⊥ ⊥ > ⊥ >
> ⊥ ⊥ > ⊥ ⊥ >
> > > > > > >

Table 4.1: Truth table of (a ↔ b) → ((a ∨ ¬b) ∧ (a → b))

=>
(d)

<=>
(c)

&&
(g)

a b

aa b

b

||
(e)

=>
(h)

!
(f)

Figure 4.1: Tree representation of (a ↔ b) → ((a ∨ ¬b) ∧ (a → b))

28 CHAPTER 4. TRANSFORMATIONS INTO CNF

we use the corresponding Tseitin rule on every operator to generate the corre-
sponding subformula. Then we generate the subformula which binds the result of
the top level operator to >. After this we combine all subformulas using logical
conjunction:

((¬c ∨ ¬a ∨ b) ∧ (¬c ∨ a ∨ ¬b) ∧ (c ∨ ¬a ∨ ¬b) ∧ (c ∨ a ∨ b)) ∧ ((d ∨ c) ∧ (d ∨
¬g)∧ (¬d∨¬c∨ g))∧ ((e∨¬a)∧ (e∨¬f)∧ (¬e∨ a∨ f))∧ ((¬f ∨¬b)∧ (f ∨ b))∧
((¬g ∨ e) ∧ (¬g ∨ h) ∧ (g ∨ ¬e ∨ ¬h)) ∧ ((h ∨ a) ∧ (h ∨ ¬b) ∧ (¬h ∨ ¬a ∨ b)) ∧ d

Finally, we eliminate unnecessary parenthesis:

(¬c ∨ ¬a ∨ b) ∧ (¬c ∨ a ∨ ¬b) ∧ (c ∨ ¬a ∨ ¬b) ∧ (c ∨ a ∨ b) ∧ (d ∨ c) ∧ (d ∨
¬g) ∧ (¬d ∨ ¬c ∨ g) ∧ (e ∨ ¬a) ∧ (e ∨ ¬f) ∧ (¬e ∨ a ∨ f) ∧ (¬f ∨ ¬b) ∧ (f ∨ b) ∧
(¬g ∨ e) ∧ (¬g ∨ h) ∧ (g ∨ ¬e ∨ ¬h) ∧ (h ∨ a) ∧ (h ∨ ¬b) ∧ (¬h ∨ ¬a ∨ b) ∧ d

It can be shown that the resulting formula is unlike the original formula not
tautological. For example if we assign ⊥ to the variable d then the whole formula
evaluates to ⊥. Thus, the formula cannot be tautological.

4.2.3 Transformation on circuits

Due to the fact that basic hardware gates correspond to logical operators, the
Tseitin transformation can also be used on circuits. This can be very useful if
semantical equivalence of circuits has to be veri�ed.

Consider the following situation. Imagine a tool is used to optimise circuits
in the way that the optimised circuit needs less gates than the original circuit. A
company uses this tool on one of its main circuits. Now it can be the case that this
tool has a bug and produces a result which is mostly but not totally equivalent
to the original circuit. The company wants to be sure that the optimised circuit
is semantically equivalent to the original circuit. Trying out a few assignments
to the inputs of the two circuits is not su�cient to show that the two circuits
are semantically equivalent. One veri�cation method, which uses the Tseitin
transformation, is the following:

We connect every output of the original circuit with the corresponding output
of the optimised circuit by using XOR-gates. All these XOR-gates are combined
by using disjunction. If there is an assignment to the inputs of the two circuits
where at least one output is di�erent, then at least one XOR-gate evaluates to >
and thus the disjunction of the XOR-gates evaluates to >.

Now the question if two circuits are semantically equivalent can be answered
by solving a satis�ability problem. The problem is if there exists an assignment
to the inputs, so that the disjunction of the XOR-gates evaluates to >. This
problem can be solved by using the Tseitin transformation on a representation
of the circuit. For example this representation can be an AIG. Performing the

4.2. TSEITIN TRANSFORMATION 29

Tseitin transformation on And-Inverter graphs is discussed in section 4.2.4. The
resulting CNF can be passed to a SAT solver which yields whether the formula
is satis�able or not. If the formula is satis�able, then the two circuits are not
semantically equivalent and one obtains a helpful counter example where the
outputs of the two circuits are di�erent. If the formula is unsatis�able, then it
has been veri�ed that the two circuits are semantically equivalent.

4.2.4 Transformation on AIGs

The Tseitin transformation can be used to transform an arbitrary AIG into CNF.
Due to the fact that AIGs represent negation by an edge attribute the rules of
the Tseitin transformation have to be adapted.

AIG Tseitin transformation rules

We introduce the rules of the AIG Tseitin transformation. These rules are used
to generate the corresponding subformulas. The variable x represents the new
variable which is introduced for the corresponding conjunction operator. The
variables y and z represent the operands.

x ↔ (y ∧ z) ≡ (¬x ∨ y) ∧ (¬x ∨ z) ∧ (x ∨ ¬y ∨ ¬z)
x ↔ (y ∧ ¬z) ≡ (¬x ∨ y) ∧ (¬x ∨ ¬z) ∧ (x ∨ ¬y ∨ z)
x ↔ (¬y ∧ z) ≡ (¬x ∨ ¬y) ∧ (¬x ∨ z) ∧ (x ∨ y ∨ ¬z)
x ↔ (¬y ∧ ¬z) ≡ (¬x ∨ ¬y) ∧ (¬x ∨ ¬z) ∧ (x ∨ y ∨ z)

The step where we generate a subformula for every operator has to be adapted.
Now we have to check whether the edges to the operands are negated or not,
so we can choose the corresponding rule. The rest of the Tseitin transformation
algorithm remains unchanged.

If the AIG is a DAG, then one has to be cautious. It has to be made sure that
every node is visited only once. This can be done by using a hash table or a �ag
which determines if one node has already been visited. Using a DAG in the con-
text of the Tseitin transformation has an advantage. The Tseitin transformation
pro�ts from the fact that syntactically equivalent subformulas can be shared in
a DAG. Generally, this leads to a shorter CNF. The next example demonstrates
this e�ect.

Example

Consider the following formula:

(a ↔ b) → ((a ∨ ¬b) ∧ (a → b))

The AIG-tree representation and the AIG-DAG representation have already been
discussed in section 3.2 and section 3.3. First we show the Tseitin transformation

30 CHAPTER 4. TRANSFORMATIONS INTO CNF

&&
(f)

&&
(d)

&&
(h)

&&
(c)

&&
(e)

&&
(g)

&&
(i)

a b a b a b a b

Figure 4.2: AIG-tree representation of (a ↔ b) → ((a ∨ ¬b) ∧ (a → b))

on a tree representation. Afterwards we show the Tseitin transformation on a
DAG representation.

Now we discuss the Tseitin transformation on AIG-trees. We traverse the tree
and introduce a new variable for every operator. The result of this traversion is
shown in Fig. 4.2. The new variables are written in parenthesis below the oper-
ators. Afterwards we traverse the tree a second time. During this traversion we
use the corresponding Tseitin rule on every operator to generate the correspond-
ing subformula. Then we generate the subformula which binds the result of the
top level operator to >. After this we combine all subformulas by using logical
conjunction:

((¬c∨a)∧(¬c∨¬b)∧(c∨¬a∨b))∧((¬d∨¬c)∧(¬d∨¬e)∧(d∨c∨e))∧((¬e∨¬a)∧
(¬e∨b)∧(e∨a∨¬b))∧((¬f∨¬d)∧(¬f∨¬h)∧(f∨d∨h))∧((¬g∨¬a)∧(¬g∨b)∧
(g∨a∨¬b))∧((¬h∨¬g)∧(¬h∨¬i)∧(h∨g∨i))∧((¬i∨a)∧(¬i∨¬b)∧(i∨¬a∨b))∧f

Finally, we eliminate unnecessary parenthesis:

(¬c∨a)∧ (¬c∨¬b)∧ (c∨¬a∨ b)∧ (¬d∨¬c)∧ (¬d∨¬e)∧ (d∨ c∨ e)∧ (¬e∨¬a)∧
(¬e∨ b)∧ (e∨a∨¬b)∧ (¬f ∨¬d)∧ (¬f ∨¬h)∧ (f ∨d∨h)∧ (¬g∨¬a)∧ (¬g∨ b)∧
(g∨a∨¬b)∧(¬h∨¬g)∧(¬h∨¬i)∧(h∨g∨i)∧(¬i∨a)∧(¬i∨¬b)∧(i∨¬a∨b)∧f

4.2. TSEITIN TRANSFORMATION 31

&&
(f)

&&
(d)

&&
(g)

&&
(c)

&&
(e)

a b

Figure 4.3: AIG-DAG representation of (a ↔ b) → ((a ∨ ¬b) ∧ (a → b))

Due to the fact that equal subformulas are not shared in a tree, the Tseitin
transformation treats these subformulas as di�erent subformulas. For example
the variables e and g represent the same subformula (¬a ∧ b).

Now we discuss the Tseitin transformation on AIG-DAGs. We traverse the
DAG and introduce a new variable for every operator. The result of this traver-
sion is shown in Fig. 4.3. The new variables are written in parenthesis below the
operators. Afterwards we traverse the DAG a second time. During this traversion
we use the corresponding Tseitin rule on every operator to generate the corre-
sponding subformula. Then we generate the subformula which binds the result of
the top level operator to >. After this we combine all subformulas using logical
conjunction:

((¬c∨ a)∧ (¬c∨¬b)∧ (c∨¬a∨ b))∧ ((¬d∨¬c)∧ (¬d∨¬e)∧ (d∨ c∨ e))∧ ((¬e∨
¬a) ∧ (¬e ∨ b) ∧ (e ∨ a ∨ ¬b)) ∧ ((¬f ∨ ¬d) ∧ (¬f ∨ ¬g) ∧ (f ∨ d ∨ g)) ∧ ((¬g ∨
¬c) ∧ (¬g ∨ ¬e) ∧ (g ∨ c ∨ e)) ∧ f

Finally, we eliminate unnecessary parenthesis:

(¬c∨a)∧(¬c∨¬b)∧(c∨¬a∨b)∧(¬d∨¬c)∧(¬d∨¬e)∧(d∨c∨e)∧(¬e∨¬a)∧(¬e∨
b)∧(e∨a∨¬b)∧(¬f∨¬d)∧(¬f∨¬g)∧(f∨d∨g)∧(¬g∨¬c)∧(¬g∨¬e)∧(g∨c∨e)∧f

32 CHAPTER 4. TRANSFORMATIONS INTO CNF

If we compare the results of the tree and the DAG representation, then we can
see that the resulting CNF of the DAG representation is shorter. The reason is
that shared subformulas are only transformed once. Usually, AIG-DAG repre-
sentations are more compact than AIG-tree representation and lead to a shorter
CNF, because syntactically equivalent subformulas can be shared.

Chapter 5

C32SAT

5.1 Introduction

C32SAT is a tool for formal veri�cation. The main idea of C32SAT is to generate
a SAT instance out of a boolean C expression1. It encodes the expression into a
circuit represented by AIGs. Then this circuit is transformed into CNF by the
Tseitin transformation and passed to an e�cient SAT solver. Finally, C32SAT
interprets the result of the SAT solver and returns the corresponding C32SAT
result. If veri�cation fails, then C32SAT supplies a concrete counter example.

Generally, C32SAT is applicable in the domain of formal veri�cation. Never-
theless, it is not limited to this domain. Additional examples where C32SAT can
be used are:

• Satis�ability checking

• Tautology checking

• Equivalence checking

• Constraint computation

• Algebraic equations computation

5.2 Input language

C32SAT's input language is de�ned by the C32SAT grammar. The C32SAT
grammar is a context free grammar which has the LL(1) property. It is inspired
by grammars of common programming languages like C, C++ and Java. The
grammar of the C programming language can be found in appendix A in [16].

1A boolean C expression is an expression in the programming Language C which evaluates
to > (integer value 6= 0) or ⊥ (integer value = 0).

33

34 CHAPTER 5. C32SAT

The C32SAT grammar is de�ned by the following rules in extended Backus-Naur
form:

c32sat = Ite.

Ite = Imp ["?" Imp ":" Imp].

Imp = Or { ImpOp Or }.

Or = And { "||" And }.

And = BOr { "&&" BOr }.

BOr = BXor { "|" BXor }.

BXor = BAnd { "^" BAnd }.

BAnd = Eq { "&" Eq }.

Eq = Rel { EqOp Rel }.

Rel = Shift { RelOp Shift }.

Shift = Add { ShiftOp Add }.

Add = Mul { AddOp Mul }.

Mul = Neg { MulOp Neg }.

Neg = { NegOp } Basic.

Basic = Ident | Integer | "(" Ite ")".

ImpOp = "=>" | "<=>".

EqOp = "==" | "!=".

RelOp = "<" | "<=" | ">" | ">=".

ShiftOp = ">>" | "<<".

AddOp = "+" | "-".

MulOp = "*" | "/" | "%".

NegOp = "!" | "-" | "~".

Number = "0" | "1" | "2" | "3" | "4" | "5" | "6" | "7" | "8" | "9".

Integer = (("1" | "2" | "3" | "4" | "5" | "6" | "7" | "8" | "9")

{ Number }) | ("0").

Char = "a" | "b" | "c" | ... | "z" | "A" | "B"| "C" | ... | "Z" | "_".

Ident = Char { Char | Number }.

Context free grammars are often used to de�ne the syntax of programming lan-
guages. Context free grammars are more powerful than regular grammars and
are su�cient for most problems. The LL(1) property means that the parser can
choose between alternatives by using just one look ahead token. Context free
grammars and the LL(1) property are discussed in [23].

5.3. DATA TYPES 35

5.3 Data types

C32SAT does not know any explicit data type. By default every variable has
the data type of a signed 32 bit integer. This design decision has been made,
because the main idea of C32SAT is to generate a SAT instance out of a boolean
C expression. In the programming language C there is no boolean data type.
An integer value not equal to zero represents the boolean value > and an integer
value equal to zero represents the boolean value ⊥. Thus, the data type integer
is needed to be able to deal with boolean C expressions.

We decided to use signed integers so C32SAT can also deal with negative num-
bers. We could also have taken unsigned integers, but then C32SAT would not
be able to treat negative numbers. Nevertheless, the implementation of the oper-
ators would not di�er much from the current implementation which uses signed
integer operands. The implementation of the conditional operator, the logical
operators, the bitwise operators and the equality operators would be identical.
Only the implementation of the unary minus operator, the shift operators, the
additive operators and the multiplication operators would have to be adapted,
because they use the fact that two's complement representation is used.

5.3.1 Internal representation

An integer variable is represented by an AIG vector. Every element points to an
AIG which represents a boolean variable. Two's complement is used to encode
negative numbers.

During an analysis phase C32SAT looks for variables which are only used in a
boolean context. This can be done by inspecting the parse tree if there are only
boolean operators used in the context of the corresponding variable. If this is the
case, then only the element of the vector which represents the least signi�cant bit
has to point to an AIG which represents a boolean variable. The other elements
point to the constant AIG_FALSE which is the AIG representation of ⊥. This
optimisation is correct, because if a variable is only used in boolean context then
it is su�cient that this variable can represent the values zero and one. Other
optimisations like inspecting the range of a variable and use less than 32 bits in
a dynamic approach are possible, but non-trivial.

5.4 Unde�ned results and over�ows

There are many cases in the programming language C where the result of an
operation is not fully de�ned according to the C99 standard. This is a serious
problem if one wants to write portable programs. By using C32SAT it can be
veri�ed that there is no assignment to the variables of a boolean C expression,
so that the result is unde�ned. We use the term �unde�ned� in a broad sense.

36 CHAPTER 5. C32SAT

The C99 standard uses terms like �unde�ned behaviour�, �unspeci�c behaviour�
and �implementation-de�ned behaviour�. In C32SAT the term �unde�ned� is
used when the resulting value of an operation is not fully de�ned and depends on
compiler semantics. An example for unde�ned behaviour is shifting an integer
by a negative value.

According to the C99 standard the result of a signed integer over�ow is un-
de�ned and depends on compiler semantics. A two's complement representation
cannot be guaranteed. Nevertheless, in some cases it can be useful to use such
integer over�ows if one is aware of the compiler over�ow semantics. It can also
be useful if C32SAT is used to verify real circuits. C32SAT can be con�gured
to treat integer over�ows as two's complement over�ows or as unde�ned values
(default). The over�ow treatment of C32SAT can be con�gured by a speci�c
command line option. This command line option is shown in A.2.4.

5.5 Operators

Table 5.1 shows all C32SAT operators. L-R means that operators which have
equal priority are evaluated from left to right. R-L means that operators which
have equal priority are evaluated from right to left. Nearly every operator is also
available in the programming language C. These operators have the same relative
priority. The only operators which are not available in the programming language
C are the logical implication operator and the logical equivalence operator which
have priority two.

We decided that the two new logical operators should have higher priority than
the conditional operator and less priority than the other logical operators. We
could also have decided to swap the priorities between the conditional operator
and the new logical operators, but this would lead to a disjoint set of binary
logical operators which is not sound.

We discuss the implementation of all operators in the next sections. The im-
plementation which is shown is basic and does not treat unde�ned values and
over�ows. The focus is on the algorithms. We also discuss the extended seman-
tics of these operators. Extended semantics are needed to be able to deal with
unde�ned and unpredictable results. The default semantics of the operators are
de�ned in the C99 standard.

In the tables which de�ne the extended semantics U represents an unde�ned
value, O represents an over�ow, INT_MIN represents the smallest signed inte-
ger value and INT_MAX represents the the greatest signed integer value2. The
variables a, b and c represent arbitrary signed integer variables.

Generally, there are two main possibilities to encode whether a value is unde-
�ned or not. The �rst variant is to extend propositional logic so that there are

2The values of INT_MIN and INT_MAX depend on the bit width.

5.5. OPERATORS 37

Priority Operator Associativity

13 ! - ∼ R-L
12 * / % L-R
11 + - L-R
10 >> << L-R
9 < <= > >= L-R
8 == != L-R
7 & L-R
6 � L-R
5 | L-R
4 && L-R
3 || L-R
2 => <=> L-R
1 ? -

Table 5.1: Overview of all C32SAT operators

three possible values: >, ⊥ and unde�ned. This allows treatment of unde�ned
results at bit level. The second possibility is to use one additional bit which deter-
mines whether a whole bit vector is unde�ned or not. We decided to implement
the second possibility, because there is no need to treat unde�ned results at bit
level. If the result of an operation is unde�ned according to the C99 standard,
then the whole result is unde�ned. It is never the case that only some bits of the
result are unde�ned.

5.5.1 Pseudo code notes

Before we discuss the extended semantics and the implementation of the operators
we have to discuss some issues according to pseudo code. The pseudo code which
we use is a dialect of the C programming language. Outgoing parameters are
denoted by the keyword out.

The basic functions and_aig , or_aig , imp_aig , dimp_aig3, invert_aig , and
xor_aig are the AIG representations of ∧, ∨,→,↔, ¬, and XOR. The constants
AIG_TRUE and AIG_FALSE are the AIG representations of > and ⊥. The
integer variable number_of_bits represents the number of bits which is used for
the bit width. Additionally it is assumed that every element of an AIG vector is
initialised with AIG_FALSE.

The following functions occur frequently and have to be de�ned:

3dimp means double implication

38 CHAPTER 5. C32SAT

Operand 1 Operand 2 Operand 3 Condition Result

a b c - a ? b : c
a b U a 6= 0 b
a b U a = 0 U
a U c a 6= 0 U
a U c a = 0 c
U b c b = c b
U b c b 6= c U
U b U - U
U U c - U
U U U - U

Table 5.2: Extended semantics of ?

AIG disjunction_aig_vector (AIGVector aig_vector){

AIG result = AIG_FALSE;

for (int i = 0; i < number_of_bits; i++){

result = or_aig (result, aig_vector[i]);

}

return result;

}

AIG conjunction_aig_vector (AIGVector aig_vector){

AIG result = AIG_TRUE;

for (int i = 0; i < number_of_bits; i++){

result = and_aig (result, aig_vector[i]);

}

return result;

}

5.5.2 Conditional operator

Table 5.2 de�nes the extended semantics of the conditional operator. The func-
tion conditional shows the implementation of the conditional operator in pseudo
code:

5.5. OPERATORS 39

Operand 1 Operand 2 Condition Result

a b - a && b
a U a 6= 0 U
a U a = 0 0
U b b 6= 0 U
U b b = 0 0
U U - U

Table 5.3: Extended semantics of &&

AIGVector conditional (AIGVector condition, AIGVector if_case,

AIGVector else_case){

AIGVector result;

AIG aig_cond = disjunction_aig_vector (condition);

for (int i = 0; i < number_of_bits; i++){

result[i] = or_aig (and_aig (if_case[i], aig_cond),

and_aig (else_calse[i],

invert_aig (aig_cond)));

}

return result;

}

5.5.3 Logical operators

C32SAT supports the following logical operators:

• The logical conjunction &&

• The logical disjunction ||

• The logical implication =>

• The logical equivalence <=>

The logical implication and the logical equivalence are the only operators in
C32SAT which are not available in the programming language C. Nevertheless,
these operators can be simulated in C easily. One has to replace expressions like
x => y with !x || y and x <=> y with (!x || y) && (x || !y) or !x == !y.

The tables 5.3, 5.4, 5.5, 5.6 and 5.7 de�ne the extended semantics of the
corresponding operator. The functions conjunction, disjunction, implication,
equivalence and negation show the implementation of the corresponding operator
in pseudo code:

40 CHAPTER 5. C32SAT

Operand 1 Operand 2 Condition Result

a b - a || b
a U a 6= 0 1
a U a = 0 U
U b b 6= 0 1
U b b = 0 U
U U - U

Table 5.4: Extended semantics of ||

Operand 1 Operand 2 Condition Result

a b - !a || b
a U a 6= 0 U
a U a = 0 1
U b b 6= 0 1
U b b = 0 U
U U - U

Table 5.5: Extended semantics of =>

Operand 1 Operand 2 Result

a b (!a || b) && (a || !b)
a U U
U b U
U U U

Table 5.6: Extended semantics of <=>

Operand Result

a !a
U U

Table 5.7: Extended semantics of !

5.5. OPERATORS 41

AIGVector conjunction (AIGVector x, AIGVector y){

AIGVector result;

result[0] = and_aig (disjunction_aig_vector(x),

disjunction_aig_vector(y));

return result;

}

AIGVector disjunction (AIGVector x, AIGVector y){

AIGVector result;

result[0] = or_aig (disjunction_aig_vector(x),

disjunction_aig_vector(y));

return result;

}

AIGVector implication (AIGVector x, AIGVector y){

AIGVector result;

result[0] = or_aig (invert_aig(disjunction_aig_vector(x)),

disjunction_aig_vector(y));

return result;

}

AIGVector equivalence (AIGVector x, AIGVector y){

AIGVector result;

result[0] = and_aig (or_aig (invert_aig(disjunction_aig_vector(x)),

disjunction_aig_vector(y)),

or_aig (disjunction_aig_vector(x),

invert_aig (disjunction_aig_vector(y))));

return result;

}

AIGVector negation (AIGVector x){

AIGVector result;

result[0] = invert_aig(disjunction_aig_vector(x));

return result;

}

42 CHAPTER 5. C32SAT

Operand 1 Operand 2 Result

a b a & b
a U U
U b U
U U U

Table 5.8: Extended semantics of &

Operand 1 Operand 2 Result

a b a | b
a U U
U b U
U U U

Table 5.9: Extended semantics of |

5.5.4 Bitwise operators

C32SAT supports the following bitwise operators:

• The bitwise conjunction &

• The bitwise inclusive disjunction |

• The bitwise exclusive disjunction �

• The bitwise complement˜

The tables 5.8, 5.9, 5.10 and 5.11 de�ne the extended semantics of the corre-
sponding operator. The functions b_conjunction, b_disjunction, b_xor and
b_complement show the implementation of the corresponding operator in pseudo
code.

Operand 1 Operand 2 Result

a b a � b
a U U
U b U
U U U

Table 5.10: Extended semantics of �

5.5. OPERATORS 43

Operand Result

a �a
U U

Table 5.11: Extended semantics of˜

AIGVector b_conjunction (AIGVector x, AIGVector y){

AIGVector result;

for (int i = 0; i < number_of_bits; i++){

result[i] = and_aig (x[i], y[i]);

}

return result;

}

AIGVector b_disjunction (AIGVector x, AIGVector y){

AIGVector result;

for (int i = 0; i < number_of_bits; i++){

result[i] = or_aig (x[i], y[i]);

}

return result;

}

AIGVector b_xor (AIGVector x, AIGVector y){

AIGVector result;

for (int i = 0; i < number_of_bits; i++){

result[i] = xor_aig (x[i], y[i]);

}

return result;

}

AIGVector b_complement (AIGVector x){

AIGVector result;

for (int i = 0; i < number_of_bits; i++){

result[i] = invert_aig(x[i]);

}

return result;

}

44 CHAPTER 5. C32SAT

Operand 1 Operand 2 Result

a b a == b
a U U
U b U
U U U

Table 5.12: Extended semantics of ==

Operand 1 Operand 2 Result

a b a != b
a U U
U b U
U U U

Table 5.13: Extended semantics of !=

5.5.5 Equality operators

C32SAT supports the following equality operators:

• The equality operator ==

• The inequality operator !=

Table 5.12 de�nes the extended semantics of the equality operator and table 5.13
de�nes the extended semantics of the inequality operator. The functions equal
and not_equal show the implementation of the corresponding operator in pseudo
code.

AIGVector equal (AIGVector x, AIGVector y){

AIGVector result;

AIG equal_aig = AIG_TRUE;

for (int i = 0; i < number_of_bits; i++){

equal_aig = and_aig (dimp_aig (x[i], y[i]), equal_aig);

}

result[0] = equal_aig;

return result;

}

5.5. OPERATORS 45

Operand 1 Operand 2 Result

a b a < b
a U U
U b U
U U U

Table 5.14: Extended semantics of <

Operand 1 Operand 2 Result

a b a <= b
a U U
U b U
U U U

Table 5.15: Extended semantics of <=

AIGVector not_equal (AIGVector x, AIGVector y){

AIGVector result, temp;

temp = equal (x, y);

result[0] = invert_aig (temp[0]);

return result;

}

5.5.6 Relational operators

C32SAT supports the following relational operators:

• The less-than operator <

• The less-than-or-equal operator <=

• The greater-than operator >

• The greater-than-or-equal operator >=

The tables 5.14, 5.15, 5.16 and 5.17 de�ne the extended semantics of the corre-
sponding operator. The functions less , less_eq , greater and greater_eq show
the implementation of the corresponding operator in pseudo code. The imple-
mentation is inspired by the principle of ripple carry adders. This inspiration
can be seen in the function ripple_compare_aig which is used to implement the
relational operators.

46 CHAPTER 5. C32SAT

Operand 1 Operand 2 Result

a b a > b
a U U
U b U
U U U

Table 5.16: Extended semantics of >

Operand 1 Operand 2 Result

a b a >= b
a U U
U b U
U U U

Table 5.17: Extended semantics of >=

void ripple_compare_aig (AIG x, AIG y, AIG lt_in, AIG eq_in,

AIG gt_in, out AIG lt_out,

out AIG eq_out, out AIG gt_out){

AIG lt_temp = and_aig (lt_in,

and_aig (invert_aig (eq_in),

invert_aig(gt_in)));

AIG eq_temp = and_aig (invert_aig (lt_in),

and_aig (eq_in, invert_aig(gt_in)));

AIG gt_temp = and_aig (invert_aig (lt_in),

and_aig (invert_aig(eq_in), gt_in));

lt_out = or_aig (lt_temp, and_aig (x, invert_aig(y));

eq_out = and_aig (eq_temp, dimp_aig (x, y));

gt_out = or_aig (gt_temp, and_aig (invert_aig(x), y));

}

void ripple_compare_aig_vector (AIGVector x, AIGVector y, out AIG lt,

out AIG eq, out AIG gt){

AIG lt_temp = and_aig (x[number_of_bits - 1],

invert_aig(y[number_of_bits -1]));

AIG eq_temp = dimp_aig (x[number_of_bits - 1],

y[number_of_bits - 1]);

AIG gt_temp = and_aig (invert_aig (x[number_of_bits - 1]),

y[number_of_bits -1]);

for (int i = number_of_bits - 2; i >= 0; i--){

ripple_compare_aig (x[i], y[i], lt_temp, eq_temp,

5.5. OPERATORS 47

gt_temp, lt, eq, gt);

lt_temp = lt;

eq_temp = eq;

gt_temp = gt;

}

}

Finally, the implementation of the relational operators can be shown:

AIGVector less (AIGVector x, AIGVector y){

AIGVector result;

AIG lt, eq, gt;

ripple_compare_aig_vector (x, y, lt, eq, gt);

result[0] = lt;

return result;

}

AIGVector less_eq (AIGVector x, AIGVector y){

AIGVector result;

AIG lt, eq, gt;

ripple_compare_aig_vector (x, y, lt, eq, gt);

result[0] = or_aig (lt, eq);

return result;

}

AIGVector greater (AIGVector x, AIGVector y){

AIGVector result;

AIG lt, eq, gt;

ripple_compare_aig_vector (x, y, lt, eq, gt);

result[0] = gt;

return result;

}

AIGVector greater_eq (AIGVector x, AIGVector y){

AIGVector result;

AIG lt, eq, gt;

ripple_compare_aig_vector (x, y, lt, eq, gt);

result[0] = or_aig (gt, eq);

return result;

}

48 CHAPTER 5. C32SAT

Operand 1 Operand 2 Condition Result

a b b < 0 U
a b b ≥ number of bits U
a U - U
U b - U
U U - U

Table 5.18: Extended semantics of << part 1

Operand 1 Operand 2 Condition Result

a b INT_MIN ≤ a ∗ 2b ≤ INT_MAX a << b
a b a ∗ 2b < INT_MIN O
a b a ∗ 2b > INT_MAX O

Table 5.19: Extended semantics of << part 2

5.5.7 Shift operators

C32SAT supports the following shift operators:

• The left shift operator <<

• The right shift operator >>

The extended semantics of the left shift operator are de�ned by the tables 5.18
and 5.19. First you have to check table 5.18. If no rule matches there, then you
have to check table 5.19. Finally, table 5.20 de�nes the extended semantics of
the right shift operator. The functions shift_left and shift_right show the im-
plementation of the corresponding operator in pseudo code. The implementation
of the shift operators use the principle of barrel shifters which can be found in
hardware. The functions shift_n_bits_left and shift_n_bits_right which are
used by the functions shift_left and shift_right are shown �rst.

Operand 1 Operand 2 Condition Result

a b b < 0 U
a b b ≥ number of bits U
a b - a >> b
a U - U
U b - U
U U - U

Table 5.20: Extended semantics of >>

5.5. OPERATORS 49

AIGVector shift_n_bits_left (AIGVector x, int bits, AIG shift){

AIGVector result;

for (int i = 0; i < bits; i++){

result[i] = or_aig (and_aig (x[i],

invert_aig (shift)),

AIG_FALSE);

}

for (int i = bits, i < number_of_bits; i++){

result[i] = or_aig (and_aig (x[i],

invert_aig (shift)),

and_aig (x[i - bits],

shift));

}

return result;

}

AIGVector shift_n_bits_right (AIGVector x, int bits, AIG shift){

AIGVector result;

for (int i = 0; i < number_of_bits - bits; i++){

result[i] = or_aig (and_aig (x[i],

invert_aig (shift)),

and_aig (x[i + bits],

shift));

}

for (int i = number_of_bits - bits, i < number_of_bits; i++){

result[i] = or_aig (and_aig (x[i],

invert_aig (shift)),

and_aig (x[number_of_bits - 1],

shift));

}

return result;

}

Finally, the implementation of the shift operators can be shown. The function
log2 (x) computes the logarithm to the basis two of x and the function pow2 (x)
computes two to the power of x.

50 CHAPTER 5. C32SAT

Operand Condition Result

a - −a
a a = INT_MIN O
U - U

Table 5.21: Extended semantics of unary -

AIGVector shift_left (AIGVector x, AIGVector y){

AIGVector result, temp;

result = shift_left_n_bits (x, 1, y[0]);

for (int i = 1; i < log2(number_of_bits); i++){

temp = result;

result = shift_left_n_bits (result, pow2(i), y[i]);

}

return result;

}

AIGVector shift_right (AIGVector x, AIGVector y){

AIGVector result, temp;

result = shift_right_n_bits (x, 1, y[0]);

for (int i = 1; i < log2(number_of_bits); i++){

temp = result;

result = shift_right_n_bits (temp, pow2(i), y[i]);

}

return result;

}

5.5.8 Unary minus operator

C32SAT uses two's complement representation. Table 5.21 de�nes the extended
semantics of the unary minus operator: The unary minus is implemented by
calling the function twos_complement . The function twos_complement uses the
function add which is shown in section 5.5.9 and the function b_complement
which is shown in section 5.5.4. Finally, the function unary_minus shows the
implementation of the unary minus operator in pseudo code.

5.5. OPERATORS 51

Operand 1 Operand 2 Condition Result

a b INT_MIN ≤ a + b ≤ INT_MAX a + b
a b a + b < INT_MIN O
a b a + b > INT_MAX O
a U - U
U b - U
U U - U

Table 5.22: Extended semantics of binary +

Operand 1 Operand 2 Condition Result

a b INT_MIN ≤ a− b ≤ INT_MAX a− b
a b a− b < INT_MIN O
a b a− b > INT_MAX O
a U - U
U b - U
U U - U

Table 5.23: Extended semantics of binary -

AIGVector twos_complement (AIGVector x){

AIGVector one;

one[0] = AIG_TRUE;

return add (complement(x), one);

}

AIGVector unary_minus (AIGVector x){

return twos_complement (x);

}

5.5.9 Additive operators

C32SAT supports the following additive operators:

• The binary plus operator

• The binary minus operator

Table 5.22 de�nes the extended semantics of the binary plus operator and table
5.23 de�nes the extended semantics of the binary minus operator. The functions

52 CHAPTER 5. C32SAT

add and sub show the implementation of the corresponding operator in pseudo
code. C32SAT uses the fact that the expression x− y is equal to the expression
x+(−y). Adding is implemented in the default way by concatenating full adders
bit by bit. The function full_add shows the implementation of a full adder.

AIG full_add (AIG x, AIG y, AIG cin, out AIG cout){

cout = or_aig (and_aig (x, cin),

or_aig (and_aig (y, cin),

and_aig (x, y)));

return xor_aig (x, xor_aig (y, cin));

}

AIGVector add (AIG x, AIG y){

AIGVector result;

AIG temp;

AIG carry = AIG_FALSE;

for (int i = 0; i < number_of_bits; i++){

result[i] = full_add (x[i], y[i], carry, temp);

carry = temp;

}

return result;

}

AIGVector sub (AIG x, AIG y){

return add (x, twos_complement(y));

}

5.5.10 Multiplicative operators

C32SAT supports the following multiplicative operators:

• The multiplication operator *

• The division operator /

• The modulo operator %

The tables 5.24, 5.25 and 5.26 de�ne the extended semantics of the correspond-
ing operator. The functions mult , div and mod show the implementation of the
corresponding operator in pseudo code. The algorithm which is used for the mul-
tiplication is called �long multiplication�. It uses the function shift_n_bits_left

5.5. OPERATORS 53

Operand 1 Operand 2 Condition Result

a b INT_MIN ≤ a ∗ b ≤ INT_MAX a ∗ b
a b a ∗ b < INT_MIN O
a b a ∗ b > INT_MAX O
a U - U
U b - U
U U - U

Table 5.24: Extended semantics of *

Operand 1 Operand 2 Condition Result

a b - a/b
a b b = 0 U
a b a = INT_MIN and b = −1 O
a U - U
U b - U
U U - U

Table 5.25: Extended semantics of /

Operand 1 Operand 2 Condition Result

a b - a/b
a b b = 0 U
a U - U
U b - U
U U - U

Table 5.26: Extended semantics of %

54 CHAPTER 5. C32SAT

which is shown in section 5.5.7 and the function add which is shown in section
5.5.9.

The implementations of div and mod use the function shift_and_remainder .
This function uses an algorithm which computes quotient and remainder. This
algorithm can be found in section A.2 in [7]. This algorithm works only with
unsigned integers, thus a normalisation of the input has to be done. The function
divide_and_remainder uses the function shift_n_bits_left which is shown in
section 5.5.7, the function conditional which is shown in section 5.5.2, the function
less which is shown in section 5.5.6, the function twos_complement which is
shown in section 5.5.8 and �nally the functions add and sub which are shown in
section 5.5.9.

AIGVector mult (AIGVector x, AIGVector y){

AIGVector result;

AIGVector temp1;

AIGVector temp2;

for (int i = 0; i < number_of_bits; i++){

for (int j = 0; j < number_of_bits; j++){

temp1 = and_aig (x[j], y[i])

}

temp2 = add (result,

shift_n_bits_left(temp1, i, AIG_TRUE);

result = temp2;

}

return result;

}

void divide_and_remainder (AIGVector x, AIGVector y,

out AIGVector quotient,

out AIGVector remainder){

AIGVector temp;

AIGVector zero;

AIGVector sub_result;

AIGVector quotient_temp;

AIGVector quotient_need_sign;

AIGVector x_neg;

AIGVector y_neg;

quotient = conditional (less (x, zero),

twos_complement(x), x);

divisor_neg = conditional (less (y, zero), y,

twos_complement(y));

for (int i = 0; i < number_of_bits; i++){

5.5. OPERATORS 55

/* shift register pair */

temp = shift_n_bits_left (remainder, 1, AIG_TRUE);

remainder = temp;

remainder[0] = quotient[number_of_bits - 1];

temp = shift_n_bits_left (quotient, 1, AIG_TRUE);

quotient = temp;

/* subtract */

sub_result = add (remainder, divisor_neg);

/* compute quotient */

quotient_temp = quotient;

quotient_temp[0] = AIG_TRUE;

temp = conditional (less(sub_result, zero),

quotient, quotient_temp);

quotient = temp;

/* restore ? */

temp = conditional (less(sub_result, zero),

remainder, sub_result);

remainder = temp;

}

/* sign quotient and remainder if necessary */

x_neg = less(x, zero);

y_neg = less (y, zero);

quotient_need_sign[0] = xor_aig (x_neg[0], y_neg[0]);

temp = conditional (quotient_need_sign,

twos_complement(quotient), quotient);

quotient = temp;

temp = conditional (x_neg, twos_complement(remainder),

remainder);

remainder = temp;

}

AIGVector div (AIGVector x, AIGVector y){

AIGVector quotient;

AIGVector remainder;

divide_and_remainder (x, y, quotient, remainder);

return quotient;

}

56 CHAPTER 5. C32SAT

AIGVector mod (AIGVector x, AIGVector y){

AIGVector quotient;

AIGVector remainder;

divide_and_remainder (x, y, quotient, remainder);

return remainder;

}

5.5.11 Unsupported operators

Our goal was to keep the input language of C32SAT simple so that C32SAT can
be used without spending hours of time in learning the input language. This is the
reason why some language details of C which makes the language very powerful,
but also error prone are currently not supported in C32SAT. We summarise the
operators of the programming language C which are currently not supported in
C32SAT:

1. The array operator ([]), the dereferencing operator (*), the address operator
(&) and the pointer operator (->) are not supported, because C32SAT does
not support pointer operations.

2. The dot operator (.), the sizeof operator (sizeof) and the type cast operator
are not supported, because C32SAT does not support user-de�ned data
types.

3. The unary plus operator (+) is not supported, because it was only added to
the programming language C for symmetry with the unary minus operator.

4. The assignment operator (=) and its variants (+=), the increment operator
(++) and the decrement operator (--) are not supported, because C32SAT
does not support operators with side e�ects.

5. The comma operator (,) is not supported, because it is rarely used in the
programming language C.

Nevertheless, these operators are expected to be supported in future versions of
C32SAT.

5.6 Division by zero

Currently, the result of a division by zero is treated as an unde�ned value. This
is dangerous, because logical conjunction and logical disjunction can be used to
mask out unde�ned values. Thus, formulas in which a division by zero occurs
can be tautological. Consider the following C32SAT formula:

5.7. THE FOUR MAIN MODES 57

Operand 1 Operand 2 Condition Result

a b - a || b
a U a 6= 0 1
a U a = 0 U
U b b 6= 0 1
U b b = 0 U
U U - U
a E - E
E b - E
U E - E
E U - E
E E - E

Table 5.27: Extended semantics of || including E

1 || (x / 0)

The result of the logical disjunction is true, because at least on operand is 6= 0.
This formula is tautological although a division by zero occurs. A division by
zero causes a terminating trap in real programs. Note that the C99 standard
does not enforce short-circuit evaluation, so C compilers can, but do not have to
support short-circuit evaluation. Thus, this expression can be dangerous in real
programs, although the result of the logical disjunction can be evaluated without
inspecting the subexpression x/0.

In future versions of C32SAT we want to introduce a �ag E4. This �ag should
indicate whether a division by zero occurred or not. Table 5.27 shows how the
semantics of the logical disjunction could be extended.

5.7 The four main modes

The following main modes are available:

1. Satis�ability mode

2. Tautology mode

3. De�ned result mode

4. Unde�ned result mode

4E means Error

58 CHAPTER 5. C32SAT

Before we discuss the semantics of these modes, we have to de�ne the following
mathematical objects:

• Let defined(x) be a predicate which returns >, if x is a de�ned signed
integer value according to the semantics of the C32SAT operators and ⊥ if
not.

• Let Bool(x) be a predicate which maps every signed integer 6= 0 to > and
every signed integer = 0 to ⊥.

• Let Val(φ, α) be the signed integer value or a special value U5 to which the
C32SAT formula φ evaluates under the assignment α.

• Let Assignment(φ) be the set of all possible assignments to the variables of
the C32SAT formula φ.

5.7.1 Satis�ability mode

By using the satis�ability mode it can be veri�ed whether a C32SAT formula
is satis�able or not. The question which C32SAT addresses in the satis�ability
mode is the following:

Does an assignment to the variables of a given C32SAT formula exist
which leads to a result which is de�ned and equal to true?

The semantics of the satis�ability mode can be expressed formally. Let φ be an
arbitrary C32SAT formula. Then φ is satis�able if and only if:

∃α ∈ Assignment(φ) : Bool(V al(φ, α)) ∧ defined(V al(φ, α))

5.7.2 Tautology mode

The tautology mode can be used to verify whether a given formula is tautological
or not. The question which C32SAT addresses in the tautology mode is the
following:

Does every assignment to the variables of a given C32SAT formula
lead to a result which is de�ned and equal to true?

The semantics of the tautology mode can be expressed formally. Let φ be an
arbitrary C32SAT formula. Then φ is tautological if and only if:

∀α ∈ Assignment(φ) : Bool(V al(φ, α)) ∧ defined(V al(φ, α))

5This special value is used if the result is unde�ned.

5.7. THE FOUR MAIN MODES 59

5.7.3 De�ned result mode

The de�ned result mode can be used to verify compliance to the C99 standard.
The question which C32SAT addresses in the de�ned result mode is the following:

Does every assignment to the variables of a given C32SAT formula
lead to a de�ned result according to the C99 standard?

The semantics of the de�ned result mode can be expressed formally. Let φ be an
arbitrary C32SAT formula. Then the result is always de�ned if and only if:

∀α ∈ Assignment(φ) : defined(V al(φ, α))

5.7.4 Unde�ned result mode

The unde�ned result mode can be used to detect code fragments which are always
unde�ned and thus dangerous. The question which C32SAT addresses in the
unde�ned result mode is the following:

Does every assignment to the variables of a given C32SAT formula
lead to an unde�ned result according to the C99 standard?

The semantics of the unde�ned result mode can be expressed formally. Let φ be
an arbitrary C32SAT formula. Then the result is always unde�ned if and only if:

∀α ∈ Assignment(φ) : ¬defined(V al(φ, α))

5.7.5 Relations between the main modes

Generally, in C32SAT it is not the case that negating an unsatis�able C32SAT
formula leads to a tautological formula and vice versa. The reason is that the
de�nitions of the semantics of the satis�ability and tautology mode contain the
subformula defined(V al(φ, α)).

Nevertheless, if the given C32SAT formula uses only operators which cannot
introduce unde�ned values, then the semantics of the satis�ability mode and the
tautology mode can be expressed in the following way:

Semantics of the satis�ability mode:

∃α ∈ Assignment(φ) : Bool(V al(φ, α))

Semantics of the tautology mode:

∀α ∈ Assignment(φ) : Bool(V al(φ, α))

The reason is that the subformula defined(V al(φ, α)) always evaluates to >.
Thus, these two formulas can be simpli�ed. It can be seen that if a C32SAT

60 CHAPTER 5. C32SAT

formula uses only operators which cannot introduce unde�ned values, it is the case
that negating an unsatis�able C32SAT formula leads to a tautological formula
and vice versa.

Let φ be an arbitrary C32SAT formula. Then additionally the following rela-
tions hold:

1. If φ is tautological, then the result of φ is always de�ned.

2. If φ is satis�able, then the result of φ is not always unde�ned.

3. If the result of φ is always unde�ned, then φ is not tautological.

4. If the result of φ is always unde�ned, then φ is not satis�able.

5. If the result of φ is always unde�ned, then the result of φ is not always
de�ned.

6. If the result of φ is always de�ned, then the result of φ is not always unde-
�ned.

5.8 Architecture

The whole software system consists of two subsystems. The �rst subsystem is
C32SAT itself and the second subsystem is its test suite. Fig. 5.1 shows the
architecture of C32SAT. Only the most important modules are shown. Common
modules which occur nearly in every software system are not shown to keep the
diagram concise. For example the stack module and the linked list module are
not shown. The application module containing the glue logic is also not shown,
because it is obvious that it uses the most important modules.

The diagram shows how the main modules depend on each other. The modules
Parser, Scanner and Parse Tree represent the frontend of C32SAT. This frontend
is responsible for reading the input and converting it into a parse tree which is
used by the backend afterwards. The other modules represent the backend. This
backend converts the parse tree into a circuit represented by an AIG vector. The
vector is transformed into a single AIG by using disjunction over the elements.
Finally, the Tseitin transformation transforms this AIG into CNF which is passed
to a SAT solver.

The data �ow is shown in Fig. 5.2. It shows the main data �ow, the corre-
sponding modules and its transformations.

Transformation modules are used so that the corresponding modules do not
depend on each other. For example the module Parse Tree does not know that
the module AIGVector exists and vice versa. The only module which knows
that both exist is the transformation module Parse Tree Transformation. Thus,

5.8. ARCHITECTURE 61

AIG

AIG Vector

Parse Tree
Analysis

Parse Tree
Transformation

SAT Solver

Scanner

Parser

CNF

Tseitin
Transformation

Parse Tree

Figure 5.1: Main architecture of C32SAT

62 CHAPTER 5. C32SAT

AIG Vector

SAT resultApplication
module

C32SAT Result

Parse Tree Parse Tree
Transformation

Tseitin
Transformation

CNF
SAT Solver

Token
ScannerParser

C32SAT Input

Figure 5.2: Main data �ow of C32SAT

5.9. RELATED WORK 63

interface changes of one module do not a�ect the other module. The only module
which has to be adapted is the transformation module.

The test suite contains a test-module for every module in the C32SAT sub-
system. Every test-module contains a test-function for every function in the
corresponding module. This approach is called �Unit Testing� and is currently
popular in the world of high level programming languages. We made the deci-
sion to use unit testing, because this approach is reliable and applicable to our
modular software architecture.

5.9 Related work

To the best of our knowledge there exists only one similar tool which does C
software veri�cation by transforming its input into propositional logic and pass it
to a SAT solver afterwards. This tool is called COGENT [3]. The main di�erences
and similarities of C32SAT and COGENT are discussed in the next section.

5.9.1 Cogent

COGENT in version 1.0 is a theorem prover which provides direct support for
queries in the form of pure ANSI-C expressions together with quanti�ers. CO-
GENT builds on the source code of CBMC which is a bounded model checker
for ANSI-C programs. Like C32SAT it provides machine-level accurate reasoning
for the class of expressions that occur in programs and program invariants. As
in C32SAT the implementation of COGENT is based on a directed compilation
of expressions into propositional logic which is passed to an e�cient SAT solver
afterwards.

We summarise the main di�erences between COGENT and C32SAT:

1. COGENT supports all C99 operators. C32SAT supports a subset of the
C99 operators.

2. COGENT uses non-determinism in cases where the C99 standard does not
provide concrete semantics. C32SAT treats unde�ned behaviour by using
a �ag which determines whether the resulting value is unde�ned or not.

3. COGENT supports pointers, pointer arithmetics and unbounded arrays.
C32SAT does not support pointers, pointer arithmetics and unbounded
arrays.

4. COGENT supports structures and unions. C32SAT does not support struc-
tures and unions.

5. COGENT does not support 64 bit integers. C32SAT supports 64 bit inte-
gers.

64 CHAPTER 5. C32SAT

6. COGENT does not support variable bit width. C32SAT supports 8, 16, 32
and 64 bits.

7. COGENT does not support an unde�ned result mode where one can �nd
an assignment which leads to an unpredictable result according to the C99
standard. C32SAT supports such an unde�ned result mode.

8. COGENT always tries to prove that the input is valid6 by showing that its
negation is unsatis�able. C32SAT o�ers satis�ability and tautology modes.

9. Regarding non-logical operators COGENT and C32SAT have di�erent sat-
is�ability and tautology semantics. This is a result of di�erent treatment
of unde�ned behaviour.

10. COGENT does not o�er the option whether to treat over�ows as unde�ned
behaviour or not. C32SAT o�ers this option.

11. COGENT uses a relational expression representation. C32SAT uses a func-
tional expression representation.

Examples

We show three examples demonstrating di�erences and similarities between CO-
GENT and C32SAT. Consider the following example:

(x + 1) != (-2147483647 - 1)

We call COGENT on this formula and obtain the following result:

parsing
converting
solving
negation SATISFIABLE (not valid)
x=2147483647
Time: 0.015

Cogent yields that this formula is not tautological, because the logical negation is
satis�able. Additionally, COGENT yields that if we assign 2147483647 to x, then
(x + 1) == (−2147483647 − 1) is satis�able. The subformula (2147483647 + 1)
leads to an over�ow. Cogent deals with this over�ow by using non-determinism.
This non-determinism is encoded by using free unconstrained variables.

We call C32SAT in tautology mode on this formula and obtain the following
result:

6COGENT uses the term valid instead of tautological

5.9. RELATED WORK 65

FORMULA IS NOT TAUTOLOGICAL
COUNTER-EXAMPLE:
x = 2147483647

C32SAT yields that this formula is not tautological, because there exists an as-
signment to the variables where the result of the formula is unde�ned. In section
5.7.2 the semantics of the tautology mode are de�ned. Although COGENT and
C32SAT have di�erent semantics they yield the same result.

As a second example we consider the following formula:

(x / 0) != 3

We call COGENT on this formula and obtain the following result:

parsing
converting
solving
negation SATISFIABLE (not valid)
x=2147483646
Time: 0.094

Cogent yields that this formula is not tautological, because the logical nega-
tion is satis�able. The result of the subformula (x/0) is not de�ned according
to the C99 standard. Cogent deals with such unde�ned behaviour by using non-
determinism. As a result of this non-determinism the logical negation of the
formula is satis�able.

We call C32SAT in tautology mode on this formula and obtain the following
result:

FORMULA IS NOT TAUTOLOGICAL
COUNTER-EXAMPLE:
x = 0

C32SAT yields that this formula is not tautological, because there exists an as-
signment to the variables where the result of the formula is unde�ned. If we divide
x by zero then the result is unde�ned. The comparison of inequality where at
least one of the two operands is unde�ned leads to an unde�ned result. C32SAT
has found an assignment where the result of the formula is unde�ned. Thus, this
formula is not tautological according to C32SAT tautology semantics.

Finally, we consider the following formula:

(x / 0) || 1

66 CHAPTER 5. C32SAT

We call COGENT on this formula and obtain the following result:

parsing
converting
solving
negation UNSATISFIABLE (valid)
Time: 0.094

We call C32SAT in tautology mode on this formula and obtain the following
result:

FORMULA IS TAUTOLOGICAL

COGENT and C32SAT yield that this formula is tautological. Division by zero
is treated in the same way except that COGENT uses non-determinism where
C32SAT uses unde�ned values.

Chapter 6

Benchmarks

6.1 Two level optimisation rules for AIGs

The two level optimisation rules for AIGs which are discussed in section 3.4.2
were implemented in C32SAT. Table 6.1 shows the number of AIGs and the time
measured in seconds which was needed to compute the result. The time includes
SAT solving. The benchmarks compare C32SAT with C32SAT using two level
minimisation rules for AIGs (default). The benchmarks were executed on a 32 Bit
Microsoft Windows XP system with 512 MB RAM running on an AMD Athlon
64 3400+ processor. C32SAT used the SAT solver Booleforce 0.5.

It can be seen that in most cases the two level minimisation rules for AIGs lead
to a more compact formula representation. It can also be seen that in most cases
the more compact formula representation leads to a faster computation. Unfor-
tunately, there are some cases where the SAT solver takes more time, although
the AIG and the resulting CNF are more compact.

The percentage of the gained compactness varies. On the one hand there
are formulas where the bene�t of the optimisation is only minimal and on the
other hand there are formulas where the bene�t is signi�cant. For example as
a result of the two level minimisation there are formulas where the result can
be computed directly without calling the SAT solver. This is the case when one
of the rules of contradiction replace a subgraph by the AIG constant ⊥. This
constant propagates and leads to a constant result.

6.2 COGENT

The table 6.2 shows some benchmarks comparing C32SAT's execution time to
COGENT's execution time. Benchmark 1 to 6 are tautological examples from
the C32SAT test suite. Benchmarks 7 and 8 are two representative examples
of the cogent benchmark suite. Benchmarks 9 to 11 are factorisation problems.
Finally, benchmarks 12 to 15 are discrete logarithm computations. The execution

67

68 CHAPTER 6. BENCHMARKS

Kind Size Size with opt. % Time Time with opt.

Satis�able 182 182 100 0 0
Satis�able 399 394 99 0 0
Satis�able 1568 1445 92 0 0
Satis�able 17863 10850 61 1 0
Tautological 25626 22480 88 17 73
Tautological 30808 0 0 1 0
Tautological 35144 21370 61 1 1

Not tautological 46039 30277 66 17 9
Tautological 49064 45738 93 40 41

Not tautological 51278 44985 88 4 4
Tautological 75660 33660 44 32 4
Unsatis�able 93604 0 0 1 0

Table 6.1: Benchmarks of the two level optimisation rule for AIGs

time was measured in seconds and includes SAT solving. The benchmarks were
executed on a 32 Bit Microsoft Windows XP system with 512 MB RAM running
on an AMD Athlon 64 3400+ processor.

It can be seen that in many cases the execution time is nearly the same.
Nevertheless, there are cases where execution time di�ers a lot. For example
consider the benchmarks 4 and 15.

Our benchmarks show that C32SAT's functional expressions representation is
at least as applicable to the domain of formal veri�cation as COGENT's relational
expression representation. There are cases where COGENT is faster and there
are cases where C32SAT is faster. It is not the case that one tool is always
faster than the other one. We believe that C32SAT can be used in cases where
COGENT needs a lot of time and vice versa.

6.2. COGENT 69

Number COGENT C32SAT

1 0 0
2 0 0
3 1 1
4 6 74
5 51 41
6 3 4
7 0 2
8 0 2
9 6 1
10 4 1
11 2 1
12 1 0
13 4 0
14 4 0
15 163 5

Table 6.2: COGENT and C32SAT benchmarks

70 CHAPTER 6. BENCHMARKS

Chapter 7

Summary

We presented C32SAT and its underlying concepts. We gave a motivation for
formal veri�cation and discussed concepts like the SAT problem, AIGs, two level
minimisation and transformations in CNF. We discussed C32SAT's input lan-
guage, semantics, operators, design decisions, architecture, algorithms and re-
lated work. Our benchmarks and comparison to COGENT show that C32SAT's
functional expression representation is applicable to check satis�ability of boolean
C expressions e�ciently.

We want to support all C99 operators in future versions of C32SAT. Addi-
tionally we want to introduce a new �ag which indicates whether a division by
zero occurred or not. These extensions should make C32SAT more useful in order
to verify code fragments.

C32SAT is available in source. We use the BSD license. You can download
C32SAT at the web page 1 of the institute for Formal Models and Veri�cation
(FMV).

We strongly believe that formal veri�cation becomes more and more important
as software complexity and thus testing costs increases. C32SAT is our approach
to deal with increasing software complexity.

1http://www.fmv.jku.at

71

72 CHAPTER 7. SUMMARY

Appendix A

C32SAT 1.0 Tutorial

This tutorial guides you through your �rst steps with C32SAT.

A.1 The four main modes

The following main modes are available:

1. Satis�ability mode

2. Tautology mode

3. De�ned result mode

4. Unde�ned result mode

A.1.1 Satis�ability mode

By using the satis�ability mode it can be veri�ed whether a C32SAT formula
is satis�able or not. The question which C32SAT addresses in the satis�ability
mode is the following:

Does an assignment to the variables of a given C32SAT formula exist
which leads to a result which is de�ned and equal to true?

The satis�ability mode is the default main mode. A formal de�nition of the
semantics of the satis�ability mode can be found in section 5.7.1.

Two boolean examples

The satis�ability mode can be used to verify the basic rules of propositional logic.
Consider the following semantical equivalence:

x ∧ (y ∨ z) ≡ (x ∧ y) ∨ (x ∧ z)

73

74 APPENDIX A. C32SAT 1.0 TUTORIAL

This equivalence represents the distributivity of ∧ over ∨ and can be found in
table C.7. The left and the right side of the formula are semantically equivalent.
This means that there does not exist any assignment to the variables of the
formula so that the value on the left side is di�erent from the value on the right
side. We use C32SAT to verify this equivalence. We represent the formula by
a C32SAT formula and negate the whole formula. If we want to verify that the
formula is tautological then it is su�cient to show that its logical negation is
unsatis�able1. Consider the �le distributivity.c32sat:

!((x && (y || z)) <=> ((x && y) || (x && z)))

We call C32SAT in the following way:

c32sat -s distributivity.c32sat2

C32SAT yields:

FORMULA IS UNSATISFIABLE

Thus, we can conclude that the original distributivity rule is correct.
As a second example we consider the following formula:

(y ∨ z) ↔ ((x ∧ y) ∨ (x ∧ z))

The question is if the left side and the ride side are semantically equivalent. If
the two sides are equivalent then the operator ↔ could be replaced by ≡. We
try to verify that the original formula is tautological by showing that its negation
is unsatis�able. We derive the following C32SAT formula and save it to the �le
equiv.c32sat:

!((y || z) <=> ((x && y) || (x && z)))

We call C32SAT in the following way:

c32sat -s equiv.c32sat

C32SAT yields for example:

1In C32SAT it is the case that if you use only operators where the result is always de�ned,
then negating an unsatis�able formula leads to tautological formula and vice versa. If you use
operators like the division operator where unde�ned results can occur, then this relation does
not hold anymore. See section 5.7.5 for more details.

2-s means satis�ability

A.1. THE FOUR MAIN MODES 75

FORMULA IS SATISFIABLE
ASSIGNMENT(S):
y = 0
z = 1
x = 0

Thus, a counter example has been found. The two sides are not semantically
equivalent.

32 bit examples

The satis�ability mode can also be used to verify formulas which use 32 bit op-
erators like the shift operator. Note that boolean and 32 bit operators can also
be mixed. We show this later. Now we demonstrate how C32SAT can be used
to solve equation systems. Consider the following equation system:

x + y = 62
x - 6 = 4 * (y - 6)

The domain of of the variables x and y are 32 bit integers. C32SAT can be used
to answer the question whether there exists a solution of the equation system in
the 32 bit domain or not. We derive the following C32SAT formula and save it
to the �le equation.c32sat:

(x + y == 62)

&&

(x - 6 == 4 * (y - 6))

We call C32SAT in the following way:

c32sat -s equation.c32sat

C32SAT yields:

FORMULA IS SATISFIABLE
ASSIGNMENT(S):
x = 46
y = 16

Thus, we have found a solution for the equation system.
As a second example we show how the satis�ability mode can be used to verify

that the following equivalence holds in the 32 bit domain. Let BXOR(x, y) be

76 APPENDIX A. C32SAT 1.0 TUTORIAL

the bitwise XOR-operation on x and y and BCOMP(x) the bitwise complement
of x:

BXOR(x, y) = BXOR(BCOMP (x), BCOMP (y))

We verify that this formula is tautological by showing that its negation is unsat-
is�able. Consider the C32SAT formula in the �le xorrel.c32sat:

!((x ^ y) == (~x ^ ~y))

We call C32SAT in the following way:

c32sat -s xorrel.c32sat

C32SAT yields:

FORMULA IS UNSATISFIABLE

Thus, we have veri�ed that the original equivalence holds.

Special case

Consider the following formula:

x/0

This formula is unsatis�able, because the result of this formula is always unde-
�ned.

A.1.2 Tautology mode

The tautology mode can be used to verify whether a given C32SAT formula is
tautological or not. The question which C32SAT addresses in the tautology mode
is the following:

Does every assignment to the variables of a given C32SAT formula
lead to a result which is de�ned and equal to true?

A formal de�nition of the semantics of the tautology mode can be found in section
5.7.2.

Boolean examples

Consider the following semantical equivalence:

x ∧ (y ∨ z) ≡ (x ∧ y) ∨ (x ∧ z)

A.1. THE FOUR MAIN MODES 77

As already mentioned before this equivalence represents the distributivity of ∧
over ∨ and can be found in table C.7. The tautology mode can be used to show
directly that this equivalence holds. We derive the following C32SAT formula
and save it to the �le distributivity.c32sat:

(x && (y || z)) <=> ((x && y) || (x && z))

We call C32SAT in the following way:

c32sat -t distributivity.c32sat3

C32SAT yields:

FORMULA IS TAUTOLOGICAL

Thus, we have shown directly that the two sides of the formula are semantically
equivalent.

As another example consider the following formula:

(y ∨ z) ↔ ((x ∧ y) ∨ (x ∧ z))

The question is if the left side and the ride side are semantically equivalent. If
the two sides are equivalent then the operator ↔ could be replaced by ≡. We
derive the following C32SAT formula and save it to the �le equiv.c32sat:

(y || z) <=> ((x && y) || (x && z))

We call C32SAT in the following way:

c32sat -t equiv.c32sat

C32SAT yields for example:

FORMULA IS NOT TAUTOLOGICAL
COUNTER-EXAMPLE:
x = 0
y = 1
z = 0

Thus, we have found a counterexample. The two sides are not semantically
equivalent.

3-t means tautological

78 APPENDIX A. C32SAT 1.0 TUTORIAL

32 bit examples

The tautology mode can be used to show that the bitwise xor (BXOR) can be
used to set all bits of an integer variable to zero:

BXOR(x, x) = 0

The question is if this formula holds for every 32 bit integer assignment. We
derive the following C32SAT formula and save it to the �le xor.c32sat:

(x ^ x) == 0

We call C32SAT in the following way:

c32sat -t xor.c32sat

C32SAT yields:

FORMULA IS TAUTOLOGICAL

Thus, we have veri�ed that the formula holds for every 32 bit integer.
Another example is the following formula:

BXOR(x, y) = BAND((BOR(x, y), BCOMP (BAND(x, y)))

This formula expresses that the bitwise xor (BXOR) can be represented by the bit-
wise and (BAND), the bitwise or (BOR) and the bitwise complement (BCOMP).
The question is if this equivalence holds for every 32 bit assignment to the vari-
ables x and y. We derive the following C32SAT formula and save it to the �le
xorsub.c32sat:

(x ^ y) == ((x | y) & ~(x & y))

We call C32SAT in the following way:

c32sat -t xorsub.c32sat

C32SAT yields:

FORMULA IS TAUTOLOGICAL

Thus, we have veri�ed that this formula holds for every 32 bit assignment to
the variables x and y.

A.1. THE FOUR MAIN MODES 79

Another formula can derived from the previous two formulas. Consider the
following formula:

(x = y) → (BAND((BOR(x, y), BCOMP (BAND(x, y))) = 0)

If we know that x is equal to y then we know that BXOR(x, y) = 0, because y
can be substituted by x and we have shown BXOR(x, x) = 0 before. We want
to verify that this is always the case. We encode this problem into the following
C32SAT formula and save it to the �le xorsub2.c32sat:

(x == y) => (((x | y) & ~(x & y)) == 0)

Note that this formula is a mixed formula which contains boolean and 32 bit
operators. We call C32SAT in the following way:

c32sat -t xorsub2.c32sat

C32SAT yields:

FORMULA IS TAUTOLOGICAL

Thus, we know that our intention was right. This formula holds for every 32
bit assignment to the variables x and y.

Special case

A user could think of using the tautology mode to show that the + operator
is commutative in the 32 bit domain. The user derives the following C32SAT
formula and saves it to the �le commutative.c32sat:

x + y == y + x

The user calls C32SAT in the following way:

c32sat -t commutative.c32sat

C32SAT yields for example:

FORMULA IS NOT TAUTOLOGICAL
COUNTER-EXAMPLE:
x = 336875542
y = 1810608106

80 APPENDIX A. C32SAT 1.0 TUTORIAL

At �rst sight this result seems strange. Nevertheless, the result is correct ac-
cording to the semantics of C32SAT's tautology mode. It is not the case that
every assignment to the variables x and y leads to a result which is de�ned and
true. For example if we substitute x by 336875542 and y by 1810608106, then we
obtain an integer over�ow. The reason is that the result cannot be represented
by a signed 32 bit integer variable. C32SAT treats the result of integer over�ows
as unde�ned values by default.

C32SAT can be con�gured so that it does not treat the result of integer over-
�ows as unde�ned values. If we call C32SAT with the option -allow-over�ow, then
C32SAT treats integer over�ows as de�ned twos complement over�ows. Now we
call C32SAT with the additional option -allow-over�ow:

c32sat -t -allow-over�ow commutative.c32sat

C32SAT yields:

FORMULA IS TAUTOLOGICAL

This is exactly what we wanted to verify. We wanted to verify that the + operator
is commutative in the 32 bit domain.

A.1.3 De�ned result mode

The de�ned result mode can be used to verify compliance to the C99 standard.
The question which C32SAT addresses in the de�ned result mode is the following:

Does every assignment to the variables of a given C32SAT formula
lead to a de�ned result according to the C99 standard?

A formal de�nition of the semantics of the de�ned result mode can be found in
section 5.7.3.

Boolean examples

Due to the fact that boolean operators cannot introduce unde�ned values, boolean
examples always lead to de�ned results. Thus, the de�ned result mode does not
make sense for boolean examples.

32 bit examples

Consider the following code fragment:

...

A.1. THE FOUR MAIN MODES 81

int x, y, z;

/* assign an arbitrary value x0 to x */

/* assign an arbitrary value y0 to y */

...

if (x >= 0 && x <= 100 && y >= 0 && y < 32){

z = x >> y;

} else {

z = x | y;

}

...

The question is if the value of z is always de�ned after executing this code frag-
ment. The de�ned result mode can be used to verify this property. We derive
the following C32SAT formula and save it to the �le def1.c32sat:

((x >= 0) && (x <= 100) && (y >= 0) && (y < 32))

?

(x >> y) : (x | y)

We call C32SAT in the following way:

c32sat -ad def1.c32sat4

C32SAT yields:

THE RESULT OF THE FORMULA IS ALWAYS DEFINED (C99)

Thus, we have veri�ed that the value which is assigned to z in the original code
fragment is always de�ned after executing the fragment. Hence, this code frag-
ment can smoothly be ported to an other platform.

As another example we consider the following code fragment:

...

int x, y, z;

/* assign an arbitrary value x0 to x */

/* assign an arbitrary value y0 to y */

...

if (x >= 0 && x <= 100 && y < 32){

z = x >> y;

} else {

z = x | y;

4-ad means always de�ned

82 APPENDIX A. C32SAT 1.0 TUTORIAL

}

...

It is nearly the same code fragment as before. Only the If-statement has been
altered. The question is if the value of z is always de�ned after executing this
code fragment. We derive the following C32SAT formula and save it to the �le
def2.c32sat:

((x >= 0) && (x <= 100) && (y < 32))

?

(x >> y) : (x | y)

We call C32SAT in the following way:

c32sat -ad def2.c32sat

C32SAT yields for example:

THE RESULT OF THE FORMULA IS NOT ALWAYS DEFINED (C99)
COUNTER-EXAMPLE:
x = 33
y = -1084108303

Now we see that the value of z can be unde�ned after executing this code frag-
ment. The reason is that if x is between zero and one hundred and y is negative,
then we enter the if-case. In this case we shift x to the right by a negative number.
The result of a shift operation where the second operand is negative is unde�ned
according to the C99 standard and thus unpredictable. Hence, if it cannot be
assured that y never contains a negative value during this fragment, then porting
it to an other platform is dangerous.

Special case

In the current version of C32SAT the result of a division by zero is treated as
an unde�ned value. This treatment has an unpleasant side e�ect. Consider the
following C32SAT formula in the �le division.c32sat:

(x / 0) && 0

We call C32SAT in the following way:

A.1. THE FOUR MAIN MODES 83

c32sat -ad division.c32sat

C32SAT yields:

THE RESULT OF THE FORMULA IS ALWAYS DEFINED (C99)

This formula can never be unde�ned although a division by zero, causing a trap
in real programs, occurs. The result of the logical conjunction is ⊥, because at
least one operand is ⊥. The value of the other operand is irrelevant in this case.
This can be dangerous in real programs, because a division by zero causes a trap.
In future versions we want to introduce a �ag which indicates whether a division
by zero occurred or not. We discuss this future work in 5.6.

A.1.4 Unde�ned result mode

The unde�ned result mode can be used to detect code fragments which are always
unde�ned and thus dangerous. The question which C32SAT addresses in the
unde�ned result mode is the following:

Does every assignment to the variables of a given C32SAT formula
lead to an unde�ned result according to the C99 standard?

A formal de�nition of the semantics of the unde�ned result mode can be found
in section 5.7.4.

Boolean examples

As it is the case in the de�ned result mode, boolean operators cannot introduce
unde�ned values. Thus, the unde�ned result mode does not make sense for
boolean examples.

32 bit examples

Consider the following code fragment:

...

int x, y, z;

...

if (((x - y) & (x + y) * (-3 >> x)) == 0){

...

}

...

84 APPENDIX A. C32SAT 1.0 TUTORIAL

Consider the following situation: By using the de�ned result mode we have found
out that the expression in the if-statement is not always de�ned. Now we want to
�nd out if every assignment leads to an unde�ned result. We derive the following
C32SAT formula and save it to the �le if1.c32sat:

((x - y) & (x + y) * (-3 >> x)) == 0

We call C32SAT in the following way:

c32sat -au if1.c32sat5

C32SAT yields:

THE RESULT OF THE FORMULA IS ALWAYS UNDEFINED (C99)

Now we know that every assignment leads to an unde�ned result. The sub-
formulas (x − y) and (x + y) do not always lead to an unde�ned intermediate
result. Thus, the subformula (−3 >> x) has to be responsible. We verify this by
calling C32SAT with the following C32SAT formula in the �le if2.c32sat:

-3 >> x

We call C32SAT in the following way:

c32sat -au if2.c32sat

C32SAT yields:

THE RESULT OF THE FORMULA IS ALWAYS UNDEFINED (C99)

Our intention was right. This subformula is responsible for making the result
of the whole formula unde�ned. According to the C99 standard shifting a neg-
ative integer to the right is implementation-de�ned behaviour. Implementation
de�ned behaviour is unspeci�ed behaviour where each implementation documents
how the choice is made [10]. Nevertheless, the resulting value depends on com-
piler semantics and is potentially dangerous if such a code fragment is ported to
an other platform. In C32SAT the term unde�ned is used when the resulting
value of an operation is not fully de�ned and depends on compiler semantics.

5-au means always unde�ned

A.2. OPTIONS 85

A.2 Options

We discuss C32SAT's command line options in this section.

A.2.1 Help

The command line option -h is used to print a short command line option sum-
mary.

A.2.2 Verbose

The command line option -v is used for verbose output. C32SAT prints additional
information like the number of conjunctions in an AIG.

A.2.3 Pretty print

The command line option -p is used to parse and pretty print the input.
Consider the following C32SAT formula:

(a || b) && (c || d) && (e || !f)

Calling C32SAT with the command line option -p results in the following formula:

(a || b)

&&

(c || d)

&&

(e || !f)

The pretty printer is optimised for formulas which are combined by logical oper-
ators. This way of printing should make them more readable.

A.2.4 Bit width

The integer bit width can be con�gured by using the command line options -8bits,
-16bits, -32bits and -64bits. If no width is speci�ed then C32SAT assumes 32 bits.

A.2.5 Dump CNF

The command line option -dump-cnf is used to dump the generated CNF to
standard output. C32SAT uses the DIMACS �le format for dumping. This
format is discussed in section 2.6.1.

86 APPENDIX A. C32SAT 1.0 TUTORIAL

Example

Consider the following C32SAT formula:

a && b

Calling C32SAT with the command line option -dump-cnf results in the following
output:

p cnf 3 4

3 0

-3 1 0

-3 2 0

-1 -2 3 0

A.3 Over�ow treatment

C32SAT can be con�gured to treat over�ows as unde�ned results or as two's
complement over�ows by using the command line options -disallow-over�ow and
-allow-over�ow. The behaviour on signed integer over�ow is unde�ned according
to the C99 standard. Two's complement cannot be guaranteed. Thus, the option
-disallow-over�ow is the default option. Nevertheless, allowing integer over�ows
makes it possible to verify real hardware which uses two's complement represen-
tation. This is one main reason why the treatment of integer over�ows can be
con�gured in C32SAT.

Appendix B

Installation

This section describes brie�y how C32SAT can be installed on your system.
C32SAT is available on the following platforms:

• Linux

• Microsoft Windows

• Mac OS

B.1 Required software

The installation process of C32SAT requires the following software:

• Gnu Compiler Collection (GCC)

• Gnu Make

• Shell (e.g. BASH)

If C32SAT is installed on a Windows Operating System, then the usage of CYG-
WIN1 or MINGW2 is recommended.

B.2 Unpacking

The C32SAT archive has to be unpacked �rst. This can be done by using the
Unix program tar:

tar xfvz c32sat*.tar.gz

1http://www.cygwin.com
2http://www.mingw.org

87

88 APPENDIX B. INSTALLATION

B.3 Compiling

The following command which has to be executed in the C32SAT root directory
starts the build process:

make project

Optional:

The following command lists all available make options:

make help

B.4 Test cases

This step is optional. C32SAT has its own test suite. The following command
runs this suite:

make run_tests

All test cases should succeed. If not all test cases succeed, then C32SAT will
not work correctly on your system.

Appendix C

Propositional logic

C.1 Propositional logic operators

Table C.1 shows all propositional logic operators.

C.1.1 The semantics of the propositional logic operators

The semantics of the propositional logic operators are de�ned by the tables C.2,
C.3, C.4, C.5 and C.6.

C.2 Rules of propositional logic

Table C.7 shows the basic rules of propositional logic. Table C.8 shows the De
Morgan rules. More information can be found in [11].

Name Symbol

Negation ¬
Conjunction ∧
Disjunction ∨
Implication →
Equivalence ↔

Table C.1: The operators of propositional logic

89

90 APPENDIX C. PROPOSITIONAL LOGIC

x ¬x

⊥ >
> ⊥

Table C.2: Truth table of ¬

x y x ∧ y

⊥ ⊥ ⊥
⊥ > ⊥
> ⊥ ⊥
> > >

Table C.3: Truth table of ∧

x y x ∨ y

⊥ ⊥ ⊥
⊥ > >
> ⊥ >
> > >

Table C.4: Truth table of ∨

x y x → y

⊥ ⊥ >
⊥ > >
> ⊥ ⊥
> > >

Table C.5: Truth table of →

x y x ↔ y

⊥ ⊥ >
⊥ > ⊥
> ⊥ ⊥
> > >

Table C.6: Truth table of ↔

C.2. RULES OF PROPOSITIONAL LOGIC 91

Number Rule Name

1 x ∧ ⊥ ≡ ⊥ Neutrality of ∧
2 x ∨ ⊥ ≡ x Neutrality of ∨
3 x ∧ > ≡ x Identity of ∧
4 x ∨ > ≡ > Identity of ∨
5 x ∧ x ≡ x Idempotency of ∧
6 x ∨ x ≡ x Idempotency of ∨
7 x ∧ ¬x ≡ ⊥ Contradiction
8 x ∨ ¬x ≡ > Tautology
9 x ∧ y ≡ y ∧ x Commutativity of ∧
10 x ∨ y ≡ y ∨ x Commutativity of ∨
11 x ∧ (y ∨ z) ≡ (x ∧ y) ∨ (x ∧ z) Distributivity of ∧ over ∨
12 x ∨ (y ∧ z) ≡ (x ∨ y) ∧ (x ∨ z) Distributivity of ∨ over ∧
13 x ∧ (x ∨ y) ≡ x Absorption rule of ∧
14 x ∨ (x ∧ y) ≡ x Absorption rule of ∨
15 ¬¬x ≡ x Double negation

Table C.7: Basic rules of propositional logic

Number Rule

1 ¬(x ∧ y) ≡ ¬x ∨ ¬y
2 ¬(x ∨ y) ≡ ¬x ∧ ¬y

Table C.8: De Morgan rules

92 APPENDIX C. PROPOSITIONAL LOGIC

Bibliography

[1] Armin Biere. The evolution from LIMMAT to NANOSAT. Technical Report
444, Dept. Computer Science, ETH Zürich, 2004.

[2] M. Buro and H. Kleine Büning. Report on a SAT competition. Bulletin
of the European Association for Theoretical Computer Science, 49:143�151,
1993.

[3] Byron Cook, Daniel Kroening, and Natasha Sharygina. Accurate theorem
proving for program veri�cation. Technical Report 464, ETH Zürich.

[4] S. A. Cook. The complexity of theorem-proving procedures. In Proceedings
of ACM STOC'71, pages 151�158, 1971.

[5] Ron Cytron, Jeanne Ferrante, Barry K. Rosen, Mark N. Wegman, and
F. Kenneth Zadeck. E�ciently computing static single assignment form
and the control dependence graph. ACM Transactions on Programming
Languages and Systems, 13(4):451�490, October 1991.

[6] DIMACS. Satis�ability suggested format, 1993.

[7] John L. Hennessy and David A. Patterson. Computer Archtitecture - A
Quantitative Approach - Second Edition. Morgan Kaufmann, 1996.

[8] Gerard J. Holzmann. The SPIN Model Checker. Addison Wesley, 2004.

[9] Holger H. Hoos and Thomas Stützle. SATLIB: An Online Resource for
Research on SAT. pages 283�292.

[10] ISO/IEC. Programming languages - C (ISO/IEC 9899:1999 (E)), 1999.

[11] John Kelly. The Essence of Logic 1st Edition. Prentice Hall, 1996.

[12] Andrew S. Tanenbaum. Modern Operating Systems. Prentice Hall, 2001.

[13] G S Tseitin. On the complexity of derivation in propositional calculus. Stud-
ies in Constructive Mathematics and Mathematical Logic, Part 2, pages 115�
125, 1968.

93

94 BIBLIOGRAPHY

[14] Armin Biere und Alessandro Cimatti und Edmund M. Clarke und M. Fu-
jita und Y. Zhu. Symbolic model checking using SAT procedures instead of
BDDs. In Proceedings of Design Automation Conference (DAC'99), 1999.

[15] Per Bjesse und Arne Borälv. DAG-aware circuit compression for formal
veri�cation. ICCAD'04, 2004.

[16] Brian Kernighan und Dennis Ritchie. The C Programming Language - Sec-
ond Edition. Prentice Hall, 1986.

[17] Martin Davis und George Logemann und Donald Loveland. A machine
program for theorem proving. In Communications of the ACM, volume 5,
1962.

[18] Martin Davis und Hilary Putman. A computing procedure for quanti�cation
theory. In Journal of the ACM (JACM), volume 7, 1960.

[19] B. Berard und M. Bidoit und A. Finkel und F. Laroussinie und A. Petit und
L. Petrucci und Ph. Schnoebelen und P. McKenzie. Systems and Software
Veri�cation - Model-Checking Techniques and Tools. Springer, 2001.

[20] Michael Huth und Mark Rya. Logic in Computer Science - Modelling and
Reasoning about Systems. Cambridge University Press, 2004.

[21] Edmund M. Clarke Jr. und Orna Grumberg und Doron A. Peled. Model
Checking. The MIT Press, 1999.

[22] John E. Hopcroft und Rajeev Motwani und Je�rey D. Ullman. Einführung in
die Automatentheorie, Formale Sprachen und Komplexitätstheorie. Addison-
Wesley, 2002.

[23] Alfred V. Aho und Ravi Sethi und Je�rey D. Ullman. Compilers - Principles,
Techniques and Tools. Prentice Hall, 1986.

[24] Holger H. Hoos und Thomas Stützle. Stochastic Local Search - Foundation
And Applications. Morgan Kaufmann, 2005.

List of Figures

3.1 Graphical representation of x (left) and ¬x (right) by an AIG . . 14
3.2 Graphical representation of x ∧ y (left) and x ∨ y (right) by an AIG 14
3.3 Graphical representation of x → y by an AIG 15
3.4 Graphical representation of x ↔ y by an AIG 15
3.5 Graphical representation of (a ↔ b) → ((a ∨ ¬b) ∧ (a → b)) by an

AIG . 17
3.6 Graphical representation of (a ↔ b) → ((a ∨ ¬b) ∧ (a → b)) by an

AIG-DAG . 18
3.7 Example of a two level minimisation rule 18
3.8 Distributivity rule a�ecting global subformula sharing negatively . 19
3.9 Example of the �rst rule of contradiction 20
3.10 Example of the second rule of contradiction 21
3.11 Example of the �rst rule of subsumption 21
3.12 Example of the second rule of subsumption 22
3.13 Example of the �rst rule of idempotency 22
3.14 Example of the second rule of idempotency 23
3.15 Example of the rule of resolution 24

4.1 Tree representation of (a ↔ b) → ((a ∨ ¬b) ∧ (a → b)) 27
4.2 AIG-tree representation of (a ↔ b) → ((a ∨ ¬b) ∧ (a → b)) 30
4.3 AIG-DAG representation of (a ↔ b) → ((a ∨ ¬b) ∧ (a → b)) 31

5.1 Main architecture of C32SAT . 61
5.2 Main data �ow of C32SAT . 62

95

96 LIST OF FIGURES

List of Tables

3.1 Representation of the logical operators by ∧ and ¬ 14

4.1 Truth table of (a ↔ b) → ((a ∨ ¬b) ∧ (a → b)) 27

5.1 Overview of all C32SAT operators 37
5.2 Extended semantics of ? . 38
5.3 Extended semantics of && . 39
5.4 Extended semantics of || . 40
5.5 Extended semantics of => . 40
5.6 Extended semantics of <=> . 40
5.7 Extended semantics of ! . 40
5.8 Extended semantics of & . 42
5.9 Extended semantics of | . 42
5.10 Extended semantics of � . 42
5.11 Extended semantics of˜ . 43
5.12 Extended semantics of == . 44
5.13 Extended semantics of != . 44
5.14 Extended semantics of < . 45
5.15 Extended semantics of <= . 45
5.16 Extended semantics of > . 46
5.17 Extended semantics of >= . 46
5.18 Extended semantics of << part 1 48
5.19 Extended semantics of << part 2 48
5.20 Extended semantics of >> . 48
5.21 Extended semantics of unary - . 50
5.22 Extended semantics of binary + 51
5.23 Extended semantics of binary - 51
5.24 Extended semantics of * . 53
5.25 Extended semantics of / . 53
5.26 Extended semantics of % . 53
5.27 Extended semantics of || including E 57

6.1 Benchmarks of the two level optimisation rule for AIGs 68

97

98 LIST OF TABLES

6.2 COGENT and C32SAT benchmarks 69

C.1 The operators of propositional logic 89
C.2 Truth table of ¬ . 90
C.3 Truth table of ∧ . 90
C.4 Truth table of ∨ . 90
C.5 Truth table of → . 90
C.6 Truth table of ↔ . 90
C.7 Basic rules of propositional logic 91
C.8 De Morgan rules . 91

Eidesstattliche Erklärung

Ich erkläre an Eides statt, dass ich die vorliegende Magisterarbeit selbstständig
und ohne fremde Hilfe verfasst, andere als die angegebenen Quellen und Hilfs-
mittel nicht benutzt bzw. die wörtlich oder sinngemäÿ entnommenen Stellen als
solche kenntlich gemacht habe.

Linz, Februar 2006

Robert Daniel Brummayer Bakk. techn.

