
Under consideration for publication in Theory and Practice of Logic Programming 1

Testing and Debugging Techniques for

Answer Set Solver Development

ROBERT BRUMMAYER

Institute for Formal Models and Verification, Johannes Kepler University Linz, Austria

MATTI JÄRVISALO

Department of Computer Science, University of Helsinki, Finland

submitted 8 February 2010; revised 30 April 2010; accepted

Abstract

This paper develops automated testing and debugging techniques for answer set solver
development. We describe a flexible grammar-based black-box ASP fuzz testing tool which
is able to reveal various defects such as unsound and incomplete behavior, i.e. invalid
answer sets and inability to find existing solutions, in state-of-the-art answer set solver
implementations. Moreover, we develop delta debugging techniques for shrinking failure-
inducing inputs on which solvers exhibit defective behavior. In particular, we develop a
delta debugging algorithm in the context of answer set solving, and evaluate two different
elimination strategies for the algorithm.

KEYWORDS: answer set programming, answer set solvers, testing, debugging

1 Introduction

Answer set programming (ASP) (Gelfond and Lifschitz 1988; Niemelä 1999) is a

rule-based declarative programming paradigm that has proven to be an effective

approach to knowledge representation and reasoning in various hard combinatorial

problem domains. This success has been enabled by the development of efficient

answer set solvers (Simons et al. 2002; Ward and Schlipf 2004; Lin and Zhao 2004;

Janhunen and Niemelä 2004; Liu and Truszczynski 2005; Anger et al. 2005; Leone

et al. 2006; Giunchiglia et al. 2006; Janhunen 2006; Gebser et al. 2007; Drescher

et al. 2008; Janhunen et al. 2009; Brain and De Vos 2009).

Implementing robust, sound and complete answer set solvers is a demanding task.

For achieving high solver performance, one needs to implement error-prone and

complex inference rules, specialized data structures, and other complex optimiza-

tions. On the other hand, robustness and correctness are two essential criteria for

answer set solvers. The users of answer set solvers heavily depend on correct results

and, in particular, correct answer sets. The lack of systematized testing tools for

answer set solver development may leave intricate implementation bugs unnoticed.

Indeed, in practice, small sets of problem instances that are typically used dur-

ing regression and unit testing are not enough for testing correctness during solver

development. Moreover, while the availability of standard benchmark instances is

2 Brummayer and Järvisalo

of high importance for benchmarking solver implementations, testing during solver

development should not solely rely on these instances. In support of these claims,

by examining the detailed results of the first and second ASP programming com-

petitions (Gebser et al. 2007; Denecker et al. 2009) one notices that, on the sets of

(typical) benchmarks used in these competition, only very few solvers on very few

benchmarks were judged as providing incorrect results. In other words, almost no

defective behavior seems to have been detected. In contrast, we will show that by

using the testing and debugging techniques developed in this work, various kinds

of incorrect and erroneous behavior can be automatically detected and debugged

for various state-of-the-art answer set solvers; furthermore, this is achieved without

the need for the user to construct hand-crafted benchmarks. The testing techniques

developed here provide complementary means for developing highly correct solvers,

which can be applied in addition to domain-specific benchmarks. Additionally, our

delta debugging techniques can be naturally applied also when defective solver be-

havior is detected on domain-specific benchmarks.

In more detail, this paper develops domain-specific grammar-based black-box

fuzz testing and delta debugging techniques that enable more systematic testing

and debugging solutions for answer set solver development. Fuzz testing, also called

fuzzing (Sutton et al. 2007; Takanen et al. 2008), has its origin in software security

and quality assurance. The main idea of fuzzing is to test software against random

inputs in order to find failure-inducing inputs that trigger defective behavior. In

order to find as many defects as possible, a “good” fuzzer (the input generator)

should generate a wide variety of different inputs. In the grammar-based approach,

the generated input is guaranteed to be syntactically valid, i.e. the input respects

the expected input format. In black-box fuzzing, testing is performed against the

software interface without access to the implementation details of the software.

We develop a black-box grammar-based fuzz testing tool that is able to generate

random ASP instances from various different classes.

In many cases, randomly generated failure-inducing inputs may contain large

parts that are irrelevant for triggering defective behavior, and can hence be too

large to enable efficient debugging. In the context of ASP, a failure-inducing answer

set program can simply have too many rules and atoms for a developer to manu-

ally pinpoint the subset of program rules that triggers the defective behavior. In

order to isolate the failure-inducing parts of such failure-inducing inputs, an auto-

matic technique called delta debugging (Zeller and Hildebrandt 2002; Zeller 2005;

Claessen and Hughes 2000; Misherghi and Su 2006) has been proposed. Minimiza-

tion of the size of failure-inducing input is intractable in general, and hence delta

debuggers are based on greedy heuristics. We develop an efficient and novel delta

debugger which is very effective in producing small failure-inducing inputs (answer

set programs), hence relieving the solver developer from the troublesome task of

locating the typically small failure-inducing parts of a large failure-inducing answer

set program.

Main contributions We develop a grammar-based black-box fuzz testing tool for

answer set solvers that covers various different classes of grounded answer set pro-

Testing and Debugging Techniques for Answer Set Solver Development 3

grams. Our experimental analysis shows that our fuzzing approach is very effective

in revealing various sources of incorrectness, including both unsound and incom-

plete behavior, in a wide range of state-of-the-art answer set solvers. Additionally,

of independent interest is that since our fuzzer is highly configurable, it can also be

used as a flexible ASP benchmark generator. Moreover, we develop a novel delta

debugging algorithm for answer set solver development. Our algorithm uses the

hierarchical (Misherghi and Su 2006) structure of answer set programs to shrink

failure-inducing instances effectively. Furthermore, we evaluate two different elimi-

nation strategies we have implemented for our delta debugging algorithm: a simple

and easy-to-implement “one-by-one” elimination strategy, and another one based on

the more intricate DDMin algorithm originally proposed in different context (Zeller

and Hildebrandt 2002).

All tools developed in this work are publicly available and can be downloaded

at http://fmv.jku.at/fuzzddtools/. Since the tools treat answer set solvers to

be tested as black-box entities, no modifications to the actual solvers are needed in

order to apply these tools in the development process of any answer set solver that

accepts input in the standard lparse format.

The rest of this paper is organized as follows. First we review necessary concepts

related to answer set programs (Section 2). We then present our fuzzing approach for

testing answer set solvers (Section 3), with experimental results of the effectiveness

of the fuzzer (Section 4). Finally, we develop delta debugging strategies in the

context of answer set solving (Section 5) and present an experimental evaluation of

our approach (Section 6), followed by pointers to related work (Section 7).

2 Answer Set Programs

This section reviews the stable model semantics and the classes of answer set pro-

grams considered in this work.

Normal Logic Programs and Answer Sets A normal logic program (NLP) consists

of a finite set of normal rules of the form

r : h ← a1, . . . , an ,∼b1, . . . ,∼bm ,

where each ai and bj is a propositional (or normal) atom, and h is either a propo-

sitional atom or the symbol ⊥ that stands for falsity. A rule r consists of a head,

head(r) = h, and a body, body(r) = {a1, . . . , an ,∼b1, . . . ,∼bm}. A rule r is a fact

if body(r) = ∅, and an integrity constraint if head(r) = ⊥. The symbol “∼” denotes

default negation. A default literal is an atom a or its default negation ∼a.

For a rule r , let body(r)+ = {a1, . . . , an} and body(r)− = {b1, . . . , bm} denote

the sets of positive and negative (default negated) atoms in body(r), respectively.

In ASP, we are interested in stable models (Gelfond and Lifschitz 1988) (or answer

sets) of a program Π. An interpretation M ⊆ atom(Π) defines which atoms of Π

are true (a ∈ M) and which are false (a 6∈ M). An interpretation M ⊆ atom(Π)

satisfies a normal rule r if and only if body(r)+ ⊆ M and body(r)− ∩M = ∅ imply

head(r) ∈ M , and hence M is a (classical) model of Π if M satisfies all rules in Π.

4 Brummayer and Järvisalo

A model M of a program Π is an answer set of Π if and only if there is no model

M ′ ⊂ M of ΠM , where ΠM = {head(r)← body(r)+ | r ∈ Π and body(r)−∩M = ∅}

is called the Gelfond-Lifschitz reduct of Π with respect to M . The problem of

deciding whether a NLP has an answer set is NP-complete.

Weight Constraint Programs In order to enable more convenient modeling in ASP,

extensions of normal programs have been proposed. Examples of such extensions

are what we refer here to as weight constraint programs (WCPs). A weight atom

is of the form

l [a1 = wa1
, . . . , an = wan

,∼b1 = wb1
, . . . ,∼bm = wbm

]u,

where each li ∈ {ai}1≤i≤n ∪ {∼bj }1≤j≤m is a default literal, each wi an integer

(the weight of li), and u, l are integers with l ≤ u (the lower and upper bound,

respectively). If one of the bounds u and l is omitted, this bound is implicitly∞ (for

u) or −∞ (for l). A cardinality atom is the special case of a weight atom in which

each literal has weight one. The variant of cardinality atoms in which both of u, l

are omitted is called a choice atom, that is an expression of the form {a1, . . . , an},

where each ai is a normal atom.

A weight constraint rule is of the form r : C0 ← C1, . . . ,Cn , where the head

C0 is a normal, weight, cardinality, choice atom, or ⊥ and each Ci , i > 0 in the

body (which can also be empty) is a normal, weight, or cardinality literal. We use

the term weight constraint programs for the set of programs that consist of weight

constraint rules. Hence NLPs are special cases of weight constraint programs.

Given an interpretation M , the stable model semantics extends to weight con-

straint programs by defining that a weight atom is satisfied by M if and only if

l ≤
∑

ai∈M wi +
∑

bj 6∈M wj ≤ u. A choice atom is always satisfied by M . The

problem of deciding whether a given weight constraint program has an answer set

remains in NP.

Disjunctive Logic Programs Another extension of normal rules are disjunctive rules,

in which the head can, instead of a normal atom, be a disjunction
∨n

i=1
ai of normal

atoms. Disjunctive logic programs (DLPs) can contain normal and disjunctive rules.

The stable model semantics extends to the disjunctive case naturally by defining

that a disjunctive rule r with head(r) =
∨n

i=1
ai is satisfied by an interpretation

M if and only if body(r)+ ⊆ M and body(r)− ∩M = ∅ imply ai ∈ M for some

i . The problem of deciding whether a DLP has an answer set is Σp
2 -complete and

thus presumably harder than the case of NLPs.

3 Fuzz Testing Answer Set Solvers

In this section we develop a native grammar-based black-box fuzzing approach for

testing answer set solvers.

3.1 Grammar-Based ASP Fuzzing

In order to apply grammar-based fuzz testing to answer set solvers, methods for gen-

erating wide varieties of different answer set programs need to be developed. There

Testing and Debugging Techniques for Answer Set Solver Development 5

are only a few studies that consider the problem of generating random logic pro-

grams in the context of ASP (Zhao and Lin 2003; Namasivayam and Truszczyński

2009). These studies consider rather restricted subclasses of NLPs and focus on

theoretical aspects such as the study of phase transition behavior. In contrast, our

aim here is to generate a wide variety of different random answer set programs in

order to test answer set solvers.

3.1.1 Ineffectiveness of CNF-Based ASP Fuzzing

A simple approach to generating random answer set programs consists of first using

generators for random conjunctive normal form (CNF) instances of the Boolean

satisfiability (SAT) problem and translating the generated CNFs into answer set

programs afterwards. However, this approach appears to be ineffective, as revealed

by the following evaluation.

We obtained CNF instances by generating random propositional formulas as

Boolean circuits and translating them to CNF via a standard encoding (Tseitin

1983). The NLPs were obtained from the CNF instances using the following stan-

dard translation: given a CNF F , introduce (i) for each Boolean variable x in F

the rules x ← ∼x̂ and x̂ ← ∼x (forcing classical interpretations); and (ii) for each

clause c in F , the rule ⊥ ← ∼c and for each Boolean variable in c the rule c ← x

(c ← ∼x , resp.) if x occurs positively (negatively, resp.) in c (stating the clause

should be satisfied). Notice that this translation always results in tight NLPs, a

subclass of NLPs.

Notably, using a 1-hour time limit and the same hardware settings as in our latter

experiments, we tested all of the answer set solvers that are shown in Table 1 on

8850 CNF instances, but did not find any defects. We conjecture that the CNF-

based fuzz testing approach for ASP is unsuccessful as it lacks domain knowledge

and considers only tight NLPs. This gives motivation to develop domain-aware

fuzz testing approaches for answer set solver development, which take the specific

features of different ASP classes into account.

3.2 FuzzASP: A Native ASP Fuzzer

In order to generate a wide variety of different answer set programs, we developed

FuzzASP, which is a native fuzzer for ground answer set programs generated in the

syntax of lparse. In addition to normal logic programs, it supports combinations

of disjunctive and extended rules with choice, cardinality and weight atoms, and

classical negation. FuzzASP is able to generate varying types of random program

instances from large classes of programs in order to provide high variety for different

combinations of rule constructs.

FuzzASP generates programs as follows. Let A be a set of n normal atoms.

1. A set of f facts (normal rules with empty bodies) is generated by picking each

head uniformly at random (u.a.r.) from A.

2. Normal rules with non-empty bodies and varying lengths are generated until

each atom in A occurs in at least rb and rh bodies and heads, respectively.

Each normal rule is generated by picking the head and each body atom u.a.r.

6 Brummayer and Järvisalo

from A. Moreover, each body atom is default negated with probability pdn .

The body length of each normal rule is chosen u.a.r. from a predefined range.

3. A set of i integrity constraints is generated, picking each body atom u.a.r.

from A and default negating each atom with probability pdn .

When generating a WCP:

4. A set of W weight constraint rules is generated. The head of each rule is

randomly chosen to be a normal atom from A, or a weight, cardinality, or

choice atom. A weight atom l [a1 = wa1
, . . . , an = wan

,∼b1 = wb1
, . . . ,∼bm =

wbm
]u is generated by picking atoms u.a.r. from A, and negating each atom

with probability pdn . The weights for the literals and the bounds l and u,

where l ≤ u, are chosen randomly. The number of normal atoms to appear in

each weight atom is chosen u.a.r. from a predefined range. Additionally, one of

the bounds u and l , and weights of individual literals are left out with certain

probabilities. Cardinality and choice atoms are generated analogously. Each

body literal is similarly chosen to be a normal, weight or cardinality atom.

When generating a DLP:

4. A set of d disjunctive rules are generated. A disjunctive head is generated by

picking da atoms u.a.r. from A (similarly for the normal atoms in the bodies,

default negating with probability pdn). The head length of each disjunctive

rule is chosen u.a.r. from a predefined range.

The fuzzer has been designed to be highly configurable. Nearly every detail can be

configured. However, this is optional as the fuzzer already comes with reasonable

default values. Due to page limitations, for details on the actual default values

provided in the implementation of FuzzASP, please refer to the help provided in

the actual FuzzASP implementation.

We have configured the default values through experimentation so that the gen-

erated logic programs are not trivial but also not too hard to solve. One key success

factor of fuzz testing is high test throughput, which means that generating hard

instances solely is counterproductive. On the other hand, trivial instances are un-

likely to be critical failure-inducing inputs, as they can often be solved in early

phases of the answer set solver, e.g. in a pre-processing phase. Therefore, in order

to generate various different programs of varying difficulty, the fuzzer randomizes

its parameters. For each parameter a minimum and a maximum value is considered.

The fuzzer respectively picks one value within the particular range.

3.3 Solver Defect Categories

We divide defects of answer set solvers into three categories:

Errors contains instances on which the solver terminates in an unexpected way

without providing a result, e.g. segmentation faults and assertion failures;

Invalid models contains instances on which the solver reports a solution that

is not an answer set (either not minimal or not even a classical model) of the

instance; and

Testing and Debugging Techniques for Answer Set Solver Development 7

Incorrect where, if the solution provided by at least one solver is a correct answer

set, all solvers that report that no answer sets exist are treated as incorrect.

Notice that these categories are disjoint in the sense that, for a given instance,

each solver can only exhibit a defect that belongs to exactly one of the categories.

Notice also that in this paper we concentrate on the problem of answer set existence.

Hence, especially considering the defect categories invalid models and incorrect,

for each solver a single answer set for each instance is checked for correctness.

However, the testing and debugging techniques developed in this work can also

easily be adapted for the problem of answer set enumeration, that is, for checking

the validity of all answer sets reported by a solver.

Considering the defect category invalid models, for a given instance Π, we employ

the following method for checking if solutions reported by solvers are valid answer

sets of Π. For given a model candidate M reported by a solver, we construct the set

IM =
⋃

a∈M {⊥ ← ∼a}∪
⋃

a 6∈M {⊥ ← a} of integrity constraints. Then M is a valid

answer set of Π if and only if Π ∪ IM has an answer set. Notice that it is trivial to

check whether Π ∪ IM has an answer set. Using this method, also incorrect solver

behavior is captured in the case a solver claims that there are no answer sets for a

given instance Π, if some other solver reports an answer set that is determined as

a valid one using the checking method.

Furthermore, we also crosscheck all occurrences in the categories invalid mod-

els and incorrect using voting. In more detail, assume that, based on the above-

described checking method, a specific solver S reports an invalid model (or claims

incorrectly that no answer sets exist) for a given instance Π. Then, by running a

set of solvers on Π, we crosscheck invalid models and incorrectness by checking that

a majority of the solvers report that there are no answer sets for Π (or report an

answer set), that is, a majority of the solvers vote against the output of the solver

S on Π. In the ideal case, all other solvers vote against the output of S . In our

experiments in this paper, all crosschecks turned out to be ideal in this sense.

4 Fuzzing Experiments

We performed fuzz testing experiments using FuzzASP for the following classes of

logic programs: NLP (normal programs), WCP (weight constraint programs), and

DLP (disjunctive programs). We ran our experiments under Ubuntu Linux on an

Intel Core 2 Quad 2.66 GHz machine with 8 GB of RAM. Our fuzzing framework

used all the four cores for parallel testing. Using default settings, we tested a wide

selection1 of answer set solvers that participated in the first (Gebser et al. 2007)

or second (Denecker et al. 2009) ASP Competition in 2007/2009. The grounder

1 Solvers: Clasp 1.2.1, ClaspD 1.1, Cmodels 3.79, DLV precompiled build BEN/Oct 11 2007, GnT2
precompiled v. 2.1 using Smodels 2.33 as backend, lp2diff precompiled 1.19 with lp2normal 1.7
using Z3 2.0 SMT solver (de Moura and Bjørner 2008) as backend, lp2sat precompiled 1.11
with lp2atomic 1.12 using Picosat 913 SAT solver (Biere 2008) as backend, noMoRe++ 1.5.,
PBmodels 0.2 using Minisat+ 1.0 pseudo-boolean solver as backend, Smodels 2.33, Smodels-ie
standalone 1.0.0, Smodels cc 1.08, SUP 0.4 using Minisat 1.12b SAT solver (Eén and Sörensson
2004).

8 Brummayer and Järvisalo

lparse (version 1.1.1) was used as a front-end for the solvers. The only exception

was the solver DLV, which does not require an external front-end. For each class,

we restricted the total fuzz testing time to one hour.

We want to emphasize that our goal is not to present results for all available

solvers, but rather to demonstrate the wide applicability of our testing and debug-

ging techniques on different types of answer set solvers.

The experimental results for NLP, WCP, and DLP are presented in Tables 1, 2,

and 3, respectively. In short, our fuzz testing approach is very effective in finding

solver defects in state-of-the-art answer set solvers, due to the impressive number

of critical defects found in the experiments. Next, we will discuss the results for

each of the considered program classes (NLP, WCP, and DLP) in more detail.

Full results including failure-inducing inputs can be found in the archive http:

//fmv.jku.at/brummayer/fuzz-dd-asp.tar.7z.

4.1 Defects Found on NLP

For the class NLP, the 1-hour time limit resulted in testing the solvers listed in

Table 1 on 10190 instances generated by FuzzASP. For generating NLPs, we used

the default options of FuzzASP (with weight and cardinality literals disabled).

As shown in Table 1, the effectiveness of detecting solver defects in NLP is rather

modest. Mostly, errors such as crashes were detected, most notably in high numbers

for lp2sat, Smodels-ie, and SUP. A few invalid models were reported by Cmodels

and lp2diff. Moreover, we found two instances on which Clasp incorrectly reports

that there are no answer sets.

Table 1. NLP fuzzing results on 10190 instances.

solver errors invalid models incorrect

Clasp 0 0 2
Cmodels 1 3 0
DLV 0 0 0
lp2sat(picosat) 3221 0 0
lp2diff(z3) 0 6 0
noMoRe++ 0 0 0
Pbmodels 0 0 0
Smodels 0 0 0
Smodels-ie 1635 0 0
Smodels cc 5 0 0
SUP 1690 0 0

This is already in contrast to the ineffective CNF based ASP fuzzing experi-

ment, confirming our conjecture that domain-unaware fuzz testing approaches are

in general not effective in finding solver defects, and therefore domain-aware fuzzing

techniques have to be developed individually.

In order to verify the validity of a model M reported by a solver for a test instance

Π, we used Smodels as trusted solver for checking whether the program Π ∪ IM

Testing and Debugging Techniques for Answer Set Solver Development 9

has an answer set (the original test instance enhanced with the model candidate

as integrity constraints IM). This check is trivial as it requires only deterministic

propagation and no search. Smodels was chosen for NLP and additionally for WCP,

since it exhibited neither errors nor incorrect results.

We want to further stress that although we do not have the precise running time

data for individual solvers available, the total time for this experiment was one hour

wall clock time using four processor cores, and hence the testing time used on each

of the 11 solvers was around 20 minutes on average, and in this time over 10000 test

cases were tried, which totals in over 110000 solver calls. Furthermore, we would

like to point out that the 1-hour testing time limit used in the fuzzing experiments

was only enforced for obtaining a representative snapshot to the effectiveness of the

testing technique. In practice, the testing loop works by generating one test case at

a time, and running all solvers on this test case. For testing a specific solver, one

can stop the testing loop as soon as a single failure (error, incorrect result, or the

like) is detected for the specific solver.

4.2 Defects Found on WCP

In particular, the effectiveness of FuzzASP is very impressive on WCP and DLP.

The fuzz testing results on 19840 inputs for WCP are shown in Table 2. The input

logic programs were generated using the FuzzASP option of introducing additional

choice, cardinality and weight rules, each up to 5% of generated normal rules. Here,

we tested those solvers that accept the class WCP (supported by lparse) as input.

Table 2. WCP fuzzing results on 19840 instances.

solver errors invalid models incorrect

Clasp 0 2 6
Cmodels 2004 7 78
lp2diff(z3) 0 6 2
Smodels 0 0 0
Smodels-ie 1651 16 11
SUP 2224 1 71

The results on NLP and WCP suggest that many defects are due to the techniques

implemented for inference on weight constraint rules. Based on the results, Smodels

appears to be the most stable solver for this class of programs, being the only solver

for which no defects were found. As an example of the difficulty of maintaining

correctness while optimizing solver performance, we observed a high number of

defects in each category for Smodels-ie, which is a re-implementation of Smodels

with improved data structures aimed at better memory locality.

For answer set solvers that apply different back-end solvers such as SAT and SMT

solvers, the back-end solver may be to blame for incorrectness. Taking lp2diff as an

example, we did a cross-check in order to pinpoint the source of incorrectness on

both NLP and WCP. The same incorrect behavior occurred when two other SMT

10 Brummayer and Järvisalo

solvers, CVC3 (Barrett and Tinelli 2007) and Yices (Dutertre and de Moura 2006)

were used as back-end solvers. Hence, the source of incorrectness is highly likely to

be in lp2diff itself.

Again, notice that the total time for this experiment was one hour wall clock

time (including all setup and test instance generation times) using four processor

cores, and hence the testing time used on each of the six solvers was around 40

minutes on average, and in this time close to 20000 test cases were tried.

4.3 Defects Found on DLP

The fuzz testing results on DLP are shown in Table 2. Here we used the FuzzASP

option of introducing disjunctive rules up to 5% of generated normal rules.

While no defects were found for DLV and GnT2, a vast number of defects were

found for ClaspD and Cmodels. Due to its robustness, DLV was used as trusted

solver for checking validity of reported models in DLP. Based on these results, we

conclude that many defects are due to the techniques particularly implemented for

handling disjunctive rules.

Table 3. DLP fuzzing results on 33050 instances.

solver errors invalid models incorrect

ClaspD 9 255 30
Cmodels 806 3366 28
DLV 0 0 0
GnT2 0 0 0

5 Delta Debugging for Answer Set Solvers

Now, we focus on developing delta debugging algorithms for answer set solvers. The

overall goal of delta debugging (Zeller and Hildebrandt 2002; Zeller 2005; Claessen

and Hughes 2000; Misherghi and Su 2006) is to minimize the size of failure-inducing

inputs while maintaining the same observable behavior. In this way, large irrelevant

parts of the inputs are pruned away, resulting in small program instances that

consist of isolated failure-inducing parts.

5.1 The Delta Debugging Algorithm

As an overview, our delta debugging algorithm DeltaASP works as follows. The

delta debugger runs the solver on the original failure-inducing input in order to

observe the defective behavior, e.g. the solver crashes with a segmentation fault,

or outputs a solution which is not a valid answer set. Then, the delta debugger

iteratively tries to eliminate parts of the current input. After each elimination, the

delta debugger runs the solver on the current (reduced) input. If the solver shows

the same observable behavior, the delta debugger continues with this reduced input.

Otherwise, the delta debugger undoes the last elimination, and continues with other

eliminations. Finally, after a given time limit or after reaching a fix-point, the delta

Testing and Debugging Techniques for Answer Set Solver Development 11

debugger terminates and outputs a smaller program that is guaranteed to trigger

the same observable behavior as the original program instance.2

Notice that the goal of delta debugging is to obtain a small failure-inducing

input within a reasonable time limit, e.g. a few seconds or minutes. In other words,

in practice, engineers are hardly interested in minimal failure-inducing inputs if

they have to wait a long time. Therefore, delta debuggers typically apply (greedy)

elimination heuristics for reducing failure-inducing inputs within a small time limit.

Given a failure-inducing answer set program Π as input, the eliminations at-

tempted by the DeltaASP delta debugging algorithm can be divided into the fol-

lowing phases:

1. Remove rules from Π until fix-point (heuristically).

2. For each rule r ∈ Π: if r is neither a fact nor a constraint, then try to replace

head(r) with ⊥ and resp. body with ∅.

3. If at least one rule could be reduced in phase 2, goto 1.

4. For each rule r ∈ Π: try to remove individual literals from head(r) resp. body(r)

while |head(r)| > 1 resp. |body(r)| > 1.

5. For each rule r ∈ Π: try to remove individual elements of each weight, cardi-

nality, and choice literal in r while elements are left.

6. For each rule r ∈ Π: try to remove the negation from individual negative

literals in r .

7. If at least one rule could be reduced in 4–6, goto 1. Otherwise, output the

current program and terminate.

DeltaASP can be seen as a variation of hierarchical delta debugging (Misherghi

and Su 2006), since our method proceeds from the top-most elements of the hier-

archy (rules) to lower-level elements: first rules, then individual heads and bodies

of rules, then individual literals, and, at last, negations. As a greedy heuristic, our

primary objective is to minimize the number of rules as soon as possible. This may

drastically prune large irrelevant parts of the inputs up front. As removing and

reducing individual rules may enable removing rules that could not be removed

before, we perform rule removal until fix-point in phase 1, and perform a “restart”

in phase 3 if at least one rule could be reduced in phase 2. We perform this restart

in order to minimize the number of rules, heads and bodies up front before we try

more fine-grained reductions in phases 4–6. Typically, as soon as we reach phase 4,

the input has already been reduced significantly.

Our secondary objective is to reduce individual rules after no more rules can

be removed. These reductions are performed in phases 2 and 4–6. Again, reducing

individual rules may enable the removal and reduction of rules that could not be

removed resp. reduced before. As restarting (“goto 1”) after each individual phase

of 4–6 can be too costly, we postpone restarts until phase 7.

2 For the defect categories invalid models and incorrect, same observable behavior is checked
against the result reported by the trusted solver on the same instance. Another possibility
would be to employ majority voting by running multiple solvers on the same instance.

12 Brummayer and Järvisalo

5.2 Removal strategies

In phases 1, 4, and 5 we consider a set from which we want to eliminate as many

elements as possible, e.g. the set of rules in phase 1. Next, we discuss and evaluate

the differences between a simple one-by-one approach (OBO) and a more intricate

strategy based on the DDMin algorithm (Zeller and Hildebrandt 2002).

DDMin The original DDMin algorithm (Zeller and Hildebrandt 2002) attempts

to divide the current set into k subsets, where k (the granularity) is initialized

to 2. If at least one of the subsets is enough to reproduce the same observable

behavior, the current set is reduced to this subset, granularity is reset to 2, and the

algorithm continues. Otherwise, it tries the complement sets of each of the subsets.

If using the set complements does not succeed either, the granularity k is doubled,

i.e. in the next iteration the current set is divided into smaller subsets. In the last

iteration, the granularity is equal to the size of the current set, which means that

each element is in its own subset. Notice that in order to avoid recomputations on

already considered subsets, intermediate results need to be cached.

If the failure-inducing input part is rather local and does not depend much on

other input parts, the DDMin algorithm tends to simulate a binary search strategy

during the first iterations, since the current set can often be reduced to one of its

considered two subsets. However, if the failure-inducing part strongly depends on

other parts of the input, trying k subsets up front will only seldom lead to success.

Then, DDMin has to consider the set complements and to iteratively increase the

granularity, which may be rather ineffective.

OBO As an alternative to DDMin, we also consider a simple strategy based on

a one-by-one (OBO) principle. We iterate over all elements in the set and try to

remove them one by one. After each iteration, we repeat the process if at least one

element could be removed. In principle, we could immediately restart the algorithm

as soon as we have been able to remove one element. However, this may be too costly

and therefore the restart is postponed until the end of the iteration. The benefit of

the OBO strategy is that, in contrast to the DDMin strategy, it is easy to implement

and does not need any caching techniques.

6 Delta Debugging Experiments

For the delta debugging experiments, we used the same hardware (this time using

a single processor core) and settings as for the fuzzing experiments. However, the

delta debugging experiments were not run simultaneously. For the experiments, we

used the failure-inducing inputs found in the fuzzing experiments reported in Sec-

tion 4. Depending on the classes of errors and error messages, we semi-automatically

divided the failure-inducing inputs into different bug classes.

The actual implementation of DeltaASP compares exit codes in order to deter-

mine whether the observable behavior has changed or not. Instead of passing the

name of the answer set solver executable directly to DeltaASP, we pass the name of

a wrapper script that calls the answer set solver and returns a specific exit code if

Testing and Debugging Techniques for Answer Set Solver Development 13

the defective behavior occurs, e.g. grep for a specific error message was successful.

This approach makes the delta debugger highly flexible. In this way, the concept of

observable behavior is not limited to one solver, but can be extended to multiple

solvers. For example, considering the classes invalid models and incorrect, if we

observe that two solvers report different results on the same instance, we can use

a simple shell script to execute both solvers on the instance passed as argument.

If the solvers agree on the result, we return exit code 1 and 0 otherwise. With this

technique we delta debugged incorrect results as already proposed in (Brummayer

and Biere 2009), but with exactly one trusted solver. Alternatively, one could apply

majority voting using multiple solvers.

Notice that, in principle, DeltaASP could reorder rules and rule elements before

delta debugging. For example, the rules could be sorted with respect to rule size

such that OBO tries to eliminate larger rules first. However, we found out that

changing the order of rules and individual rule elements may make the considered

failure disappear. Therefore, DeltaASP does not change the original relative order

of rules and individual rule elements.

For the experiments, we used a limit of 100 inputs for each class. The results are

shown in Tables 4, 5 and 6. Due to page limitations, examples of failure-inducing in-

puts, and the instances resulting from delta debugging these inputs, can be found in

the archive http://fmv.jku.at/brummayer/fuzz-dd-asp.tar.7z that contains

the full delta debugging results. In Tables 4, 5 and 6, ins is the resulting to-

tal number of instances delta debugged for each solver, c the number of different

bug classes, time the average delta debugging time in seconds for OBO (obo) and

DDMin (ddm), and size (resp. red) the average size of the resulting instance in

bytes (the average reduction in percentages). Notice that, reflecting the reduction

in the size of the failure-inducing answer set program, we measure the success of

delta debugging in file size. Alternatively, the number of lines or number of rules

could be used. However, we found out that these strongly correlate with the file

size.

For both of the elimination strategies DDMin and OBO, the average delta de-

bugging times in all categories are less than one minute, and led to an impressively

high reduction of at least 98.6%. This clearly shows the effectiveness and overall

success of our DeltaASP delta debugging algorithm.

The size reduction achieved by the OBO and DDMin strategies is almost identical

for the three program classes NLP, WCP, and DLP. The running times using OBO

and DDMin vary more noticeably. Moreover, the more effective strategy depends on

the program class. For NLP, DDMin results in making over 50% more calls to the

solvers than OBO on average (916 and 572 calls, respectively). This is also reflected

in the running times for the strategies on NLP. Thus it seems that a simple one-by-

one elimination strategy is the preferred one for NLPs, as the more intricate DDMin

makes many ineffective elimination checks. On the other hand, the two elimination

strategies give almost identical results on WCPs also time-wise. For DLPs, however,

the situation is the opposite to the NLP case: while the difference in the number

of solver calls is relatively small, DDMin is over twice as fast as OBO. Comparing

this with the NLP case, we believe that the result for DLP is due to the fact that,

14 Brummayer and Järvisalo

Table 4. Delta debugging results for NLP. Average number of solvers calls is 572

for OBO and 916 for DDMin.
average

solver instances classes time (s) size (B) reduction (%)
obo ddm obo ddm obo ddm

Clasp 2 1 32 53 164 98 99.0 99.4

Cmodels 4 2 8 12 77 99 98.9 98.6
lp2sat 100 1 4 2 90 85 98.7 98.8

lp2diff 6 1 6 7 23 24 99.2 99.2
Smodels-ie 100 1 1 0 4 4 99.9 99.9
Smodels cc 5 1 26 88 138 117 99.5 99.5
SUP 100 1 27 37 229 189 99.0 99.2

Table 5. Delta debugging results for WCP. Average number of solver calls is 311

for OBO and 365 for DDMin.
average

solver instances classes time (s) size (B) reduction (%)
obo ddm obo ddm obo ddm

Clasp 8 2 5 3 40 40 99.0 99.0
Cmodels 192 4 6 3 52 52 99.2 99.2
lp2diff 8 1 11 5 28 28 99.3 99.3
Smodels-ie 127 4 5 3 36 22 99.1 99.5

SUP 272 4 11 12 106 83 98.9 99.2

since disjunctive programs are fundamentally harder to solve than NLPs, it pays

off to apply an eager elimination strategy such as DDMin, which results in calling

a solver with relatively smaller programs during delta debugging. In particular, if

the granularity is rather low, DDMin may eliminate large subsets.

Finally, we note that even non-deterministic solver behavior can be handled by

our delta debugging framework. For example, we observed non-deterministic be-

havior for Smodels-ie which, when run on the same instance multiple times, either

crashed with a segmentation fault, terminated with a result, or did not terminate

at all. In order to handle such cases in which a solver may not always terminate

Table 6. Delta debugging results for DLP. Average number of solver calls is 508

for OBO and 407 for DDMin.
average

solver instances classes time (s) size (B) reduction (%)
obo ddm obo ddm obo ddm

ClaspD 139 3 27 9 35 35 99.8 99.8
Cmodels 272 7 46 21 75 64 99.6 99.6

Testing and Debugging Techniques for Answer Set Solver Development 15

during delta debugging, time limits can be used. (Here we had to use a time limit

(5 seconds) for Smodels-ie.) In more detail, recall that the delta debugger calls the

solver (the wrapper script) after each elimination. Each call to a solver is run with

a fixed time limit. If the solver does not return a result within the time limit, the

shell script returns a specific exit code different from the exit code on the original

instance. Then, the delta debugger treats this case as if the elimination has failed,

undoes the last elimination, and continues.

7 Related work

The most closely related work is the fuzz testing and delta debugging approach de-

veloped for SMT (satisfiability modulo theories) solvers in (Brummayer and Biere

2009). Our work differs in developing ASP specific fuzzing techniques and, espe-

cially, novel delta debugging techniques and strategies in the context of answer set

solving. In contrast to our generic black-box approach, solver-specific white-box

testing solutions are used in the development process of the DLV solver (Calimeri

et al. 2009). In the context of inductive logic programming for data mining, a

DDMin-based white-box trace-based delta debugger was developed (Tronçon and

Janssens 2006).

As a final note, we want to stress that this work develops debugging techniques

for answer set solvers, with the aim of developing and providing automated tech-

niques for developing correct solvers. While this work focuses on solver testing and

debugging, we note that, when considering applications of ASP, another possible

source of errors is the modeling phase in which errors may be introduced by either

on a conceptual level or through bugs in software which generate answer set pro-

grams encoding instances of the application domain. Incorrect modeling can result

in answer set programs the answer sets of which do not precisely capture the set

of solutions to the original problem instance. Various solutions have been recently

proposed for debugging answer set programs (Brain and de Vos 2005; Syrjänen

2006; Brain et al. 2007; Gebser et al. 2008) where the aim is to find explanations

on why a set of program rules does not describe a correct set of answer sets.

8 Conclusions

We developed novel fuzz testing and delta debugging techniques for answer set

solver development. The tools provide black-box solutions for more rigorous testing

of a wide range of answer set solvers. ASP applications heavily depend on the

robustness and correctness of answer set solvers. However, our experimental analysis

clearly showed that our fuzz testing tool is able to reveal a variety of different

critical defects such as segmentation faults, aborts, infinite loops, incorrect results

and invalid answer sets in various state-of-the-art answer set solvers. Moreover, we

showed that our delta debugging techniques are very effective in shrinking failure-

inducing inputs, which enables efficient debugging of answer set solvers.

As an extension of this work, we are particularly interested in testing and de-

bugging solutions for the non-ground case. As many of the current state-of-the-art

solvers heavily depend on the robustness and correctness of grounders, we find this

an interesting and important aspect of future work.

16 Brummayer and Järvisalo

References

Anger, C., Gebser, M., Linke, T., Neumann, A., and Schaub, T. 2005. The
nomore++ approach to answer set solving. In Proceedings of the 12th International
Conference on Logic for Programming, Artificial Intelligence, and Reasoning (LPAR
2005), G. Sutcliffe and A. Voronkov, Eds. Lecture Notes in Computer Science, vol.
3835. Springer, 95–109.

Barrett, C. and Tinelli, C. 2007. CVC3. In Proceedings of the 19th International
Conference on Computer Aided Verification (CAV 2007), W. Damm and H. Hermanns,
Eds. Lecture Notes in Computer Science, vol. 4590. Springer, 298–302.

Biere, A. 2008. PicoSAT essentials. Journal on Satisfiability, Boolean Modeling and
Computation 4, 75–97.

Brain, B., Gebser, M., Pührer, J., Schaub, T., Tompits, H., and Woltran, S.

2007. Debugging ASP programs by means of ASP. In Proceedings of the 9th Inter-
national Conference on Logic Programming and Nonmonotonic Reasoning (LPNMR
2007), C. Baral, G. Brewka, and J. S. Schlipf, Eds. Lecture Notes in Computer Science,
vol. 4483. Springer, 31–43.

Brain, M. and de Vos, M. 2005. Debugging logic programs under the answer set
semantics. In Proceedings of the 3rd Workshop on Answer Set Programming: Advances
in Theory and Implementation (ASP 2005).

Brain, M. and De Vos, M. 2009. The significance of memory costs in answer set solver
implementation. Journal of Logic and Computation 19, 4, 615–641.

Brummayer, R. and Biere, A. 2009. Fuzzing and delta-debugging SMT solvers. In
Proceedings of the 7th International Workshop on Satisfiability Modulo Theories (SMT
2009). ACM International Conference Proceedings Series, vol. 375. ACM, 1–5.

Calimeri, F., Leone, N., Ricca, F., and Veltri, P. 2009. A visual tracer for DLV.
In Proceedings of the 2nd International Workshop on Software Engineering for Answer
Set Programming (SEA 2009), M. De Vos and T. Schaub, Eds. 79–93.

Claessen, K. and Hughes, J. 2000. QuickCheck: a lightweight tool for random testing of
Haskell programs. In Proceedings of the 5th ACM SIGPLAN International Conference
on Functional Programming (ICFP 2000). SIGPLAN Notices 35(9). ACM, 268–279.

de Moura, L. M. and Bjørner, N. 2008. Z3: An efficient SMT solver. In Proceedings
of the 14th International Conference on Tools and Algorithms for the Construction and
Analysis of Systems (TACAS 2008), C. R. Ramakrishnan and J. Rehof, Eds. Lecture
Notes in Computer Science, vol. 4963. Springer, 337–340.

Denecker, M., Vennekens, J., Bond, S., Gebser, M., and Truszczynski, M. 2009.
The second answer set programming competition. In Proceedings of the 10th Inter-
national Conference on Logic Programming and Nonmonotonic Reasoning (LPNMR
2009), E. Erdem, F. Lin, and T. Schaub, Eds. Lecture Notes in Computer Science, vol.
5753. Springer, 637–654. See also competition results at http://www.cs.kuleuven.be/

~dtai/events/ASP-competition/.

Drescher, C., Gebser, M., Grote, T., Kaufmann, B., König, A., Ostrowski, M.,
and Schaub, T. 2008. Conflict-driven disjunctive answer set solving. In Proceedings
of the 11th International Conference on Principles of Knowledge Representation and
Reasoning (KR 2008), G. Brewka and J. Lang, Eds. AAAI Press, 422–432.

Dutertre, B. and de Moura, L. 2006. The Yices SMT solver.
http://yices.csl.sri.com/tool-paper.pdf.

Eén, N. and Sörensson, N. 2004. An extensible SAT-solver. In 6th International
Conference on Theory and Applications of Satisfiability Testing (SAT 2003), Selected
Revised Papers, E. Giunchiglia and A. Tacchella, Eds. Lecture Notes in Computer
Science, vol. 2919. Springer, 502–518.

Testing and Debugging Techniques for Answer Set Solver Development 17

Gebser, M., Kaufmann, B., Neumann, A., and Schaub, T. 2007. Conflict-driven an-
swer set solving. In Proceedings of the 20th International Joint Conference on Articifial
Intelligence (IJCAI 2007), M. M. Veloso, Ed. Morgan Kaufmann, 286–392.

Gebser, M., Liu, L., Namasivayam, G., Neumann, A., Schaub, T., and Truszczyn-

ski, M. 2007. The first answer set programming system competition. In Proceed-
ings of the 9th International Conference on Logic Programming and Nonmonotonic
Reasoning (LPNMR 2007), C. Baral, G. Brewka, and J. S. Schlipf, Eds. Lecture
Notes in Computer Science, vol. 4483. Springer, 3–17. See also competition results
at http://asparagus.cs.uni-potsdam.de/contest/.

Gebser, M., Pührer, J., Schaub, T., and Tompits, H. 2008. A meta-programming
technique for debugging answer-set programs. In Proceedings of the Twenty-Third
AAAI Conference on Artificial Intelligence (AAAI 2008), D. Fox and C. P. Gomes, Eds.
AAAI Press, 448–453.

Gelfond, M. and Lifschitz, V. 1988. The stable model semantics for logic program-
ming. In Proceedings of the 5th International Conference and Symposium on Logic
Programming (ICLP/SLP 1988), R. A. Kowalski and K. A. Bowen, Eds. MIT Press,
1070–1080.

Giunchiglia, E., Lierler, Y., and Maratea, M. 2006. Answer set programming based
on propositional satisfiability. Journal of Automated Reasoning 36, 4, 345–377.

Janhunen, T. 2006. Some (in)translatability results for normal logic programs and propo-
sitional theories. Journal of Applied Non-Classical Logics 16, 1–1, 35–86.

Janhunen, T. and Niemelä, I. 2004. GnT – a solver for disjunctive logic programs. In
Proceedings of the 7th International Conference on Logic Programming and Nonmono-
tonic Reasoning (LPNMR 2004), V. Lifschitz and I. Niemelä, Eds. Lecture Notes in
Computer Science, vol. 2923. Springer, 331–335.

Janhunen, T., Niemelä, I., and Sevalnev, M. 2009. Computing stable models via
reductions to difference logic. In 10th International Conference on Logic Programming
and Nonmonotonic Reasoning (LPNMR 2009), E. Erdem, F. Lin, and T. Schaub, Eds.
Lecture Notes in Computer Science, vol. 5753. Springer, 142–154.

Leone, N., Pfeifer, G., Faber, W., Eiter, T., Gottlob, G., Perri, S., and Scar-

cello, F. 2006. The DLV system for knowledge representation and reasoning. ACM
Transactions on Computational Logic 7, 3, 499–562.

Lin, F. and Zhao, Y. 2004. ASSAT: Computing answer sets of a logic program by SAT
solvers. Artificial Intelligence 157, 1–2, 115–137.

Liu, L. and Truszczynski, M. 2005. Pbmodels - software to compute stable models by
pseudoboolean solvers. In Proceedings of the 8th International Conference on Logic Pro-
gramming and Nonmonotonic Reasoning (LPNMR 2005), C. Baral, G. Greco, N. Leone,
and G. Terracina, Eds. Lecture Notes in Computer Science, vol. 3662. Springer, 410–415.

Misherghi, G. and Su, Z. 2006. HDD: hierarchical delta debugging. In Proceedings of
the 28th International Conference on Software Engineering (ICSE 2006), L. J. Osterweil,
H. D. Rombach, and M. L. Soffa, Eds. ACM, 142–151.

Namasivayam, G. and Truszczyński, M. 2009. Simple random logic programs. In Pro-
ceedings of the 10th International Conference on Logic Programming and Nonmonotonic
Reasoning (LPNMR 2009), E. Erdem, F. Lin, and T. Schaub, Eds. Lecture Notes in
Computer Science, vol. 5753. Springer, 223–235.

Niemelä, I. 1999. Logic programs with stable model semantics as a constraint program-
ming paradigm. Annals of Mathematics and Artificial Intelligence 25, 3–4, 241–273.

Simons, P., Niemelä, I., and Soininen, T. 2002. Extending and implementing the stable
model semantics. Artificial Intelligence 138, 1–2, 181–234.

Sutton, M., Greene, A., and Amini, P. 2007. Fuzzing - Brute Force Vulnerability
Discovery. Pearson Education.

18 Brummayer and Järvisalo

Syrjänen, T. 2006. Debugging inconsistent answer set programs. In Proceedings of the
11th International Workshop on Nonmonotonic Reasoning (NMR 2006), J. Dix and
A. Hunter, Eds. IfI Technical Report Series, vol. IfI-06-04. TU Clausthal, 77–83.

Takanen, A., Demott, J., , and Miller, C. 2008. Fuzzing for Software Security Testing
and Quality Assurance. Artech House.

Tronçon, R. and Janssens, G. 2006. A delta debugger for ILP query execution. In Pro-
ceedings of the 16th Workshop on Logic-Based Methods in Programming Environments
(WLPE 2006).

Tseitin, G. S. 1983. On the complexity of derivation in propositional calculus. In Automa-
tion of Reasoning 2: Classical Papers on Computational Logic 1967–1970, J. Siekmann
and G. Wrightson, Eds. Springer, 466–483.

Ward, J. and Schlipf, J. S. 2004. Answer set programming with clause learning. In
Proceedings of the 7th International Conference on Logic Programming and Nonmono-
tonic Reasoning (LPNMR 2004), V. Lifschitz and I. Niemelä, Eds. Lecture Notes in
Computer Science, vol. 2923. Springer, 302–313.

Zeller, A. 2005. Why Programs Fail. A Guide to Systematic Debugging. Morgan
Kaufmann.

Zeller, A. and Hildebrandt, R. 2002. Simplifying and isolating failure-inducing input.
IEEE Transactions on Software Engineering 28, 2, 183–200.

Zhao, Y. and Lin, F. 2003. Answer set programming phase transition: A study on
randomly generated programs. In Proceedings of the 19th International Conference
on Logic Programming (ICLP 2003), C. Palamidessi, Ed. Lecture Notes in Computer
Science, vol. 2916. Springer, 239–253.

