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Abstract. C32SAT is a tool for checking C expressions. It can check
whether a given C expression can be satisfied, is tautological, or always
defined according to the ISO C99 standard. C32SAT can be used to de-
tect nonportable expressions where program behavior depends on the
compiler. Our contribution consists of C32SAT’s functional representa-
tion and the way it handles undefined values. Under-approximation is
used as optimization.

1 Introduction

Formal verification of C programs is an active area of research [6,7,8,11]. C32SAT1

addresses a verification problem not explicitly considered by other verification
tools. It detects situations where, according to the C99 standard [9], the behavior
upon an operation on certain values is undefined, e.g. the behavior upon divid-
ing an integer by zero. The C99 standard [9] describes undefined behavior as
“behavior, upon use of a nonportable or erroneous program construct or of erro-
neous data, for which this International Standard imposes no requirements” [9].
The execution of such an undefined operation ranges from ignoring the situation
to terminating the execution in the worst case.

In contrast to other programming languages, e.g. Java, there are many cases
in the C programming language where undefined behavior can occur. This situ-
ation makes it hard to write secure and portable programs where the behavior
is fully defined and does not depend on compiler semantics.

If the behavior upon an operation is undefined, then C32SAT raises a flag
that marks the result to be undefined. This flag propagates and can only be
masked out by short circuit evaluation of the logical conjunction &&, logical
disjunction || and the conditional operator ?:. Note that except for these three
operations the order of evaluation of subexpressions is undefined as in the C99
standard.

C32SAT takes as input one C expression. It can check whether it can be sat-
isfied, is tautological or always defined according to the C99 standard. C32SAT
supports all main C operators, including multiplication, division and modulo.
Additionally, C32SAT supports logical implication and equivalence. Pointer re-
lated operators are scheduled as future work.
1 http://fmv.jku.at/c32sat/



2 System architecture

The core of C32SAT version 1.4 consists of approximately 7500 lines of C code.
Figure 1 shows the core components of C32SAT. The frontend mainly consists of
the components Parser and Parse Tree. The remaining components are part
of the backend. The architecture is similar to that of a compiler except that the
backend generates a Conjunctive Normal Form (CNF) instead of machine code.
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Fig. 1. Core architecture of C32SAT

3 Internal functionality

C32SAT treats the type of every variable as signed integer. The bit width w ∈
{4, 8, 16, 32, 64} can be globally configured. A variable is internally represented
by a vector of And-Inverter Graphs (AIGs) [10] where every AIG represents
exactly one bit.

Each C operator is mapped to a circuit that takes the AIG vector operands
as input. For example the result of the word level XOR operator ^ is an AIG
vector where the AIG vectors of the operands are bitwise combined by boolean
XOR. This functional representation is in contrast to COGENT [8], which uses
a relational representation. Our approach allows the application of sophisticated
circuit simplification techniques like local two-level AIG rewriting [4] and the
application of structural SAT solvers.

Every integer is actually represented by w + 1 AIGs. The additional AIG
represents the undefined value. In general an expression is undefined when a
subexpression is undefined. The only exception is short-circuit evaluation of &&,
|| and ?:.

Regarding C32SAT’s set of operators the result of every operation is either
fully defined or fully undefined. It is never the case that only a part of the bits
is undefined while the remaining bits are defined. Therefore, C32SAT handles
undefined values on the AIG vector level and not on the AIG level.



The general flow of C32SAT is the following. C32SAT parses the input ex-
pression and builds a parse tree, which is analyzed and transformed into an AIG.
Afterwards, the AIG is transformed into Conjunctive Normal Form (CNF) using
Tseitin Transformation [12] and passed to a SAT solver. Alternatively, the AIG
can be dumped in the AIGER 2 format.

The default SAT solver of C32SAT is PicoSAT [2]. Additionally, C32SAT
supports the SAT solvers NanoSAT [1], BooleForce and CompSAT [3] 3. The
SAT solver computes if the CNF is satisfiable or not and returns a model in the
satisfiable case. C32SAT uses this model to generate a word level model, which
is printed out as part of the result. As an example consider the C expression
y != 0 => x / y. We want to determine if there exists an assignment to x
and y, for which the result of the expression is undefined. C32SAT generates a
corresponding CNF, which is passed to the SAT solver. If the SAT instance is
unsatisfiable, then the result of the expression is always defined. However, if the
SAT instance is satisfiable, then C32SAT can use the satisfying assignment to
generate a useful counter example.

Actually, C32SAT shows that unrestricted division can lead to an overflow.
If we divide INT MIN by -1, then we get a signed integer overflow, because in
two’s complement the negation of INT MIN is undefined, as the behavior upon
signed integer overflow is undefined in the C99 standard.

Note that if we added the constraint y != -1 to the premise of the implica-
tion, then the result of the expression would always be defined.

4 Under-approximation optimization

Inspired by [5], we added an under-approximation optimization technique to the
latest version of C32SAT. Instead of encoding an n-bit integer variable with n
AIGs, we simply restrict the number of AIGs used for encoding. For example
we encode a 32 bit integer variable in the following way. We represent the least
significant bit by one AIG variable and all other bits by another. This AIG vector
represents the values from -2 to 1 instead of -2147483648 to 2147483647.

If the under-approximated SAT instance is satisfiable, then also the original
formula is satisfied by the same assignment. However, if the under-approximated
SAT instance is unsatisfiable, then the approximation has to be refined. In this
case C32SAT doubles the precision of the under-approximation. In the worst case
no satisfying assignment can be found during under-approximation and C32SAT
has to generate the full CNF.

Using this under-approximation technique leads to smaller AIGs. This results
in a smaller CNF, which is typically easier to solve. Beside speeding up the
search for satisfying assignments, the under-approximation technique produces
assignments that are easier to interpret.

2 http://fmv.jku.at/aiger/
3 The SAT solvers are available at http://fmv.jku.at/software/



5 Conclusion

We presented C32SAT, a tool for checking C expressions. It can be used to de-
tect nonportable expressions where program behavior depends on the compiler.
We presented C32SAT’s functional representation, the way it handles undefined
values and its under-approximation optimization technique. As future work we
want to support pointers and over-approximation techniques.
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