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Abstract. And-Inverter Graphs (AIGs) are an efficient and scalable
representation for boolean formulas and circuits. We present a maximal
set of rules for local two-level optimization of AIGs. This set consists of
rules which can be applied before node creation greedily without affecting
structural sharing negatively. We implemented these techniques in the
AIG library of our tool SMV2QBF and report on experimental results
in the context of SAT based model checking.

1 Introduction

Efficient and scalable circuit representations play an important role in synthesis
and formal verification of circuits. A common approach is to use Directed Acyclic
Graph (DAG) representations which allow to share subcomponents. Examples
of such representations are Boolean Expression Diagrams (BEDs) [2], Reduced
Boolean Circuits (RBCs) [1] and AIGs [10].

Several algorithms have been developed to optimize such representations. For
example [12] presents a DAG-aware AIG rewriting technique for preprocessing
combinational logic before technology mapping.

Optimization algorithms can be classified as global or local. Global algorithms
operate on the whole DAG, by for instance taking reference counts into account.
The goal is to minimize the overall (global) node count by rewriting. However,
local algorithms operate only on a small portion of the DAG. The typical example
are algorithms that work on a two-level window during node generation, i.e. when
a new node has to be generated, the context to which a rewrite rule is applicable
consists of the new node, its children and its grand-children. This is the original
approach taken in minimizing BEDs, RBCs, and also AIGs [1,2,10].

Local optimization algorithms have to be used with caution because they can
affect structural sharing negatively. Figure 1 shows two examples where a local
optimization can have negative side effects. In this figure, circles denote AND
gates and dots negations.

Consider the rule of distributivity. The unoptimized AIG on the left repre-
sents the formula (a ∨ b) ∧ (b ∨ d) while the right AIG represents (a ∧ d) ∨ b.
From a local point of view, the right AIG is more compact than the left AIG.
Unfortunately, this may not be the case from a global point of view. The left



AIG introduces one new node which represents the top level conjunction. How-
ever, the AIG on the right side introduces two new nodes ignoring the fact that
(a∨ b) and (b∨d) are still referenced. To summarize the example, two nodes are
generated while only one is saved. A similar effect is obtained when greedily ap-
plying the substitution rule on the right of Fig. 1, which therefore is considered
harmful.

Therefore local optimization is not robust and may produce larger circuits.
The experiments in [3] show that applying local optimization greedily often even
increases the size of the minimized circuit considerably. In one example the size of
a 80k node circuit is increased by 50k nodes using all possible local optimization
rules greedily.

We present a maximal set of local optimization rules which are guaranteed not
to affect structural sharing negatively. These rules operate on a two-level window
of the AIG and are a subset of all equivalence preserving two-level rewrite rules.
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Fig. 1. Optimization rules affecting structural sharing negatively.

2 Background

An And-Inverter Graph (AIG) is a Directed Acyclic Graph (DAG) consisting
of constants, primary inputs, two-input gates and inverters. Primary inputs and
constants are represented by terminal nodes, AND gates by nodes with two in-
puts and one output. Inversion is indicated by a complemented edge. Multiple
AIGs can be used in parallel to model bit vectors. Unlike Reduced Ordered Bi-
nary Decision Diagrams (ROBDDs) [5] AIGs are non-canonical. Thus in general
there is no unique representation of a boolean formula as AIG.

AIGs can be used to represent arbitrary boolean formulas and circuits, and
are implemented in several logic synthesis and verification systems [11,12]. It
is possible to represent every basic logic operation by AND gates and inverters



and therefore by AIGs. Table 1 shows how such a representation of the most
important basic logic operations could look like.

A hash table is used to remove redundant components during construction
by structure sharing. Automatic structure sharing and the simplicity of AIGs
make them a compact, simple, easy to use, and scalable representation.

Name Function Representation by two-input AND and inversion

Inversion ¬x ¬x

Conjunction x ∧ y x ∧ y

Disjunction x ∨ y ¬(¬x ∧ ¬y)

Implication x → y ¬(x ∧ ¬y)

Equivalence x ↔ y ¬(x ∧ ¬y) ∧ ¬(¬x ∧ y)

Xor x⊕ y ¬(¬(x ∧ ¬y) ∧ ¬(¬x ∧ y))

Table 1. Basic logic operations with two-input AND gates and negation.

3 Optimization Rules

Our rules in Tab. 2 are size decreasing, not globally size increasing and operate
on a local two-level window of the AIG before node creation. They can be cate-
gorized by three attributes: name, type of symmetry and optimization level. The
AIG on which the rules operate can be symmetric or asymmetric. Symmetric
means that the AIG consists of three or one conjunctions and asymmetric that
it has two conjunctions. Hence the AIGs with three conjunctions in Fig. 1 are
symmetric while the AIGs with two conjunctions are asymmetric. A subset of
the rules is also discussed in [4].

We developed a tool which enumerates all permutation equivalent AIGs and
checks if representative AIGs can be replaced by semantically equivalent AIGs.
The criterion for candidate replacement AIGs is to have less nodes and that they
do not cause a global node increase.

A rule consists of a one- or two-level AIG on the left-hand side (LHS) and a
semantically equivalent AIG on the right-hand side (RHS). The rules are charac-
terized by their optimization levels O1, O2, O3 and O4. Optimization level i+1
contains all rules of optimization level i and less. Optimization levels should be
distinguished from the number of levels of the AIG simplification window, which
is the height of the AIG of the LHS.

In optimization level one (O1) all optimizations in a window of size one are
applied, i.e. the LHS of these rules consists of exactly one conjunction.

Starting with optimization level two (O2) the optimization window, i.e. the
number of levels of the LHS, becomes two. In O2 no new node is created. The
RHS is a reference to an existing sub term of the LHS or the constant ⊥.

Optimization level (O3) allows to create at most one new node. The set
of O3 rules is restricted to those two-level rules such that exactly one rule is



applicable, by excluding the rules of symmetric idempotence. The assumption
is that the children of the top node are already normalized, i.e. no further rule
can be applied. This restriction is lifted in optimization level four (O4). While
the O4 rules are clearly not confluent, we conjecture that O3 rules are confluent.
The rules of O2 to O4 assume that O1 optimizations have been applied before.

Name LHS RHS O S Condition

Neutrality a ∧ > a 1 S

Boundedness a ∧ ⊥ ⊥ 1 S

Idempotence a ∧ b a 1 S a = b

Contradiction a ∧ b ⊥ 1 S a 6= b

Contradiction (a ∧ b) ∧ c ⊥ 2 A (a 6= c) ∨ (b 6= c)

Contradiction (a ∧ b) ∧ (c ∧ d) ⊥ 2 S (a 6= c) ∨ (a 6= d) ∨ (b 6= c) ∨ (b 6= d)

Subsumption ¬(a ∧ b) ∧ c c 2 A (a 6= c) ∨ (b 6= c)

Subsumption ¬(a ∧ b) ∧ (c ∧ d) c ∧ d 2 S (a 6= c) ∨ (a 6= d) ∨ (b 6= c) ∨ (b 6= d)

Idempotence (a ∧ b) ∧ c a ∧ b 2 A (a = c) ∨ (b = c)

Resolution ¬(a ∧ b) ∧ ¬(c ∧ d) ¬a 2 S (a = d) ∧ (b 6= c)

Substitution ¬(a ∧ b) ∧ c ¬a ∧ b 3 A b = c

Substitution ¬(a ∧ b) ∧ (c ∧ d) ¬a ∧ (c ∧ d) 3 S b = c

Idempotence (a ∧ b) ∧ (c ∧ d) (a ∧ b) ∧ d 4 S (a = c) ∨ (b = c)

Idempotence (a ∧ b) ∧ (c ∧ d) a ∧ (c ∧ d) 4 S (b = c) ∨ (b = d)

Idempotence (a ∧ b) ∧ (c ∧ d) (a ∧ b) ∧ c 4 S (a = d) ∨ (b = d)

Idempotence (a ∧ b) ∧ (c ∧ d) b ∧ (c ∧ d) 4 S (a = c) ∨ (a = d)

Table 2. All locally size decreasing, globally non increasing, two-level optimization
rules. ”O” is the optimization level, ”S” the type of symmetry. Subsumption is also
known as ”Absorption”. The condition a 6= b is a short hand for a = ¬b or b = ¬a.

The analysis of the enumeration of all equivalence classes produced by our
tool shows that Tab. 2 contains all rules that are locally size decreasing without
affecting global sharing negatively. There are other locally size decreasing, but
globally potentially size increasing rules, such as the two rules shown in Fig. 1.
These rules should be avoided in a greedy local algorithm. For instance there
are two symmetric substitution variants, Tab. 2 and Fig. 1. The latter can affect
structural sharing negatively.

3.1 Experiments

We implemented our local optimization rules as part of the AIG library of the
SMV2QBF tool [9]. Then we used SMV2QBF to generate AIGs for proving the
correctness of simple safety properties through k-induction [13]. These AIGs are
then transformed in to CNF through the standard Tseitin construction [14] and



passed on to the SAT solver SateliteGTI [7,8].1 The resulting formulas are all
unsatisfiable. We used the smallest bound k for which k-induction succeeds.

number of AIG nodes reduction in addition to O1

k O1 O2 O3 O4 Og O2 O3 O4 Og

eijk.S298.S 58 257579 257351 257351 257351 260744 0.1% 0.1% 0.1% -1.2%
eijk.S953.S 7 10311 10236 10236 10236 11791 0.7% 0.7% 0.7% -14.4%
eijk.S820.S 11 18266 18111 18071 18091 19843 0.8% 1.1% 1.0% -8.6%
eijk.S510.S 10 14519 14375 14375 14365 16010 1.0% 1.0% 1.1% -10.3%
eijk.S832.S 11 19434 19194 19194 19215 21040 1.2% 1.2% 1.1% -8.3%

cmu.periodic.N 96 733095 733095 719724 719724 721452 0.0% 1.8% 1.8% 1.6%
nusmv.guid7.C 27 155260 154203 152069 152069 167223 0.7% 2.1% 2.1% -7.7%

ken.oop1.C 29 65855 64605 63674 63674 65444 1.9% 3.3% 3.3% 0.6%
nusmv.guid1.C 10 28889 28520 27721 27721 32313 1.3% 4.0% 4.0% -11.9%
nusmv.tcas2.B 6 25999 24657 24225 24198 26254 5.2% 6.8% 6.9% -1.0%
nusmv.tcas3.B 5 20178 19023 18644 18618 20409 5.7% 7.6% 7.7% -1.1%
vis.prodc24.E 37 297791 289394 257570 257570 270317 2.8% 13.5% 13.5% 9.2%
vis.prodc12.E 29 204807 198235 173352 173352 183219 3.2% 15.4% 15.4% 10.5%
vis.prodc17.E 27 183883 177779 154670 154670 163807 3.3% 15.9% 15.9% 10.9%
vis.prodc15.E 23 144774 139602 120066 120066 127763 3.6% 17.1% 17.1% 11.8%
vis.prodc19.E 22 135975 131023 112273 112273 119722 3.6% 17.4% 17.4% 12.0%
texas.par2.E 2 1009 992 813 813 872 1.7% 19.4% 19.4% 13.6%

vis.prodc14.E 16 86137 82589 69211 69211 74441 4.1% 19.7% 19.7% 13.6%
vis.prodc18.E 13 64185 61385 50755 50755 54901 4.4% 20.9% 20.9% 14.5%
vis.prodc13.E 8 33849 32161 25788 25788 28195 5.0% 23.8% 23.8% 16.7%
vis.prodc16.E 5 18217 17229 13510 13510 14819 5.4% 25.8% 25.8% 18.7%

Table 3. Number of AIG nodes and node reduction.

We also implemented the original greedy optimization (Og) following [1,2,10],
which calculates in advance minimum size normal forms for every two-level AIG.
With a maximum of four leafs there are at most 216 = 224

functions. Therefore
a function table and thus a function can simply be represented by a 16-bit
word. The function table of a LHS can be calculated recursively. This LHS is
then replaced by the normal form for its boolean function. We used a separate
program that generates all two-level AIGs and picked the smallest AIG with
respect to node size as normal form for all two-level AIGs implementing the
same function. It turns out that only 742 boolean function can be represented
by two-level AIGs.

In Tab. 3 we report on the amount of reduction that can be achieved using
different optimization levels. In column 1 the name of the original SMV model
from [6] is described and in column 2 the bound k. Columns 3 to 7 show the num-
ber of AIG nodes of the final formula for each of the five optimization levels. The
1 The SAT Race 2006 showed, that SateliteGTI is still the fastest SAT solver in

industrial applications together with its reimplementation in MiniSAT 2.0.



remaining four columns give the amount of reduction in number of AIG nodes
achieved compared to optimization level O1. From the experiments it is clear
that our rules, even though they are only local, provide considerable reduction
of up to 25%, compared to the conservative approach of not enabling two-level
minimization. The additional reduction obtained by using non confluent rules
of optimization level O4 is miniscule. As predicted by [3] also our experiments
show, that greedy local minimization (Og) [1,2,10] for AIGs is not robust. It
actually often results in a considerable increase, while our approach will never
increase the number of nodes.

generation time solving time

k O1 O2 O3 O4 Og O1 O2 O3 O4 Og

eijk.S298.S 58 1.63 1.68 1.66 1.65 1.92 20.58 15.64 19.54 15.02 22.44
eijk.S953.S 7 0.05 0.05 0.05 0.05 0.06 0.41 0.40 0.38 0.34 0.50
eijk.S820.S 11 0.08 0.08 0.08 0.08 0.11 0.75 0.82 0.85 0.83 1.54
eijk.S510.S 10 0.06 0.06 0.06 0.06 0.08 0.74 0.70 0.69 0.78 0.97
eijk.S832.S 11 0.09 0.09 0.09 0.09 0.11 0.95 0.93 0.84 0.88 1.21

cmu.periodic.N 96 4.90 4.92 4.91 4.91 5.12 23.80 23.83 21.83 21.83 22.25
nusmv.guid7.C 27 0.90 0.90 0.83 0.83 1.18 20.57 18.43 13.51 16.14 17.00

ken.oop1.C 29 0.29 0.28 0.27 0.27 0.30 9.08 15.40 11.88 11.90 9.34
nusmv.guid1.C 10 0.17 0.17 0.17 0.17 0.22 0.66 0.63 0.61 0.62 0.80
nusmv.tcas2.B 6 0.14 0.14 0.14 0.14 0.17 0.57 0.53 0.51 0.52 0.43
nusmv.tcas3.B 5 0.11 0.11 0.10 0.10 0.12 0.52 0.48 0.46 0.46 0.39
vis.prodc24.E 37 3.16 3.11 2.75 2.76 3.15 19.06 23.60 19.65 20.80 23.09
vis.prodc12.E 29 2.11 2.07 1.82 1.84 2.07 11.34 11.20 11.44 10.17 11.64
vis.prodc17.E 27 1.82 1.82 1.60 1.58 1.83 9.69 9.12 10.84 11.53 13.98
vis.prodc15.E 23 1.52 1.52 1.29 1.30 1.47 5.61 5.79 5.59 5.20 7.11
vis.prodc19.E 22 1.45 1.44 1.23 1.26 1.41 5.33 5.47 5.64 4.99 6.09
texas.par2.E 2 0.48 0.48 0.44 0.44 0.49 0.03 0.03 0.02 0.02 0.03

vis.prodc14.E 16 0.88 0.87 0.76 0.76 0.87 2.39 2.43 2.42 2.30 2.65
vis.prodc18.E 13 0.71 0.71 0.61 0.61 0.71 1.73 1.60 1.64 1.56 1.86
vis.prodc13.E 8 0.38 0.38 0.33 0.33 0.38 0.85 0.80 0.69 0.69 0.83
vis.prodc16.E 5 0.24 0.24 0.20 0.21 0.23 0.45 0.45 0.36 0.36 0.42

Table 4. AIG/CNF gen. time by SMV2QBF and SAT solving time by SateliteGTI.

In Tab. 4 we show the time taken to generate the CNFs on the left and on the
right the time taken to prove unsatisfiability with SateliteGTI.2 Our new rules
(O3 or O4) consistently outperform conservative one-level only minimization
(O1) and classical greedy optimization (Og) both with respect to generation
and solving time. Here the data suggests that O4 results in more efficient SAT
solving than using O3 rules alone.

2 On a cluster of 3 GHz Pentium IV with 2 GB main memory running Debian Linux.



3.2 Conclusion

We empirically derived and classified the maximal set of rules for two-level AIG
rewriting which allows a greedy local application during node generation without
risking global size increase. The rule set is normalizing and of course terminating.
The subset of O3 rules is conjectured to be confluent. We also identified two
locally reducing but potentially globally harmful rules. Our experiments show
considerable improvements in size and SAT solving time.

As future work we want to classify all rules, that potentially decrease size
globally but not locally. In [3] rules are generated by a program. This approach
however ignores the fact that the rules presented in this paper can always be
applied greedily without search. Finally we want to apply similar ideas to multi-
level AIGs [12].
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