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Abstract. Satisfiability Modulo Theories (SMT) is the problem of de-
ciding satisfiability of a logical formula, expressed in a combination of
first-order theories. We present the architecture and selected features of
Boolector, which is an efficient SMT solver for the quantifier-free theories
of bit-vectors and arrays. It uses term rewriting, bit-blasting to handle
bit-vectors, and lemmas on demand for arrays.

1 Introduction

A new kind of verification engines, called Satisfiability Modulo Theories (SMT)
solvers, gained a lot of interest both in research and industry recently. SMT
generalizes pure boolean satisfiability (SAT) and provides first-order theories to
express design and verification conditions of interest. For example, important
first-order theories are fixed-size bit-vectors, arrays, linear arithmetic, and dif-
ference logic. An SMT solver takes a formula expressed in a combination of first-
order theories as input, and decides satisfiability. Additionally, if the instance is
satisfiable, then most SMT solvers provide a model. For more information about
SMT and first-order theories see for example [4,10,12].

Boolector is an efficient SMT solver for the quantifier-free theory of bit-
vectors in combination with the extensional theory of arrays. Bit-vectors can
be used to express designs and specifications directly on the word-level, while
arrays can be used to model memory, e.g. main memory in software, or memory
components like caches and FIFOs in hardware systems. The combination of
bit-vectors and arrays allows reasoning about software and hardware on a more
appropriate level than pure propositonal logic. Generally, SMT solvers benefit
from the additional word-level information and generates word-level models.
Boolector provides concrete models for bit-vector and arrays.

The SMT competition [2] in 2008 showed, that there has been a lot of progress
in the SMT community. In each division the winner clearly outperformed last
year’s winner. In particular, the performance of SMT solvers in the quantifier-
free theory of bit-vectors QF BV, and bit-vectors with arrays and uninterpreted
functions QF AUFBV, increased heavily. Boolector entered the SMT competition
for the first time. It participated in exactly these two divisions and won both.
In QF BV it solved 18 formulas more than Z3.2 and 92 formulas more than last



year’s winner Spear v1.9 [1]. In QF AUFBV Boolector solved 16 formulas more
than Z3.2 and 64 more than last year’s winner Z3 0.1 [8].

2 Architecture

Boolector depends on term rewriting and bit-blasting for bit-vectors. Lemmas
on demand [9] are used to handle the extensional theory of arrays lazily [5]. It
takes a formula expressed in the SMT-LIB format [11], or alternatively in the
BTOR format [6], as input. The BTOR format is a low-level bit-vector format
with clean semantics that is easy to parse. Additionally, BTOR supports bit-
vector arrays and model checking of safety properties. In addition to these input
formats, Boolector also provides a rich C API, which allows to use Boolector as
library. Boolector is implemented in C. A schematic overview is shown in Fig. 1.
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Fig. 1. Schematic overview of Boolector.

Parser The parser reads the input and builds an abstract syntax DAG. Dur-
ing the parse process, basic rewriting rules are applied to simplify the DAG.

Rewriter The rewriting engine provides rewrite rules that can be divided into
three levels. By default, all rewrite levels are applied to simplify the input. Level
1 rewrite rules are basic rules, e.g. a∧¬a ⇔ ⊥, that are applied during formula



construction. Level 2 rewrite rules consist of global term substitutions in com-
bination with static analysis techniques. Before terms are substituted, they are
topologically sorted. Then, term substitutions are performed in one pass. Level 3
rewrite rules perform arithmetic normalization. Rewrite rules of quadratic worst
case complexity are additionally bounded in recursion depth.

Array Consistency Checker This checker is one main component in the
lemmas on demand approach for the extensional theory of arrays [5]. It checks
if the current assignment by the SAT solver is consistent with the theory.

Under-approximation Boolector supports under-approximation of bit-vector
variables and reads on arrays. This module is responsible for realizing under-
approximation directly on the CNF level. Under-approximation constraints are
added as clauses that additionally constrain the search space.

SAT Solver PicoSAT [3] is used as SAT solver. It uses state of the art tech-
niques like watching literals, phase saving, conflict learning and rapid restarts.
Boolector uses PicoSAT incrementally to decide the extensional theory of arrays,
and for under-approximation.

Model Generator The ability to provide concrete models in the satisfiable
case cannot be overestimated. In generaral, a satisfiable formula corresponds to
a bug that has been found. The ability to provide a concrete counter example
that can be directly used for debugging is one of the main features in the success
story of model checking [7]. Boolector can output concrete bit-vector and array
models. The array models are (partially) instantiated arrays, where indices and
values are concrete bit-vectors.

Formula Refinement The formula refinement is the heart of Boolector. Ini-
tially, the bit-vector part is translated to SAT while the array part is abstracted
with the help of fresh bit-vector variables. The refinement loop calls the SAT
solver to obtain an assignment. If the result is unsatisfiable, the loop terminates
with unsatisfiable. However, if the result is satisfiable, the array consistency
checker is used to check if the current assignment is consistent with the exten-
sional theory of arrays. If the current assignment is consistent, then the formula
is satisfiable. However, if the assignment is inconsistent, a lemma on demand,
that rules out this and similar assignments, is added as as formula refinement.
Additionally, under-approximation refinement can be enabled for bit-vector vari-
ables and reads. In this case the under-approximation refinement and the lemmas
on demand refinement for the extensional theory of arrays are intertwined.

3 Selected Features

Model Checking Boolector can also be used as incremental model checker
for word-level safety properties of synchronous hardware systems with memo-



ries [6]. The BTOR format provides a sequential ”next“ operator, which can be
used to express state transitions of bit-vector registers and memories. Boolector
supports bounded model checking for witnesses, and k-induction with and with-
out all-different constraints. All-different constraints are used for simple paths.

Under-approximation Boolector supports several under-approximation tech-
niques and refinement strategies. Bit-vector variables and reads on arrays can
be additionally constrained on the CNF level. The under-approximation can
be refined locally or globally. In the global refinement strategy, the under-
approximation is refined equally for all variables and reads. In the local strategy
the under-approximation refinement is individually performed for each variable
and read. The under-approximation feature allows to generate ”smaller“ models
that are typically easier to interpret by users.

Pretty Printer Boolector allows to convert formulas from BTOR to SMT-
LIB format and vice versa. The pretty printer can be combined with Boolector’s
rewriting module to internally simplify the formula before conversion.

4 Conclusion

We presented Boolector, which is an efficient SMT solver for the quantifier-free
theories of bit-vectors and arrays. Boolector uses term rewriting, bit-blasting for
bit-vectors, and lemmas on demand for arrays. We discussed its architecture,
main concepts, and selected features.
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