
Prrogramm Proceedinggs

Program Chairs

Malay K. Ganai NEC Labs America USA

Armin Biere Johannes Kelpler University Austria

Technical Program Committee

Clark W. Barrett New York University USA

Armin Biere Johannes Kelpler University Austria

Alessandro Cimatti Fondazione Bruno Kessler Italy

Cindy Eisner IBM Haifa Research Lab Israel

Malay K. Ganai NEC Labs America USA

Ganesh Gopalakrishnan University of Utah USA

Daniel Kroening Oxford University UK

Robert P. Kurshan Cadence Design Systems USA

Ken Mcmillan Microsoft Research USA

Chao Wang Virginia Tech, USA

Local Arrangement Chairs

Sandip Ray UT Austin, USA

Nadia Papakonstantinou NEC Labs America

DIFTS 2011 i

Preface

The first DIFTS (Design and Implementation of Formal Tools and Systems) workshop was held at
Austin, Texas on Nov 3rd, 2011, co-located with Formal Methods in Computer-Aided Design
(FMCAD) Conference. The workshop emphasized the insightful experiences in tool and system
design. It provided a forum for sharing challenges and solutions that are highly original with ground
breaking results. It took a broad view of the formal tools area, and solicited contributions from
various domains including decision procedures, verification, testing, validation, diagnosis,
debugging, and synthesis. It provided a forum for discussing the engineering aspect of the tools,
and various design decisions required to put them in practical use. The workshop provided a
discussion forum for a pragmatic view of practicing formal methods.

The workshop received 9 original submissions, out of which 4 were chosen under tool category
and 2 were chosen under system category. There were also two invited talks: one given by
Andreas Kuehlmann, Sr. VP of R&D at Coverity on “The pain of making research tools into
software products”, and another by Chris Morison, Chief Architect, Real Intent Inc. on “From putty
to product: what it takes to bring a verification tool to market”.

First of all we thank FMCAD’s steering committee for their approval of the workshop. We also
thank Anna Slobodova, David Rager, and Sandip Ray for their help in local arrangements and
Nadia Papakonstantinou for her help in web updates. We sincerely thank the program committee
members and sub reviewers for selecting the papers and providing candid review feedbacks to the
authors. Last but not least, we thank all the authors for contributing to the workshop and to all the
participants of the workshop.

Malay K. Ganai and Armin Biere

Program Chairs

DIFTS 2011 ii

DIFTS’11 Table of Contents

Table of Contents

The pain of making research tools into software products . 1

Andreas Kuehlmann

From Putty to Product: What it takes to bring a Verification Tool to Market. 2

Chris Morrison

An Application of Formal Methods to Cognitive Radios . 3

Konstantine Arkoudas, Ritu Chadha and Jason Chiang

Data Structure Choices for On-the-Fly Model Checking of Real-Time Systems 13

Peter Fontana and Rance Cleaveland

metaSMT: Focus on Your Application not on Solver Integration . 22

Finn Haedicke, Stefan Frehse, Goerschwin Fey, Daniel Grosse and Rolf Drechsler

A Study of Sweeping Algorithms in the Context of Model Checking . 30

Zyad Hassan, Yan Zhang and Fabio Somenzi

Enhancing ABC for stabilization verification of SystemVerilog/VHDL models 38

Jiang Long, Sayak Ray, Baruch Sterin, Alan Mishchenko and Robert K. Brayton

On Incremental Satisfiability and Bounded Model Checking . 46

Siert Wieringa

1

DIFTS 2011 iii

The Pain of Making Research Tools into Software Products

Andreas Kuehlmann
Sr. VP of R&D at Coverity

President of IEEE Council on EDA (CEDA), and an IEEE fellow

Abstract: Building a research implementation of a new algorithm and validating it for a small
set of benchmarks is a key component of pushing the state of the art of design and verification
tools. Moreover, if the algorithm works, it is often also the most exciting phase of the long
journey to have a new idea used by many people. The less exciting and often more painful part
includes the productization of the research into a form that can be applied by hundreds or
thousands of users on a daily basis. In this talk we discuss some of the challenges that developers
encounter in a product development environment from prototyping to code maintenance. The
presentation will cover practical aspects of developing software in larger teams from product
planning to deployment and support. We will also elaborate on some of the opportunities for new
research to help the practical deployment and maintenance of software products.

DIFTS 2011 1

From Putty to Product: What it takes to bring a
Verification Tool to Market

Dr. Chris Morrison

Chief Architect, Real Intent Inc.

Abstract: For a new company interested in developing a formal verification product, the
temptation would be to believe that the majority of the time-to-market would be spent on
developing the core formal technology. As a corollary, if that core technology could be bought
off-the-shelf, the time-to-market would be greatly reduced. While that belief may have been true
for the first generation of formal verification products, it is, unfortunately, not credible today.
There are many "significant items" in state-of-the-art products that now consume considerable
resources. The input language has changed from BLIF to SystemVerilog '09 and VHDL '08.
Designs that the formal tools had to consider used to be single-clock and simple reset designs.
Now they have 10+ clocks, derived and gated clocks, complex resets and multiple functional
modes. The output is no longer a simple text file, but a hyperlinked report tying together VCD
waveforms, source RTL, and state machine and schematic viewers. Manual control with many
switches is no longer acceptable. A nearly automatic flow with very few switches is demanded.
The tool must manage to deliver very high throughput for thousands of checks on multimillion-
gate designs as well as acceptable user experience on high-latency checks. User productivity is
the combination of tool run time, piloting convenience as well as the debug experience. The
infrastructure needed to achieve these goals (which was originally simple and relatively quick to
implement) is now very complex involving an intricate flow through a variety of substantial
software packages and multiple databases. With the goal of reaching a broad class of customers,
current and future verification products must be automated, easy to use and be able to reliably
produce actionable results. Delivering on that requires attention to every part of the product
rather than just the formal verification technology.

DIFTS 2011 2

An Application of Formal Methods to Cognitive Radios
∗

Konstantine Arkoudas and Ritu Chadha and Jason Chiang
Telcordia Research
One Telcordia Drive

Piscataway, NJ 08854
{konstantine, chadha, chiang}@research.telcordia.com

ABSTRACT
We discuss the design and implementation of a formal policy
system regulating dynamic spectrum access (DSA) for cog-
nitive radios. DSA policies are represented and manipulated
in a proof framework based on first-order logic with arith-
metic and algebraic data types. Various algebraic operations
combining such policies can be easily implemented in such
a framework. Reasoning about transmission requests is for-
mulated as a satisfiability-modulo-theories (SMT) problem.
Efficient SMT solvers are used to answer the corresponding
queries and also to analyze the policies themselves. Further,
we show how to reason about transmission requests in an op-
timal way by modeling the problem as an SMT instance of
weighted Max-SAT, and we demonstrate that this problem
too can be efficiently solved by cutting-edge SMT solvers.
We also show that additional optimal operations on trans-
mission requests can be cast as classic optimization prob-
lems, and to that end we give an algorithm for minimizing
integer-valued objective functions with a small number of
calls to an oracle SMT solver. We present experimental re-
sults on the performance of our system, and compare it to
previous work in the field.

1. INTRODUCTION
One of the world’s most prized physical resources is the

electromagnetic spectrum, and particularly its radio frequency
(RF) portion, stretching roughly from 10 KHz to 300 GHz.
The RF spectrum is so valuable that its allocation is strictly
regulated by world governments, and these days even small
parts of it can be sold for billions of dollars in spectrum auc-
tions.

∗The research reported in this paper was performed in connection
with contract number W15P7T-08-C-P213 with the U. S. Army
Communications Electronics Research and Development Engineer-
ing Center (CERDEC). The views and conclusions contained in this
document are those of the authors and should not be interpreted as
presenting the official policies or position, either expressed or im-
plied, of the U. S. Army CERDEC, or the U. S. Government unless
so designated by other authorized documents. Citation of manufac-
turers or trade names does not constitute an official endorsement
or approval of the use thereof. The U. S. Government is autho-
rized to reproduce and distribute reprints for Government purposes
notwithstanding any copyright notation herein.

As wireless devices continue to proliferate, demand for
access to RF spectrum is becoming increasingly pressing,
and increasingly difficult to achieve. After all, the (usable)
spectrum is finite, while the demand for it continues to in-
crease without bounds. However, it has been recognized [13,
14] that problems of spectrum scarcity and overuse arise not
so much from physical shortage of frequencies, but mostly
as a result of the centralized and rigid way in which spectrum
allocation has been managed. Spectrum has been allocated
in a static way: bands of the RF range are statically assigned
to licenced users on a long-term basis, who then have ex-
clusive rights to the corresponding region. Examples here
include the 824–849 MHz, 1.85–1.91 GHz, and 1.930–1.99
GHz frequency bands, which are reserved for FCC-licenced
cellular and personal communications services (PCS). Other
parts of the RF spectrum, by contrast, are unlicensed, and
anyone can transmit in those frequencies as long as their
power does not exceed the regulatory maximum. Conse-
quently, large portions of the RF range remain underutilized
for long periods of time, while other parts—such as the ISM
bands—are overutilized.

Observations like these provided the impetus behind the
NeXt Generation (XG) Communications program, a tech-
nology development program sponsored by DARPA [9], which
proposed opportunistic spectrum access as a means of cop-
ing with spectrum scarcity. The underlying approach has
come to be known as dynamic spectrum access (DSA), and
has evolved into a general methodology for dealing with
spectrum scarcity [17]. The main idea is that a DSA net-
work has two classes of users: primary and secondary. Pri-
mary users are licenced to use a particular spectrum band
and always have full access to that band whenever they need
it. Secondary users are allowed to use such spectrum por-
tions but only as long as their use does not interfere with the
operating needs of the primary users. The secondary users
are typically cognitive radios [4] that can dynamically adjust
their operating characteristics (such as waveform, power, etc.).
Secondary users sense the spectrum for available transmis-
sion opportunities, determine the presence of primary users,
and attempt to use the spectrum in a way that interferes as
little as possible with the activities of the primary users.

Policies are used for specifying how secondary radio nodes

DIFTS 2011 3

are allowed to behave. Policies consist of declarative state-
ments that dictate what secondary radios may or may not
do, without prescribing how they might do it [18]. Different
policies may be applicable in different regions of the world.
Even in one and the same region there may be multiple poli-
cies in place, reflecting different constraints imposed by dif-
ferent regulatory bodies. Policy systems for cognitive radios
should be able to load new policies on the fly.

There are two key questions in designing such a policy
system, one representational and the other computational:
How should we represent policies, and how can we make ef-
ficient use of them? Policies regulating DSA must be able to
express rules such as the following: “Allow a transmission if
its frequency is in a certain range and the power does not ex-
ceed a certain limit, or if the transmission is an emergency.”
Thus, for representation purposes, we need at least the full
power of propositional logic, as well as numbers (both inte-
gers and reals), and numeric comparison relations. It would
also be helpful to have algebraic datatypes at our disposal,
so that we could, for example, represent the mode of a trans-
mission as one of a finite number of distinct symbolic val-
ues, such as everyDay or emergency. A certain amount of
quantification would also be convenient, so that we could,
e.g., quantify over all possible transmissions. We must also
be able to introduce arbitrary transmission parameters, so a
strong type system, preferrably with subtyping, should be
available. Hence, first-order logic with arithmetic, and per-
haps additional features such as algebraic datatypes and sub-
sorting, would appear to be a natural representation choice,
provided that we can make efficient use of it, a point that we
will address shortly.

So much for representation. What are the main computa-
tional problems that a policy system must solve? The main
problem is this: determine whether an arbitrary transmission
request should be allowed or denied, given the current set of
policies. In fact, if this were all there was to using policies
for spectrum access, things would be relatively simple. But
we usually want the policy engine to do more. For example,
when a transmission request is not permissible, a simple “de-
nied” answer is not very useful. The policy system should
also tell the requesting radio why the request was denied,
and more importantly, what it would take for its request to
be allowed. As a simple example, the system might tell the
radio: “Your request cannot be allowed in its present form,
but it will be allowed if you only change your transmission
power to such-and-such level.” Further, in such cases the
policy system will usually have many choices as to which
parts of the transmission request to modify in order to make
it permissible. We then want it to make an optimal choice,
i.e., a choice that satisfies the original request to the greatest
possible extent.

In this paper we present an implementation of a policy
system in Athena, an interactive proof system for polymor-
phic multi-sorted first-order logic with equality, algebraic
data types, subsorting, and a higher-order functional pro-

gramming language [3]. Athena’s rich logic, sort system,
and programming language significantly facilitated the rep-
resentation and manipulation of policies. Another innova-
tion of our paper is the use of SMT solvers [15] for rea-
soning with and about policies. The problem of determin-
ing whether a transmission request is permissible by a given
policy can be couched as a satisfiability problem, namely,
the problem of determining whether the request is consistent
with the policy. So SAT solving would seem to be a natu-
ral fit for this domain. However, policy rules in this domain
also make heavy use of equality and numeric relations, not to
mention symbolic values such as transmission modes. Thus,
viewed as an abstract syntax tree, the body of a policy rule
has an arbitrarily complicated boolean structure internally,
with relational atoms at the leaves, whose semantics come
from standard theories such as those of arithmetic, equal-
ity, and so on. That is what makes SMT solving an ideal
paradigm for this problem. We will show that the problem
of making optimal adjustments to transmission parameters
can also be formulated quite naturally in this setting as a
weighted Max-SAT problem, many instances of which can
be efficiently solved despite the problem’s high theoretical
complexity. Indeed, competitive SMT solvers such as CVC3
[7] and Yices [6] are highly optimized programs that can
readily decide extremely large formulas. As a quick com-
parison, another recently built policy system for spectrum
access, Bresap, which uses BDDs as its underlying technol-
ogy, cannot handle policies with more than 20 atomic ex-
pressions [1, p. 83]. By contrast, our system can easily han-
dle policies with many thousands of atomic expressions.

The remainder of this paper is structured as follows. The
next section describes the representation of spectrum-access
policies in Athena.1 Section 3 discusses the integration of
SMT solvers with Athena, and shows how to reduce the
problem of reasoning with spectrum-access policies to SMT
solving. In section 4 we model the problem of making opti-
mal changes to transmission requests as a Max-SAT prob-
lem, and we describe how our system models and solves
such problems. We also present an optimizing algorithm
that uses a version of binary search in order to minimize
integer-valued objective functions with very few calls to an
oracle SMT solver (at most log(n) such calls, where n is
the maximum value that can be attained by the objective
function). This algorithm can be used to further optimize
transmissions, e.g., by minimizing the distance between the
values desired by the cognitive radio and the values allowed
by the policy. Section 5 presents results evaluating the per-
formance of our policy engine. Finally, section 6 discusses
related work and concludes.

2. POLICY REPRESENTATION
1While some Athena code is presented, knowledge of the language
is not necessary. Any reader familiar with formal methods and
functional programming languages should be able to follow the
code.

DIFTS 2011 4

The set of radio transmissions is treated as an abstract data
type with fields such as frequency, power, mode, etc. The
abstract domain of transmissions is introduced in Athena as
follows:

domain Transmission

A transmission field (or “parameter”) can then be introduced
as a function from transmissions to values of some appro-
priate sort. For illustration purposes, we demonstrate the
declaration of the following parameters: frequency, power,
mode, and time. Additional parameters can be introduced as
needed.

d e c l a r e frequency: [Transmission] -> Int
d e c l a r e power: [Transmission] -> Real
d e c l a r e mode: [Transmission] -> Mode
d e c l a r e hours, minutes: [Transmission] -> Int

Here Int and Real are built-in Athena sorts represent-
ing the sets of integers and real numbers, respectively, with
Int a subsort of Real. The sort Mode is a finite algebraic
datatype:

d a t a t y p e Mode := emergency | everyDay | ...

There are two distinguished unary predicates on the set of
all possible transmissions: allow and deny. These predi-
cates are used by policies to specify which transmissions are
considered permissible and which are not. More concretely,
a policy is represented as a pair of sentences: an allow con-
dition and a deny condition. An allow condition (or AC for
short) is of the form: 2

(forall ?x:Transmission. allow ?x <==> · · ·) (1)

while a deny condition (DC) is of the form:

(forall ?x:Transmission. deny ?x <==> · · ·) (2)

Either condition may be absent, i.e., a policy may specify
only an allow condition but no deny condition, or only a
deny condition but no allow condition. An absent condition
is represented by the unit value, (). The constructor for
policies is therefore a procedure that takes two conditions
and simply puts them together in a two-element list:

d e f i n e make-policy :=
lambda (AC DC) [AC DC]

There are two destructor or selector procedures, one for re-
trieving each component of the policy:

d e f i n e [get-AC get-DC] := [first second]

An important operation is the application of a given pol-
icy condition C of the form (1) or (2) to a term t of sort
Transmission. Let body be whatever sentence would
2A more accurate term instead of allow would be “allow provi-
sionally,” because, as we will see, for a transmission request to be
granted, the allow condition must hold and the deny condition must
not hold. With this caveat in mind, we will continue to use the term
allow in the interest of simplicity.

normally be where the ellipses now appear in (1) (or in (2)).
Then the result of the said application is the sentence ob-
tained from body by replacing every free occurrence of the
quantified variable ?x:Transmission by the term t. In
Athena code, this procedure is defined as follows:

d e f i n e apply :=
lambda (C t)

match C {
(forall x ((_ x) <==> body)) =>

(replace-var x t body) }

The built-in ternary Athena procedure replace-var is
such that (replace-var x t p) produces the result ob-
tained from the sentence p by replacing every free occur-
rence of variable x by the term p. As a concrete example,
here is a sample AC:

d e f i n e AC1 :=
(forall ?x .

allow ?x <==>
frequency ?x in [5000 5700] &
power ?x < 30.0 &
mode ?x = everyDay & hours ?x <= 11)

It says that a transmission is (provisionally) permissible iff
its frequency is in the 5000 . . . 5700 MHz range; its power is
less than 30.0 dBm; its mode is everyDay; and the trans-
mission’s time is no later than 11 in the morning. Here in is
a binary procedure defined as follows:

d e f i n e in :=
lambda (x range)

match range {
[a b] => (a <= x & x <= b)}

(Note that variables do not need to be explicitly annotated
with their sorts. Athena has polymorphic sort inference, so
a Hindley-Milner algorithm will recover the most general
possible sorts of all variable occurrences.) We can now con-
struct a policy with the above AC and with no DC as follows:

d e f i n e policy-1 := (make-policy AC1 ())

Our second policy example has both an AC and a DC:

d e f i n e policy-2 :=
(make-policy

(forall ?x .
allow ?x <==> mode ?x = emergency)

(forall ?x .
deny ?x <==> power ?x > 25.0))

A key operation on policies is that of merging. New policies
may be downloaded into the policy database at any given
time. A newly acquired policy must be integrated with the
existing policy that is in place in order to produce a single
merged policy with a new AC and a new DC. Merging is
therefore a binary operation. The current definition of merg-
ing two policies p1 and p2 is simple: it is disjunction on
both the AC and DC. Specifically, the AC of the merged pol-
icy allows a transmission t iff p1 allows t or p2 allows it;
and it denies t iff p1 denies it or p2 denies it. Merging is

DIFTS 2011 5

implemented as an Athena procedure. Other alternative def-
initions of merging are possible, and these could be straight-
forwardly implemented in the same way. As an example,
here is the result of merging policy-1 and policy-2,
as these were defined above:

d e f i n e merged-policy :=
(merge-policies policy-1 policy-2)

>(get-AC merged-policy)

Sentence:
(forall ?v4:Transmission
(iff (allow ?v4)

(or (and (and (<= 5000
(frequency ?v4))

(<= (frequency ?v4)
5700))

(and (< (power ?v4)
30.0)

(and (= (mode ?v4)
everyDay)

(<= (hours ?v4)
11))))

(= (mode ?v4)
emergency))))

>(get-DC merged-policy)

Sentence: (forall ?v5:Transmission
(iff (deny ?v5)

(> (power ?v5)
25.0)))

(Note that while Athena accepts input in either infix or pre-
fix form, sentences are output in prefix for indentation pur-
poses.)

We define a transmission request as a set of constraints
over some object of sort Transmission, typically just
a free variable ranging over Transmission. These con-
straints, which are usually desired values for some—or all—
of the transmission parameters, can be expressed simply as
a sentence. A sample transmission request:

d e f i n e request-1 := (frequency ?t = 150 &
mode ?t = everyDay &
hours ?t = 16)

This is a conjunction specifying that the frequency of the
desired transmission (represented by the free variable ?t)
should be 150, its mode should be everyDay, and its time
should be between 4:00 and 4:59 (inclusive) in the evening.
A transmission request may be incomplete, i.e., it may not
specify desired values for every transmission parameter. The
preceding request was incomplete, since it did not specify
values for the power and minutes parameters.

3. POLICY REASONING
The main task of the policy system is this: determine

whether the policies currently in place allow or deny a given
transmission request. This is in fact the simplest formula-
tion of the core reasoning problem, in that it only requires

a yes/no answer from the policy system. But in general the
policy system needs to solve more interesting versions of this
problem, namely: If the transmission request is granted, find
appropriate values for any missing parameters, in case the
request was incomplete; if the request is not granted, find ap-
propriate values for the transmission parameters that would
render the transmission permissible. Moreover, in the sec-
ond case, we often want to compute values in a way that is
optimal w.r.t. to the given request, e.g., so that the original
transmission request is disrupted as little as possible. We
discuss such optimality issues in section 4.

The above problems are naturally formulated as satisfia-
bility problems. However, the most appropriate satisfiability
framework here is not that of straight propositional logic, but
rather that of satisfiability modulo theories, or SMT for short
[15]. In the SMT paradigm, the solver is given an arbitrary
formula of first-order logic with equality and its task is to de-
termine whether or not the formula is satisfiable with respect
to certain background theories. Typical background theories
of interest are integer and/or real arithmetic (typically linear,
but not necessarily), inductive data types (free algebras), the
theory of uninterpreted functions, as well as theories of lists,
arrays, bit vectors, etc. Hence, most of the function symbols
and predicates that appear in the input formula have fixed in-
terpretations, given by these background theories. An SMT
solver will not only determine whether a sentence p is satisfi-
able; if it is, it will also provide appropriate satisfying values
for the free variables and/or constants that occur in p.

Athena is integrated with a number of SMT solvers, such
as CVC3 and Yices; the one used for this project is Yices [6],
mostly because it can solve Max-SAT problems. The main
interface is given by a unary Athena procedure smt-solve,
which takes an arbitrary first-order sentence p and attempts
to determine its satisfiability with respect to the appropri-
ate theories. If successful, smt-solve will return a list of
values for all free variables and/or constants that occur in p.
Some examples:

d a t a t y p e Day :=
Mon | Tue | Wed | Thu | Fri | Sat | Sun

>(smt-solve ?x = 2 & ?y = 3.4 |
?x = 5 & ?d = Mon)

List: [(= ?y 3.4) (= ?x 2) (= ?d Mon)]

The input to smt-solve here was a disjunction of two
conjunctions. The free variable ?d ranges over the datatype
Day; while ?x and ?y range over Int and Real, respec-
tively. The output is a list of identities providing values for
each free variable that render the input satisfiable. Because
the argument to smt-solve is a sentence, i.e., a native
Athena data value, this provides a very flexible and high-
bandwidth programmable interface to SMT solvers. This in-
terface proved extremely useful for our system.

The policy reasoning problems described earlier have a
natural formulation in SMT. Specifically, consider an arbi-

DIFTS 2011 6

trary transmission request tr, i.e., a first-order sentence with
a free variable x ranging over Transmission (there may
be other free variables as well). To determine whether tr
is allowed by the current policy: (1) We construct a longer
request, tr′, which is the conjunction of (a) tr; (b) the appli-
cation of the current policy’s AC to x; and (c) the application
of the negation of the current policy’s DC to x:

tr & (apply (get-total-AC) x) &
˜ (apply (get-total-DC) x)

The procedure get-total-AC returns the AC of the cur-
rent (“total”) policy; likewise for get-total-DC. So tr′

represents all the constraints imposed on the requested trans-
mission, both by the original transmission request, tr, and
by the policy itself, whose AC must hold for the transmis-
sion variable x while its DC must not. (2) We then run
smt-solve on tr’. If the result is a satisfying assignment,
then the request is granted, and all we need to do is report
values for any missing parameters (parameters that did not
figure in the given request). If, by contrast, smt-solve
determines that tr’ is unsatisfiable, then tr in its given form
must be rejected. In that case we make a blank request con-
sisting of the application of the policy’s AC to x conjoined
with the application of the negation of the policy’s DC to
x, and run smt-solve on it. This blank request therefore
imposes no constraints at all on the transmission apart from
those imposed by the policy. If the result is a satisfying as-
signment, we provide it to the user, otherwise we report that
the current policy is unsatisfiable.

The Athena code for this algorithm is expressed in a pro-
cedure evaluate-request, which accepts an arbitrary
request and processes it as described above. Here is the out-
put for the example of the previous section:

>(evaluate-request request-1)

Transmission allowed. Appropriate values
for missing parameters:
[(= (power ?t1) 20.0)]

4. COMPUTING OPTIMAL ADJUSTMENTS
TO TRANSMISSION PARAMETERS

When a transmission request is denied, there are usually
many different ways of modifying it so as to make it per-
missible. For instance, the solver could change the desired
transmission’s time; or it could change its frequency; or it
could change its power and mode; or it could change all of
the above. Some of these actions may be preferable to oth-
ers. For instance, the radio might be less willing to change
the time of the transmission, or its power level, rather than
the frequency. In such cases we want the policy system to
return a satisfying assignment that is optimal in the sense of
respecting as many such preferences of the radio as possible.

Our system achieves this in a flexible way by formulating
the problem as an (SMT) instance of Max-SAT. In its trans-
mission request, the radio can provide a weight wi along

with the desired value vi of each transmission parameter pi.
The weight wi reflects the importance that the radio attaches
to pi taking the value vi. The SMT solver will then try to
find a satisfying assignment for the request that has maxi-
mal total weight. In that case, the request is not just a list
of constraints [c1 · · · cn] but a list of pairs of constraints
and weights [[c1 w1] · · · [cn wn]]. A sample trans-
mission request might then be:

d e f i n e weighted-request :=
[[(frequency ?t = 8000) 10]
[(power ?t = 35.0) 15]
[(hours ?t = 13) 30]]

indicating that the relative importance of the frequency being
8000 is 10, that of the power being 35.0 is 15, and that of
hours being 13 is 30. Suppose further that the policy in
place has no DC and a disjunctive AC:

d e f i n e AC1 :=
(forall ?t . allow ?t <==>

(frequency ?t in [5000 7000] &
power ?t <= 30.0 & hours ?t > 12) |

(frequency ?t in [6000 9000] &
power ?t <= 40.0 & hours ?t <= 8))

d e f i n e policy := (make-policy AC1 ())

Now consider evaluating weighted-request with re-
spect to this policy. Clearly, the request cannot be allowed
as is. We can make it permissible in more than one way:
(a) we could demand a change of frequency and power in
accordance with the values prescribed by the first branch of
AC1, while keeping the hours parameter to the requested
value of 13; or (b) we could demand a change of the hours
parameter only, in accordance with the second disjunctive
branch of AC, while keeping the desired frequency and power
values; or (c) we could demand that all three parameter val-
ues change. From these possibilities, only (a) is optimal, in
that it honors the original request to the greatest extent pos-
sible (as determined by the given weights). Running this
example in our system results in the following output:

>(evaluate-request weighted-request)

The following parts of the request
could not be satisfied:

(= (power ?t) 35.0) (= (frequency ?t) 8000)

Here is a maximally satisfying assignment:

[(= (mode ?t) everyDay)
(= (frequency ?t) 5999)
(= (power ?t) 30) (= (hours ?t) 13)]

By contrast, if we had changed the weight of the hours
parameter from 30 to 20, the result would then change the
hours parameter instead of the frequency and power, since
retaining the values of the two latter parameters would result
in a maximum weight of 25.

DIFTS 2011 7

Note that weights can be arbitrary integers or a special
“infinite” token, indicating a hard constraint that must be
satisfied. In fact this infinite weight is the one that Athena
attaches to the constraints obtained from the AC (and the
negation of the DC) of the current policy. But radios can
also use infinite weights in their requests.

Occasionally there may be additional requirements on the
assignments returned by the policy system, beyond honor-
ing the original request to the greatest extent possible. For
example, if a parameter value must change, we may want
the new value to be as close as possible to the original re-
quested value. If we are not allowed to transmit at the exact
desired time, for instance, we may want to transmit as close
to it as possible (as can be allowed by the currently installed
policies). To meet such requirements we generally need the
ability to perform optimization by minimizing some objec-
tive function, in this case the absolute difference between de-
sired and permissible parameter values. Most SMT solvers
do not perform optimization (apart from Max-SAT, in the
case of Yices, though see below), but we can efficiently im-
plement an integer optimizer in terms of SMT solving. The
idea is to use binary search in order to discover the opti-
mal cost with as few calls to the SMT solver as possible: at
most O(log n) calls, where n is the maximum value that the
objective function can attain. Specifically, let c be an arbi-
trary constraint that we wish to satisfy in such a way that
the value of some “cost” term t is minimized, where max is
the maximum value that can be attained by the cost function
(represented by t). (Tf this value is not known a priori, it
can be taken to be the greatest positive integer that can be
represented on the computer.) The algorithm is the follow-
ing: We first try to satisfy c conjoined with the constraint
that the cost term t is between 0 and half of the maximum
possible value: 0 ≤ t ≤ (max div 2). If we fail, we recur-
sively call the algorithm and try to satisfy c augmented with
the constraint (max div 2) + 1 ≤ t ≤ max. Whereas, if
we succeed, we recursively call the algorithm and try to sat-
isfy c augmented with the constraint 0 ≤ t ≤ (max div 4).
Some care must be taken to get the bounds right on each
call, but this algorithm is guaranteed to converge to the min-
imum value of t for which c is satisfied, provided of course
that the original constraint c is satisfiable for some value of
t. This algorithm is implemented by a ternary Athena proce-
dure smt-solve-and-minimize, such that

(smt-solve-and-minimize c t max)

returns a satisfying assignment for c that minimizes t (whose
maximum value is max).

For example, suppose that x, y, and z are integer variables
to be solved for:

d e f i n e [x y z] := [?x:Int ?y:Int ?z:Int]

subject to the following disjunctive constraint:

d e f i n e c :=
(x in [10 20] & y in [1 20] &

z in [720 800]) |
(x in [500 600] & y in [30 40] &
z in [920 925])

Suppose also that the desired values are x = 13, y = 15,
z = 922. The task is to find values for these variables that
satisfy c while diverging from the desired values as little as
possible. We can readily model this problem in a form that
is amenable to smt-solve-and-minimize as follows.
First we define the objective-function term t, as the sum of
the three differences:

d e f i n e t := (?d-x:Int + ?d-y:Int + ?d-z:Int)

with the difference terms defined as follows:

d e f i n e d-x-def :=
(ite (x > 13) (?d-x = x - 13)

(?d-x = 13 - x))
d e f i n e d-y-def :=
(ite (y > 15) (?d-y = y - 15)

(?d-y = 15 - y))
d e f i n e d-z-def :=
(ite (z > 922) (?d-z = z - 922)

(?d-z = 922 - z))

Here ite is a simple if-then-else procedure:

d e f i n e ite :=
lambda (c x y) ((c ==> x) & (˜ c ==> y))

Assume that we do not know the exact maximum value that
t can attain, but we know that it cannot be more than 106.
We can then solve the problem with the following call:

d e f i n e diff-clauses :=
(d-x-def & d-y-def & d-z-def)

d e f i n e query := (c & diff-clauses)

>(smt-solve-and-minimize query t 1000000)

List: [(= ?x 13) (= ?y 15) (= ?z 800)
(= ?d-x 0) (= ?d-y 0) (= ?d-z 122)]

This solution was found by a total of 8 calls to the SMT
solver (for a total time of about 100 milliseconds). Why
were only 8 calls required when we started the binary search
with a maximum of 106? One would expect about log 106

calls to the smt solver, i.e., roughly 20 such calls. However,
our implementation uses the information returned by each
call to the SMT solver to speed up the search. That often
results in drastic shortcuts, cutting down the total number of
iterations by more than a factor of 2.

This procedure enables our system to optimize any quan-
tity that can be given an integer metric. Moreover, unlike
independent branch-and-bound algorithms for integer pro-
gramming, it has the advantage that it allows not just for nu-
meric constraints, but for arbitrary boolean structure as well,
along with constraints from other theories such as reals, lists,
arrays, bit vectors, inductive datatypes, etc. While more so-
phisticated approaches to optimization in the SMT paradigm

DIFTS 2011 8

are beginning to emerge (e.g., [2]), the implementation de-
scribed here has been quite adequate for our purposes.

5. PERFORMANCE
In order to test our system we wrote an Athena program

that generates test instances, with two independently con-
trollable variables: parameter number and policy number.
In particular, we defined a procedure make-policy-set with
two parameters, param-num and policy-num. The output is
a list of policy-num policies, where each policy involves
param-num transmission parameters. The latter came from
a pre-declared pool of 100 transmission parameters, half of
them integer-valued and the other half real-valued. We dis-
tinguished the following types of policies:

• permissive policies, which have only an AC;

• prohibitive policies, which have only a DC and no AC;

• mixed policies, which have both.

• Ordering/N policies. These policies are parameter-
ized over N > 0. Specifically, an ordering/N policy is
one whose AC and/or DC is of the following form:

(forall ?t:Transmission . D ?t <==>

(fi1 ?t R1 ci1) & ... & (fik ?t Rk cik))

where D is either allow or deny, and ∀j ∈ {1, . . . , k}:
fij is a transmission parameter; Rj ∈ {<, >, <=, >=};
and cij is a constant number of the appropriate sort. We
refer to the ordering constraints (fij ?t Rj cij) as
the atoms of the AC (or DC). An ordering/N policy
may be permissive, prohibitive, or mixed, but its total
number of atoms (i.e., the number of the AC’s atoms
plus the number of the DC’s atoms) must equal N .

• Equational/N policies. The AC and/or DC of such a
policy is of the same form as shown above, except that
each Ri is the identity relation. These identities are the
atoms of the condition. The total number of atoms (of
the AC and DC together) must be N .

• Inequational/N policies. Same as above, except that
the relation in question here is inequality.

• Range/N policies. The AC and/or DC of such a policy
is of the same form as that of an ordering/N policy, ex-
cept that each Ri is the relation in, and each constant
ci is a range [a b].

• Disjunctive-Conjunctive/N policies. The AC and/or
DC of such a policy is a disjunction of conjunctions,
where each atom is of the form (fx ?t in [· · ·]).
The number of atoms are required to add up to N .

A call of the form (make-policy-set N P) returns
a list L containing P policies, each of which involves N trans-
mission parameters. This list is roughly equally partitioned

Figure 1: SMT solving times for processing regular
transmission requests.

among all the preceding types. Specifically, 20% of the
policies in L are ordering/N policies. About 1/3 of these
ordering/N policies are permissive, 1/3 are prohibitive, and
1/3 mixed. The next 20% of L consists of equational/N poli-
cies, and these are again evenly split between permissive-,
prohibitive-, and mixed-policy subsets. The third 20% con-
tains inequational/N policies, and so forth. Once a list L of
policies is thereby obtained, we combine them all into a sin-
gle policy by folding the merge-policies operator over
L, with the empty-policy as the identity element. It is
with respect to this merged policy that we tested transmis-
sion requests. The requests were generated randomly.

Figure 1 shows the SMT-solving times for processing plain
transmission requests (i.e., without weights attached to the
various transmission parameters), for various combinations
of policy-set sizes and transmission parameter numbers, where
the policy sets are evenly mixed as described above. Fig-
ure 2 shows the corresponding times for optimal processing
of transmission requests, i.e., requests that attach weights to
each of the transmission parameters and are solved as Max-
SAT problems. In order to stress-test the implementation
further, we repeated the experiments with sets of policies
that were more structurally complex, doing away with sim-
ple ordering, equational, and inequational policies, and us-
ing instead only range and disjunctive-conjunctive policies.
The corresponding results are shown in Figure 3 and in Fig-

Figure 2: Max-SAT SMT solving times for optimized
processing of transmission requests.

DIFTS 2011 9

Figure 3: Solving times for processing of transmission
requests with structurally complex policies.

ure 4. With these sort of structurally complex policies in
place, the highest increase occurs in optimal processing of
transmission requests with more than 50 policies and param-
eters.

The graphs show only the time spent on SMT solving,
which is the bulk of the work that needs to be done when pro-
cessing transmission requests. We do not include the time
spent on translating from Athena to SMT notation and back.
This translation is a straightforward linear-time algorithm
(linear in the size of the formula to be translated, on average,
since it uses hash tables for the necessary mappings between
Athena and SMT namespaces), and the time spent on it in
most cases is neglibible. For huge policies containing hun-
dreds of thousands of nodes, the translation does take longer,
though still typically a fraction of a second. Virtually all of
the translation cost is incurred when translating the policy,
since the transmission requests are tiny by comparison. Ob-
serve, however, that there is no reason to be translating the
entire policy anew each time the engine needs to process a
new request. Instead, the (merged) policy can be translated
off-line, once, and subsequently cached in SMT notation in
some file. Thus, the translation time is an one-time, off-line
cost.

All experiments were performed on a 2.4 GHz Intel Core
i3-370M dual-core processor with 4GB RAM, running Win-
dows 7. The time command of the Cygwin shell was used

Figure 4: Max-SAT SMT solving times for transmission
requests with structurally complex policies.

to get the timing data. In most cases, the reported system
time (the sys entry of time’s output) was 0.000, i.e., too
small to be reliably measured, and hence the time reported
here is real (wall clock) time, which includes time seg-
ments spent by other processes and times during which the
SMT solver was blocked (e.g., waiting for I/O to complete).
Therefore, the times reported here are overly conservative;
the actual times spent on SMT solving are smaller.

6. RELATED WORK & CONCLUSIONS
We have presented an implementation of a policy system

for dynamic spectrum access. Policies are represented and
manipulated in Athena, a formal proof system for first-order
logic with polymorphism, subsorting, inductive datatypes,
arbitrary computation, and definitional extension. Most of
these features have proven useful in the engine’s implemen-
tation; others would become useful if the engine were to be
extended so that it used, e.g., structured ontologies instead
of flat data types.

Previous work in this area includes BBN’s XGPLF [8] and
SRI’s Coral [10, 11]. XGPLF does not have a formal se-
mantics and is limited in what it can express (it is based on
OWL [19]). Moreover, XGPLF cannot model inheritance.
To the best of our knowledge, the only implementation of
a policy reasoning engine based on XGPLF is the one built
by the Shared Spectrum Company [12]. They used SWI-
Prolog as the underlying reasoning engine. In field tests us-
ing resource-limited radio devices, SSC replaced the Prolog
reasoner with “a simplified reasoner developed in C/C++”
[12, p. 504]; no details are provided regarding the design,
implementation, or correctness of this simplified reasoner.
SSC’s engine can only return yes/no answers to transmission
requests.

Coral (Cognitive Radio Policy Language) is a new lan-
guage specifically designed for expressing policies govern-
ing the behavior of cognitive radios. Like Athena, Coral of-
fers a rich and extensible first-order logical language that
includes arithmetic and allows for the introduction and def-
inition of new function symbols. It also features subtyping
and can therefore express inheritance and ontologies. Some
notable differences from Athena include: (a) Unlike Coral,
Athena has polymorphism. Thus, e.g., it is not necessary
to introduce lists for integers and lists for booleans sepa-
rately; a generic parameterized definition is sufficient. (b)
Athena has automatic sort inference based on the Hindley-
Milner algorithm, which is convenient in practice because
it allows for shorter—and usually cleaner—specifications.
(c) Athena has a general-purpose formally defined program-
ming language that can seamlessly interact with its logical
layer, and which can be used to dynamically construct and
manipulate logical formulas very succinctly. This program-
ming language offers procedural abstraction, as well as side
effects through mutation, including reference cells and vec-
tors, features which are often important for efficiency. The
ability to compute with terms and sentences as primitive data

DIFTS 2011 10

values was very useful. While Coral can express some com-
putations via universally quantified identities which can then
be interpreted as executable rewrite rules by a tool such as
Maude [16], it does not offer procedural abstraction, i.e., it
is not possible to define arbitrary procedures.

Two policy engines based on Coral have been implemented
[10, 11]. The initial implementation used Prolog as the un-
derlying reasoning engine, and was only able to return yes/no
answers to transmission requests. The second (and current)
implementation uses a custom-made proof system to rea-
son about transmission requests. The system has four kinds
of proof rules: forward chaining, backward chaining, par-
tial evaluation based on conditional rewriting, and constraint
propagation and simplification. The proof system is im-
plemented in the rewriting engine Maude. One issue with
this implementation is that a positive answer is given only
if the transmission request is an exact match of the opera-
tive policy conditions. But that is not likely to be the case
in practice. Most transmission requests are likely to be in-
complete or to diverge from the policy, at least in some small
degree. In such cases, the Coral implementation does not re-
turn values for the relevant transmission parameters. Rather,
it returns an arbitrarily complicated first-order formula rep-
resenting all the possible “opportunity constraints” that the
radio could use to modify its request so as to make it per-
missible. But that is not likely to be of much use to the
requesting party. It is not realistic to require that whoever
made the transmission request should be able to understand
and reason about arbitrarily complicated logical formulas in
order to understand the policy system’s output.

A second issue with this implementation is efficiency. The
Coral team has not published precise benchmarks describing
their engine’s performance for variable numbers and types of
policies (and for variable numbers of transmission parame-
ters), but they have released a demo of their implementation
that can be used to evaluate transmission requests with re-
spect to policies that have a fixed set of transmission param-
eters, namely: location (latitude and longitude); time (hours,
minutes, and seconds); sensed power; emissions; network
id; and role (slave/master). Even with this fairly small set of
transmission parameters, and with only 11 active policies in
place, it has been reported [1, p. 18] that evaluating a sin-
gle transmission request took the Coral engine 58 seconds,
and resulted in an output formula comprising 75 constraints.
In the preceding section we saw that our implementation can
evaluate transmission requests with several dozens of param-
eters and with over 50 complex policies in place in a fraction
of a second; this is so even when the requests are processed
optimally. Moreover, the Coral engine has no notion of opti-
mality. It does not allow the requesting party to specify that
some parameters are more important than others, or to ask
that the request should be satisfied to the greatest extent pos-
sible, or with as little divergence from the requested values
as possible.

Another policy engine for spectrum access is Bresap, a

system that was recently implemented at Virginia Tech [1,
5]. Unlike the other systems discussed above, Bresap is lim-
ited to policies that can be adequately represented as finite
Boolean functions, which it encodes as binary decision di-
agrams (BDDs). Therefore, unlike Coral and our system,
Bresap is not suitable as an expressive language for specify-
ing policies. For instance, it has no facilities for introducing
new policy concepts and/or rules. Indeed, Bresap is not a
language. It is a system that reads certain types of policies
expressed in XML and converts them to BDDs. This is done
by assigning a distinct Boolean variable to each atomic ex-
pression that appears in the policy. For instance, a policy
such as “allow transmission in the frequency range a . . . b
if the power does not exceed m” would result in the intro-
duction of two distinct Boolean variables x1 and x2, with
x1 corresponding to the atom a ≤ f ≤ b (where f stands
for the transmission’s frequency); and with x2 correspond-
ing to the atomic expression p ≤ m (where p stands for the
transmission’s power). The accepting condition could then
be represented by the boolean function x1 ∧ x2. Graph al-
gorithms are used to merge different policy BDDs. With a
single BDD in place representing the result of merging all
active policies, Bresap can then accept an incoming trans-
mission request and evaluate it. A transmission request must
be an attribute-value list of the form a1 = v1, . . . , an = vn,
where ai is a transmission parameter (such as mode or fre-
quency) and vi is the corresponding desired value. Notably,
Bresap is capable of handling underspecified (incomplete)
requests. It is also capable of attaching costs to transmission
parameters (where a given cost indicates the penalty paid for
changing the value of that parameter), and then modifying
the parameter values of a transmission request in a way that
minimizes the overall cost.

A drawback of Bresap is that the underlying policy repre-
sentation framework, that of BDDs (or propositional logic,
more generally), lacks semantics for the numeric constraints
that pervade spectrum access policies. To put it simply, BDDs
do not know arithmetic, and thus do not have the where-
withal to “understand” that < is transitive, that 1 + x is
greater than x, that 10 and 14 − 4 are the same object, and
so on. Whereas an SMT solver immediately realizes that
f < 10 conjoined with f ≥ 30 is contradictory, because
it uses a dedicated reasoning procedure for arithmetic, in
the approach of Bresap these two atoms would result in the
introduction of two Boolean variables, x1 and x2, the for-
mer representing f < 10 and the latter representing f ≥
30. Thus, the conjunction of x1 and x2 is represented by
the innocuous-looking Boolean function x1 ∧ x2, a perfectly
consistent condition. To represent the fact that in the present
context this is actually inconsistent, one has to append to it
ad hoc clauses such as C = (¬x1 ∨ ¬x2) ∧ (x1 ∨ x2). This
extra information, C, conjoined with x1 ∧ x2, would then al-
low us to conclude that the condition is unsatisfiable. That is,
in fact, what Bresap does: It “semantically analyzes” the var-
ious atomic expressions in the policy in order to generate ad-

DIFTS 2011 11

ditional constraints—so-called “auxiliary rules” [1, section
3.5]—that prevent the engine from taking “illogical” paths
in the BDD. This approach has some disadvantages.3 First,
it is an essentially ad hoc encoding of arithmetic facts, the
generation of which should not be part of the policy engine’s
trusted computing base. Second, the additional encoded in-
formation, even if it is polynomial in size, can significantly
blow up the resulting BDD. Other efficiency issues in Bre-
sap include the conversion algorithm that produces the BDD
from the atomic Boolean expressions of the policy. This al-
gorithm has exponential time complexity in the number of
expression variables. As a result, Bresap is not currently
able to handle policies with more than 20 atomic Boolean
expressions [1, p. 83].

In conclusion, we believe that the combination of a pro-
grammable and expressive formal framework such as Athena
with an efficient SMT solver is a highly suitable implemen-
tation vehicle for spectrum access policy engines. It com-
bines rich expressivity with efficient performance, a consid-
eration that is likely to be crucial for cognitive radios. To
the best of our knowledge, SMT solvers have not been used
before for reasoning about policies, although we believe that
they are ideal for this task. Indeed, we believe that there
is not much that is special about spectrum access, and that
the same approach we have introduced here could be used to
represent and reason about policies in other domains.

7. REFERENCES
[1] A. A. Deshpande.

Policy Reasoning for Spectrum Agile Radios. Masters
thesis, Electrical and Computer Engineering
Department, Virginia Tech, 2010.

[2] A. Cimatti and A. Franzn and A. Griggio and R.
Sebastiani and C. Stenico. Satisfiability Modulo the
Theory of Costs: Foundations and Applications. In
TACAS 2010, pages 99–113, 2010.

[3] K. Arkoudas. Athena.
http://www.pac.csail.mit.edu/athena.

[4] B. A. Fette. Cognitive Radio Technology. Academic
Press, 2nd edition, 2009.

[5] B. Bahrak and A. A. Deshpande and M. Whitaker and
J. M. Park. BRESAP: A Policy Reasoner for
Processing Spectrum Access Policies Represented by
Binary Decision Diagrams. In New Frontiers in
Dynamic Spectrum, 2010 IEEE Symposium on, pages
1 –12, April 2010.

[6] B. Dutertre and L. de Moura. The Yices SMT Solver.
Tool paper, available online from
yices.csl.sri.com/tool-paper.pdf.

[7] C. Barrett and C. Tinelli. CVC3. In W. Damm and
H. Hermanns, editors, Proceedings of the 19th

International Conference on Computer Aided
3Note that this criticism is not peculiar to Bresap. It applies to all
policy engines that represent semantically rich policies (requiring
at least linear arithmetic) as Boolean functions.

Verification (CAV ’07), volume 4590 of Lecture Notes
in Computer Science, pages 298–302.
Springer-Verlag, 2007. Berlin, Germany.

[8] BBN Technologies. XG Working Group, XG Policy
Language Framework, Request for Comments, version
1.0. www.ir.bbn.com/projects/xmac/pollang.html,
2004.

[9] Darpa. News Release for Next Generation (XG)
Communications Program Request for Comments.
www.darpa.mil/news/2004/xg_jun_04.pdf.

[10] G. Denker, D. Elenius, R. Senanayake, M.-O. Stehr,
and D. Wilkins. A Policy Engine for Spectrum
Sharing. In New Frontiers in Dynamic Spectrum
Access Networks, 2007. DySPAN 2007. 2nd IEEE
International Symposium on, pages 55 –65, April
2007.

[11] D. Elenius, G. Denker, M. O. Stehr, R. Senanayake,
C. Talcott, and D. Wilkins. CoRaL–Policy Language
and Reasoning Techniques for Spectrum Policies.
Policies for Distributed Systems and Networks, IEEE
International Workshop on, pages 261–265, 2007.

[12] F. Perich. Policy-Based Network Management for
NeXt Generation Spectrum Access Control. In New
Frontiers in Dynamic Spectrum Access Networks,
2007. DySPAN 2007. 2nd IEEE International
Symposium on, pages 496 –506, April 2007.

[13] FCC Spectrum Policy Task Force. Report of the
spectrum efficiency working group. Available from
www.fcc.gov/sptf/files/SEWGFinalReport_1.pdf.

[14] I. F. Akyildiz and W.-Y. Lee and M. C. Vuran and S.
Mohanty. NeXt Generation / Dynamic Spectrum
Access / Cognitive Radio Wireless Networks: A
Survey. Computer Networks Journal (Elsevier),
50:2127–2159, September 2006.

[15] L. de Moura and B. Dutertre and N. Shankar. A
Tutorial on Satisfiability Modulo Theories. In
Computer Aided Verification, volume 4590 of LNCS,
pages 20–36. Springer, 2007.

[16] M. Clavel and F. Durán and S. Eker and P. Lincoln and
N. Martı́-Oliet and J. Meseguer and C. Talcott. The
Maude 2.0 System. In R. Nieuwenhuis, editor,
Rewriting Techniques and Applications (RTA 2003),
number 2706 in LNCS, pages 76–87. Springer, 2003.

[17] Q. Zhao. A Survey of Dynamic Spectrum Access.
IEEE Signal Processing Magazine, 24(3):79–89,
2007.

[18] R. Chadha and L. Kant. Policy-Driven Mobile Ad hoc
Network Management. Wiley-IEEE Press, 2007.

[19] World Wide Web Consortium. OWL 2 Web Ontology
Language Document Overview. Available from
www.w3.org/TR/owl2-overview/, 2009.

DIFTS 2011 12

Data Structure Choices for On-the-Fly Model
Checking of Real-Time Systems

Peter Fontana
Department of Computer Science

University of Maryland, College Park
Email: pfontana@cs.umd.edu

Rance Cleaveland
Department of Computer Science

University of Maryland, College Park
Email: rance@cs.umd.edu

Abstract—This paper studies the performance of sparse-
matrix-based data structures to represent clock zones (con-
vex sets of clock values) in an on-the-fly predicate equation
system model checker for timed automata. We analyze the
impact of replacing the dense difference bound matrix
(DBM) with both the linked-list CRDZone and array-list
CRDArray data structure. From analysis on the paired-
example-by-example differences in time performance, we
infer the DBM is either competitive with or slightly faster
than the CRDZone, and both perform faster than the
CRDArray. Using similar analysis on space performance,
we infer the CRDZone takes the least space, and the DBM
takes less space than the CRDArray.

I. INTRODUCTION

Automatic verification of real-time systems is under-
taken using notations for verifiable programs and check-
able specifications (see [1]–[6]). One common program
notation is timed automata [7]. There are specification
notations such as timed computation tree logic (TCTL)
[1], [8] and timed extensions of a modal mu-calculus,
including one in [3] and another given in [5]. Specifica-
tions in a timed modal mu-calculus can be written as lists
of equations, known as timed modal equation systems
[5], [6], [9]. For information on the untimed modal-mu
calculi, see [10]–[12], and see [10], [11] for information
on modal equation systems.

One approach to model checking timed automata
with timed modal mu-calculus specifications is to use
predicate equation systems (PES), which were invented
independently by Groote and Willemse (as parameter-
ized boolean equation systems) [13] and by Zhang and
Cleaveland [6], [9]. Predicate equation systems provide
a general framework for program models including para-
metric timed automata [6] and Presburger systems [14].
They also admit a natural on-the-fly approach to model

Research supported by NSF Grant CCF-0820072.

checking based on proof search: a formula correspond-
ing to the assertion that a timed automaton satisfies a
mu-calculus property can be checked in a goal-driven
fashion to determine its truth. Zhang and Cleaveland [6]
demonstrated the efficiency of this approach vis à vis
other real-time model-checking approaches.

In this paper we consider the special model check-
ing case of timed automata and timed modal equation
systems representing safety properties (also studied in
[6]), for which there are still many opportunities for
performance improvements. One component of such a
model checker that has a noticeable influence on perfor-
mance is the data structure for the sets of clock values.
When analyzing safety properties, each desired set of
clock values forms a convex set of clock values, or clock
zone (see Definition 3). The conventional way to store
a clock zone is as a difference bound matrix (DBM)
(see Definition 4) [15], which stores the constraints as
a matrix. This approach is used by UPPAAL [16] and
described in [17]. To potentially save space and time,
instead of representing the set of constraints as a matrix,
one can represent the set as an ordered linked path of
constraints where any clock difference not on the path
has the implicit constraint < ∞. If we generalize this
to allow for a union of zones to be represented by a
directed graph of constraints (representing a tree of paths
as opposed to a single path), we get a clock restriction
diagram (CRD) [18]. If we compress the nodes to have
them represent upper and lower bound constraints as well
as explicitly encoding both valid and invalid paths, we
get a clock difference diagram (CDD) [2]. These two
structures are extensions of binary decision diagrams
(BDDs) (see [19] for information).

To improve performance, we take the above idea of
a linked implementation and incorporate the sparseness
of the implementation of CRDs while simplifying (or
shrinking) the structure to only support a single clock

DIFTS 2011 13

zone (CRDs and CDDs in general can encode unions of
clock zones). This simplified structure is a sparse sorted
linked-list implementation of a DBM, the CRDZone (see
Definition 5). We also implement an array-list version
of the CRDZone, the CRDArray (see Definition 6). A
CRDZone may be seen as a sparse sorted linked-list
implementation of a DBM, and the CRDArray a sparse
array-list implementation of the CRDZone. We examine
the time and space performance of all three clock zone
implementations: the matrix DBM, linked-list CRDZone
and array-list CRDArray.

The contributions of this paper are:
• We run experiments comparing time and space

performance of a model checker (on safety (reach-
ability) properties) with the DBM, CRDZone and
CRDArray data structure implementations.

• We formalize and extend the analysis style per-
formed in the model checking experiments of [2],
[6], [9], [18], [20], [21] by utilizing paired data
(each implementation checked the same examples)
and applying descriptive statistics on the paired
example-by-example differences on time and space
consumption. See Section VI for details on the
statistics and Section VI-B for the analysis.

After analyzing the experimental results, for time per-
formance we infer the DBM is either competitive with or
slightly faster than the CRDZone and both perform faster
than the CRDArray for the examples in this experiment.
In terms of space, we infer the CRDZone takes up the
least space, and the DBM and takes less space than the
CRDArray for the examples in this experiment.

II. PROGRAM MODEL AND SPECIFICATIONS

A. Timed Automata

A timed automaton encodes the behavior of a real-time
system [7], [22].

Definition 1 (Clock constraint φ ∈ Φ(CX)). Given a set
of clocks CX , a clock constraint φ is constructed with
the following grammar, where xi is a clock and c ∈ Z:

φ ::= xi < c | xi ≤ c | xi > c | xi ≥ c | φ ∧ φ

Φ(CX) is the set of all possible clock constraints.

Definition 2 (Timed automaton). A timed automaton
TA = (L,L0,Σ, CX, I, E) is a tuple where:
• L is a finite set of locations with the initial set of

locations L0 ⊆ L.
• Σ is the set of actions and CX is the set of clocks.

• I : L −→ Φ(CX) gives a clock constraint for each
location l. I(l) is called the invariant of l.

• E ⊆ L×Σ×Φ(CX)×2CX×L is the set of edges.
In an edge e = (l, a, φ, Y, l′) from l to l′ with action
a, φ ∈ Φ(CX) is the guard of e, and Y represents
the set of clocks to reset to 0.

Some sources [6], [23] and our PES checker allow
clock assignments (x1 := x2) in addition to clock resets
on edges, other sources [17] allow constraints on clock
differences and other sources [1] allow states to be
labelled with atomic propositions that each state satisfies.

Timed automata use clock valuations ν ∈ V (V =
CX −→ R≥0 is the set of all clock valuations), which
at any moment stores a non-negative real value for each
clock x ∈ CX . The semantics of a timed automaton are
described as an infinite-state machine, where each state
is a location-valuation pair (l, ν). Transitions represent
either time advances or edge executions (performing an
action). For a formal definition of the semantics of a
timed automaton, see [7].

Example 1 (Example of a timed automaton). Consider
the timed automaton in Figure 1, which models a train
in the generalized railroad crossing (GRC) protocol.

Real-Time Model Checking

2

TCTL (Invalid): AF<∞[near ∨ in]

0: far 1: near
x1 < 4

2: in
x1 < 15 in, x1 = 4,

x1 := 0
approach, x1 := 0

exit, x1 > 1

TCTL (Valid): AG<∞[near ! AF!TP+TDU[far]]
Fig. 1. Timed automaton TA1, a model of a train in the generalized
railroad crossing (GRC) protocol.

There are three locations—0: far (initial location),
1: near and 2: in, with one clock x1. There are the actions
approach, in and exit in Σ. Here, location 1 has the
invariant x1 ≤ 4 while 0 has no invariant. The edge
(1: near, in, x1 = 4, {x1},2: in) has the guard x1 = 4
and resets x1 to 0.

B. Modal Equation Systems (MES)

We use a modal equation system (MES) to represent
real-time temporal properties that timed automata can
possess. A MES is an ordered list of equations with
variables on the left hand side and basic timed temporal
logical formulae on the right. Each equation involves a
variable X , a basic formula φ and a greatest fixpoint (ν)
or a least fixpoint (µ), and the equation is labeled with
the fixpoint (X ν

= φ or X
µ
= φ). For a formal definition

of MES syntax and semantics, see [6], [9].

DIFTS 2011 14

Example 2 (Continuation of Example 1). Again consider
the timed automaton in Figure 1. The MES

X1
ν
= far ∧ ∀([−](X1)) (1)

represents the safety property “the train is always in
state 0: far”, read as “the variable X1 is the greatest
fixpoint of being in state 0: far and for all time advances
(∀), for all next actions ([−]), X1 is true.” This is an
invalid specification for the timed automaton because the
execution

(0: far, [xi = 0])
2.5−→ (0: far, [xi = 2.5])

approach−→ (1: near, [xi = 0])
2−→ . . . (2)

reaches location 1: near and thus violates the property.

III. DATA STRUCTURES FOR CLOCK VALUE SETS

A. Clock Zones

This definition of a clock zone is taken from [7], [19].

Definition 3 (Clock zone). A clock zone is a convex
combination of single-clock inequalities. Each clock
zone can be constructed using the following grammar,
where xi and xj are arbitrary clocks and c ∈ Z:

Z ::= xi < c | xi ≤ c | xi > c | xi ≥ c
| xi − xj < c | xi − xj ≤ c | Z ∧ Z (3)

Clock zones extend clock constraints with inequalities
of clock differences. These inequalities are used for
model checking even though clock difference inequali-
ties are not used in timed automata. Moreover, in general,
the representation of a clock zone is not unique.

Example 3. Let z = 1 ≤ x1 < 3 ∧ 0 ≤ x2 ≤ 5.
There is the implicitly encoded constraint x2 − x1 ≤ 4.
To see this, consider the longer path of constraints (x0
is a dummy clock that always has value 0):

x2 − x0 ≤ 5 (x2 ≤ 5)
+ x0 − x1 ≤ −1 (1 ≤ x1)

x2 − x1 ≤ 4

To provide a standardized, or canonical, form for clock
zone representations, we use shortest path closure [17].
This form makes every implicit constraint explicit. This
can be implemented in O(n3) time using Floyd-Warshall
all-pairs shortest path algorithm, described in [24], [25].
Other standard forms exist [18], [20].

While converting to a canonical form takes a consid-
erable amount of time, it is needed to simplify and stan-
dardize the algorithms for the zone operations includ-
ing time successor (succ(z)) computations and subset
checks. For time successor, having the zone in canonical
form allows the time elapse operation to simply set all
single-clock upper bound constraints to <∞.

B. Clock Zone Data Structures: Difference Bound Ma-
trix (DBM), CRDZone and CRDArray

One way to represent a clock zone is a difference
bound matrix (DBM), described in Definition 4. See [15],
[17] for a more thorough description.

Definition 4 (Difference bound matrix (DBM)). Let
n − 1 be the number of clocks. A DBM is an n × n
matrix where entry (i, j) is the upper bound of the clock
constraint xi − xj , represented as xi − xj ≤ uij or
xi − xj < uij . The 0th index is reserved for a dummy
clock x0, which is always 0, allowing bounds on single
clocks to be represented by the clock differences xi−x0
and x0 − xj . See Figure 2 for a picture of the DBM
structure and Example 4 for a concrete example.

Definition 5 (CRDZone). A CRDZone is a sparse sorted
linked-list representation of a clock zone. Each constraint
is encoded like a constraint in a DBM, as an upper bound
constraint on xi − xj , labeled as (i, j), with x0 always
being 0. The CRDZone has these properties:

1) Nodes are in lexicographical order of clock con-
straint: (i1, j1) ≺ (i2, j2) iff i1 < i2 or (i1 = i2
and j1 < j2).

2) The (0, 0) node is always given to ensure a univer-
sal head node with an initial value of x0−x0 ≤ 0.

3) If a CRDZone node (i, j) is missing then the zone
has an implicit constraint: (i, i) : xi − xi ≤ 0 and
(i, j), i 6= j : xi − xj <∞.

See Figure 3 for a picture of the CRDZone structure
and Example 4 for a concrete example.

This lexicographical ordering is the same ordering
used in CDDs and CRDs [2], [18]. While the ordering

i

{ j︷ ︸︸ ︷.
.
. xi − xj ≤ uij

Fig. 2. DBM: a matrix with constraint xi−xj ≤ uij in entry (i, j).

DIFTS 2011 15

is conjectured to influence performance, this is the only
ordering we implemented. Likewise, having different
implicit constraints, such as making xi − x0 ≤ 0 (for
all i) implicit, is conjectured to influence performance.

Definition 6 (CRDArray). The CRDArray is an array list
implementation of the CRDZone. Thus, instead of using
linked nodes, we use an array to store the nodes with
the 0th element being the head. We statically allocate
the array to hold the maximum number of elements and
store a back-pointer to the back of the array list. See
Figure 4 for a picture of the CRDArray structure and
Example 4 for a concrete example.

Using a dynamic allocation instead of our static allo-
cation for the CRDArray array list is conjectured to save
space at the expense of time.

Example 4 (Clock zone in various representations).
Consider the clock zone from Example 3, which is
z = 1 ≤ x1 < 3 ∧ 0 ≤ x2 ≤ 5 ∧ x2 − x1 ≤ 4.

DBM representation of z:x0 − x0 ≤ 0 x0 − x1 ≤ −1 x0 − x2 ≤ 0
x1 − x0 < 3 x1 − x1 ≤ 0 x1 − x2 <∞
x2 − x0 ≤ 5 x2 − x1 ≤ 4 x2 − x2 ≤ 0

CRDZone representation of z:

x0 − x0 ≤ 0 −→ x0 − x1 ≤ −1 −→ x0 − x2 ≤ 0

−→ x1 − x0 < 3 −→ x2 − x0 ≤ 5 −→ x2 − x1 ≤ 4

CRDArray representation of z:

[x0 − x0 ≤ 0|x0 − x1 ≤ −1|x0 − x2 ≤ 0
|x1 − x0 < 3|x2 − x0 ≤ 5|x2 − x1 ≤ 4]

Remark 1 (On DBM vs. CRDZone and CRDArray
methods). Due to the sparse implementation and removal
of implicit nodes, the CRDZone and CRDArray can
improve time by reducing the number of nodes, and thus

−→ . . . −→ xi − xj ≤ uij −→ . . .

Fig. 3. CRDZone: A linked list with nodes in lexicographical order
of constraint xi − xj ≤ uij .

[| | . . . |xi − xj ≤ uij | . . .]

Fig. 4. CRDArray: An array list with nodes in lexicographical order
of constraint xi − xj ≤ uij .

the number of nodes looked at during a full traversal.
This can speed up traversal-based algorithms such as
intersect and subset check. However, algorithms like
clock reset, emptiness check and canonical form use
O(1) access of middle nodes in DBMs (the CRDZone
and CRDArray do not have O(1) access for all nodes),
resulting in a performance slowdown for those CRDZone
and CRDArray methods. For space, the CRDZone and
CRDArray can store fewer nodes but must store the
explicit indices, resulting in more space per node.

IV. ON-THE-FLY MODEL CHECKING: CONVERTING

TO A PES AND PROOF SEARCH

Our model checker takes in a predicate equation
system (PES) (taken from [9], [13]), which is a general
framework representing logical expressions that involve
fixpoints and first order quantifiers. We take a timed
automaton and a MES and convert it to a PES. Currently
the PES model checker can only check safety properties,
which involve only greatest fixpoints in both the PES
and the input MES. For more information on a PES,
including its syntax, semantics and how to convert a
timed automaton and a MES to a PES, see [6], [9].

The model checker takes the conclusion sequent (the
sequent we wish to prove) and applies proof rules in
a recursive goal-driven tree-like fashion on the premise
sequents, trying to prove each premise sequent until it
reaches a proof rule with no premise (called a leaf) or
a circularity (a previously seen premise sequent). When
checking a proof, we will often encounter circularity.
In general, when the circularity reached is a greatest
fixpoint, we can stop and declare the proof branch valid.
For the formal conditions for circularity and the proof
rules, see [6], [9].

V. EXPERIMENTS: VARIOUS DATA STRUCTURE

IMPLEMENTATIONS

We compare the DBM implementation to the CRD-
Zone and CRDArray implementations. Each implemen-
tation uses shortest path closure to compute canonical
form. The only difference in the DBM, CRDZone and
CRDArray versions is the data structure implementation.

Remark 2 (On our analysis approach). We ask: what does
it mean for an implementation to perform better than
another? We consider consider better to be measured
in the number (or percentage) of examples that one
system outperforms another in. The larger aim is for
any implementation, if we were to know all the examples
that it would run (including and beyond the experiment
examples), we would like one implementation to perform

DIFTS 2011 16

(strictly) better for at least 51% of this hypothetical set.
This influences our analysis.

Given our meaning of better in Remark 2, we con-
sider the median, 25% and 75% percentile values as
insights into typical examples and use the histograms
to get a bigger picture of the sample distribution of the
performance differences for the experiment, and weigh
these more heavily than the mean and standard deviation
values. The mean and the standard deviation provide us
with an alternative picture of the overall performance and
give hints of either a unusual sample distribution (since
in a symmetric distribution the mean equals the median)
or the presence of potential outliers.

The benchmark choice was modeled off of [6], with
the addition of a model of the generalized railroad
crossing (GRC) protocol [26]. We also used all the
protocols in [6], which are the Carrier Sense, Multi-
ple Access with Collision Detection (CSMA/CD), the
Fiber Distributed Data Interface (FDDI), Fischer’s Mu-
tual Exclusion (FISCHER), the Leader Election protocol
(LEADER and LBOUND) and the PATHO Operating
System (PATHOS) protocol, where each of these proto-
cols is described some in [6]. There are 53 benchmarks
that ran on each implementation.

Experiments were run on a Linux machine with a
3.4 GHz Intel Pentium 4 Dual Processor (each a single
core) with 4 GB RAM. Time and space measurements
(maximum space used) were made using the memtime
(http://www.update.uu.se/∼johanb/memtime/) tool (using
time elapsed and Max VSize). The data tables are
in the Appendix.

VI. STATISTICS, ANALYSIS AND DISCUSSION

A. Histograms and Descriptive Statistics

Running the different data structure implementations
with the same examples yields paired data. Hence,
we can take the two implementations and pair them
example-by-example on their time and space differences
to analyze their performance. When we pair the DBM −
CRDZone samples, we take the DBM measurement and
subtract the CRDZone measurement for the same exam-
ple to get a DBM − CRDZone paired data point. For
instance, the MUX-5-a paired point is -0.92s, 1.94MB,
since the DBM point is 1.22s, 14.67MB, and the CRD-
Zone point is 2.14s, 12.73MB. Pairings are likewise done
to obtain the paired samples for DBM − CRDArray and
CRDZone − CRDArray. For more information, see a
Statistics text such as [27].

Tables I, II and III contain descriptive statistics on the
paired difference in example-by-example performance of

TABLE I
DESCRIPTIVE STATISTICS FOR PAIRED DBM − (MINUS)
CRDZONE EXAMPLES, FOR TIME (S) AND SPACE (MB).

Statistic DBM − CRD-
Zone (Time)

DBM − CRD-
Zone (Space)

Mean -67.55 34.96
Standard Deviation 428.35 212.65
25% Percentile -1.24 0.00
Median 0.00 1.85
75% Percentile 0.06 25.70

TABLE II
DESCRIPTIVE STATISTICS FOR PAIRED DBM − (MINUS)
CRDARRAY EXAMPLES, FOR TIME (S) AND SPACE (MB).

Statistic DBM − CRDAr-
ray (Time)

DBM − CRDAr-
ray (Space)

Mean -112.95 -47.75
Standard Deviation 655.65 235.63
25% Percentile -3.16 -20.54
Median -0.29 -2.81
75% Percentile 0.00 -0.01

TABLE III
DESCRIPTIVE STATISTICS FOR PAIRED CRDZONE − (MINUS)

CRDARRAY EXAMPLES, FOR TIME (S) AND SPACE (MB).

Statistic CRDZone − CR-
DArray (Time)

CRDZone − CR-
DArray (Space)

Mean -45.40 -82.71
Standard Deviation 229.06 160.91
25% Percentile -2.02 -52.67
Median -0.21 -19.35
75% Percentile -0.03 -1.63

the DBM, CRDZone and CRDArray. Figures 5, 6 and
7 have histograms that plot the overall time and space
differences between the DBM, CRDZone and CRDArray
implementations. Bin colors and are changed to help
more easily find the -0.001 to 0.001 (equal performance,
since our measurement precision is 0.01 units), and -0.25
to -0.001 and 0.001 to 0.25 bins (slight differences).

We do not use 95% confidence intervals, paired two-
sample hypothesis (z) tests or ANOVA (Analysis of
Variance) because the independence assumption of the
samples (the example benchmarks) does not hold. Fur-
thermore, we do not use a Wilcoxon signed-rank test
for the median because the symmetry assumption of the
distribution is not believed to hold, and thus we cannot
analyze the hypothetical benchmark distribution referred
to in Remark 2. We do use paired sampling since we have
its only requirement—perfect correlation of the samples.
More information is in [27].

DIFTS 2011 17

0	
 1	
 2	

8	

3	

6	

4	

15	

6	

2	

5	

1	
 0	
 0	
 0	

0	

2	

4	

6	

8	

10	

12	

14	

16	

Up T
o

-5
00

0	

-5
00

0 T
o

-5
00
	

-5
00

 To
 -1

00
	

-1
00

 To
 -1

0	

-1
0 T

o
-1
	

-1
 To

 -0
.25
	

-0
.25

 To
 -0

.00
1	

-0
.00

1 T
o

0.0
01
	

0.0
01

 To
 0.

25
	

0.2
5 T

o
1	

1 T
o

10
	

10
 To

 10
0	

10
0 T

o
50

0	

50
0 T

o
50

00
	

Mor
e	

C
o

u
n

t	

DBM – CRDZone Time (s)	

0	

1	
 1	

4	

5	

0	

12	

0	
 0	

2	

11	

10	

2	

5	

0	

0	

2	

4	

6	

8	

10	

12	

Up T
o

-2
04

8	

-2
04

8 T
o

-2
56
	

-2
56

 To
 -1

24
	

-1
24

 To
 -1

6	

-1
6 T

o
-1
	

-1
 To

 -0
.25
	

-0
.25

 To
 -0

.00
1	

-0
.00

1 T
o

0.0
01
	

0.0
01

 To
 0.

25
	

0.2
5 T

o
1	

1 T
o

16
	

16
 To

 12
4	

12
4 T

o
25

6	

25
6 T

o
20

48
	

Mor
e	

C
o

u
n

t	

DBM – CRDZone Space (MB)	

Fig. 5. Histograms comparing the DBM − (minus) CRDZone time
(s) (top) and space (MB) (bottom) differences.

0	

1	

3	

7	
 7	

9	

7	

12	

1	
 1	

4	

1	

0	
 0	
 0	

0	

2	

4	

6	

8	

10	

12	

Up T
o

-5
00

0	

-5
00

0 T
o

-5
00
	

-5
00

 To
 -1

00
	

-1
00

 To
 -1

0	

-1
0 T

o
-1
	

-1
 To

 -0
.25
	

-0
.25

 To
 -0

.00
1	

-0
.00

1 T
o

0.0
01
	

0.0
01

 To
 0.

25
	

0.2
5 T

o
1	

1 T
o

10
	

10
 To

 10
0	

10
0 T

o
50

0	

50
0 T

o
50

00
	

Mor
e	

C
o

u
n

t	

DBM – CRDArray Time (s)	

0	
 1	

3	

11	

14	

4	

9	

0	
 1	
 0	

3	

6	

1	
 0	
 0	

0	

2	

4	

6	

8	

10	

12	

14	

Up T
o

-2
04

8	

-2
04

8 T
o

-2
56
	

-2
56

 To
 -1

24
	

-1
24

 To
 -1

6	

-1
6 T

o
-1
	

-1
 To

 -0
.25
	

-0
.25

 To
 -0

.00
1	

-0
.00

1 T
o

0.0
01
	

0.0
01

 To
 0.

25
	

0.2
5 T

o
1	

1 T
o

16
	

16
 To

 12
4	

12
4 T

o
25

6	

25
6 T

o
20

48
	

Mor
e	

C
o

u
n

t	

DBM – CRDArray Space (MB)	

Fig. 6. Histograms comparing the DBM − (minus) CRDArray time
(s) (top) and space (MB) (bottom) differences.

B. Analysis of Results

1) DBM vs. CRDZone: The CRDZone performs
slower for 45% of the tested examples (at least as slow
for 74%) with a median difference of 0.00s slower, while
the CRDZone has a mean difference of 67.55s slower.
Thus, we infer the CRDZone is either slightly slower or
competitive to the DBM for this benchmark, but due
to insufficient evidence (45% of the examples is not
enough) do not infer that the DBM performs strictly
faster than the CRDZone.

The CRDZone takes less space for 57% of the tested
examples (at most as much space for 57%) with a median
amount of 1.85MB less space and a mean amount
of 34.96MB less space. The CRDZone takes at least

0	
 1	

3	

6	

8	
 8	

15	

12	

0	
 0	
 0	
 0	
 0	
 0	
 0	

0	

2	

4	

6	

8	

10	

12	

14	

16	

Up T
o

-5
00

0	

-5
00

0 T
o

-5
00
	

-5
00

 To
 -1

00
	

-1
00

 To
 -1

0	

-1
0 T

o
-1
	

-1
 To

 -0
.25
	

-0
.25

 To
 -0

.00
1	

-0
.00

1 T
o

0.0
01
	

0.0
01

 To
 0.

25
	

0.2
5 T

o
1	

1 T
o

10
	

10
 To

 10
0	

10
0 T

o
50

0	

50
0 T

o
50

00
	

Mor
e	

C
o

u
n

t	

CRDZone – CRDArray Time (s)	

0	

7	

2	

18	

16	

1	

9	

0	
 0	
 0	
 0	
 0	
 0	
 0	
 0	

0	

5	

10	

15	

Up T
o

-2
04

8	

-2
04

8 T
o

-2
56
	

-2
56

 To
 -1

24
	

-1
24

 To
 -1

6	

-1
6 T

o
-1
	

-1
 To

 -0
.25
	

-0
.25

 To
 -0

.00
1	

-0
.00

1 T
o

0.0
01
	

0.0
01

 To
 0.

25
	

0.2
5 T

o
1	

1 T
o

16
	

16
 To

 12
4	

12
4 T

o
25

6	

25
6 T

o
20

48
	

Mor
e	

C
o

u
n

t	

CRDZone – CRDArray Space (MB)	

Fig. 7. Histograms comparing the CRDZone − (minus) CRDArray
time (s) (top) and space (MB) (bottom) differences.

0.25MB less space for 28 such examples and more than
0.25MB space for only 11 examples. Thus (even though
57% is not a large majority), we infer the CRDZone
takes less space overall for this benchmark.

2) DBM vs. CRDArray: The CRDArray performs
slower for 64% of the tested examples (at least as slow
for 89%) with a median difference of 0.29s slower and
a mean difference of 112.95s slower. Thus we infer the
CRDArray performs slower overall for this benchmark.

The CRDArray takes more space for 77% (at least as
much space for 77%) of the examples with a median
amount of 2.81MB more space and mean amount of
47.75MB more. Thus we infer the CRDArray takes more
space overall for this benchmark.

3) CRDZone vs. CRDArray: The CRDArray performs
slower for 77% of the tested examples (at least as slow
for 100%) with a median difference of 0.21s slower and
a mean difference of 45.40s slower. Thus we infer the
CRDArray is slower overall for this benchmark.

The CRDArray takes more space for 100% of the
examples with a median amount of 19.35MB more space
and a mean amount of 82.71MB more. Thus we infer the
CRDArray takes more space overall for this benchmark.

C. Discussion of Results

The CRDZone and CRDArray method that converts
zones to canonical form was implemented using array-
based algorithms, where it temporarily converts the clock
zone to and from a matrix (the algorithm is similar to
a DBM algorithm for those methods). It is possible that
performance can be improved by trying an algorithm that

DIFTS 2011 18

does not require copying to and from a matrix. All time
vs. space tradeoffs were taken to save time.

Furthermore, we ran a CRDZone execution twice (first
execution reported) and compared the distribution of
their differences to get an idea of noise and/or mea-
surement error. The differences in the histograms are
larger than the differences of the noisy implementation,
so thus we suspect the differences in performances are
due to more than just uncertain measurement/noisy data.
However, slight differences (≤ 0.25s or ≤ 0.25MB)
may be due to execution noise or examples that require
very little time and/or space. The PATHOS-7-b is one
such resource-light example, taking at most 0.10s and
2.89MB for each implementation. In contrast, the MUX-
7-a example is resource-heavy, being the only example
to takes more than 2000s for each implementation.

When profiling the implementations using gprof
(http://www.gnu.org/s/binutils/), CRDZones take more
time than DBMs for clock resets and emptiness checks,
but the invariant checking method (mostly clock zone
intersections) takes less time for CRDZones than DBMs.

From the data (see the Appendix), we notice that the
data structure implementation choice has a noticeable
influence on model checking performance for specific
examples. To see this, consider the examples MUX-7-a,
where the DBM finished 3118.94 seconds earlier than the
CRDZone, and LEADER-100-c, where the CRDZone
checked the example in 55% of the time required for
the DBM. There are also noticeable differences relative
to the CRDArray.

D. Related Work

A different way of modeling programs using discrete-
time is discussed in [4]. PES are in [9], and they have
been used to model check various systems in [6], [9],
[14]. Difference bound matrices originated from [15]
and are used in various studies such as in those in [17],
[23]. Other tools that can model check timed automata
(safety and liveness properties) include KRONOS [23],
UPPAAL [16], RED [18] and Rabbit [28]. We built
upon Zhang’s implementation using predicate equation
systems in [6], [9], which supports safety properties. A
similar experiment involving using a reduced canonical
form is in [20], which focuses on the influence of
different standard clock zone forms instead of comparing
list vs. array implementations.

A remark on a sparse DBM representation saving
space, with neither a mention on time nor experimental
data, is given in [17]. There is an experiment comparing
CDDs to another BDD-like structure used by Rabbit in

[21], but this experiment compares data structures for
non-convex sets of clock valuations (unions of clock
zones), and the comparison is across different tools with
different model checking approaches, and not the same
tool with different data structures.

VII. CONCLUSIONS AND FUTURE WORK

Here are our conclusions from the experiment:
1) Time: (DBM ≤t CRDZone) <t CRDArray). For

this benchmark, we infer that the DBM is either
competitive with or slightly faster than the CRD-
Zone and both perform faster than the CRDArray.
There is insufficient evidence to conclude that the
DBM is strictly faster.

2) Space: (CRDZone <s DBM) <s CRDArray. For
this benchmark, we infer that the CRDZone takes
the least amount of space and the DBM takes less
space than the CRDArray for this experiment.

For potential reasons for performance differences and
analysis of some theoretical differences, see Remark 1.

Future work is to model check least fixpoint (µ)
equations, to implement all of the proof rules given in
[6], [9] and to model check any PES. Comparing lists of
DBMs to a CRD or CDD to improve the performance of
the expanded implementation is future work, as well as
comparing different kinds of standard forms and different
CRDZone node orderings.

ACKNOWLEDGEMENTS

We thank Dezhuang Zhang for providing the code base
[6] and for his insights.

REFERENCES

[1] R. Alur, C. Courcoubetis, and D. Dill, “Model-Checking in
Dense Real-Time,” Inf. Comput., vol. 104, pp. 2–34, 1993.

[2] G. Behrmann, K. G. Larsen, J. Pearson, C. Weise, and W. Yi,
“Efficient Timed Reachability Analysis Using Clock Difference
Diagrams,” in CAV ’99, vol. 1633. Springer Berlin / Heidel-
berg, 1999.

[3] T. Henzinger, X. Nicollin, J. Sifakis, and S. Yovine, “Symbolic
Model Checking for Real-time Systems,” Inf. Comput., vol. 111,
pp. 193–244, 1994.

[4] L. Lamport, “Real-Time Model Checking Is Really Simple,”
Correct Hardware Design and Verification Methods, pp. 162
–175, 2005.

[5] O. V. Sokolsky and S. A. Smolka, “Local model checking for
real-time systems,” in CAV ’95. Springer-Verlag, 1995, pp.
211–224.

[6] D. Zhang and R. Cleaveland, “Fast Generic Model-Checking
for Data-Based Systems,” in FORTE, F. Wang, Ed., vol. 3731.
Springer, 2005, pp. 83–97.

[7] R. Alur, “Timed Automata,” in CAV ’99. London, UK:
Springer-Verlag, 1999, pp. 8–22.

[8] C. Baier and J.-P. Katoen, Principles of Model Checking.
Cambridge, MA: The MIT Press, 2008.

DIFTS 2011 19

[9] D. Zhang and R. Cleaveland, “Fast On-the-Fly Parametric Real-
Time Model Checking,” in RTSS ’05. Washington, DC, USA:
IEEE Computer Society, 2005, pp. 157–166.

[10] J. Bradfield and C. Stirling, “Local Model Checking for Infinite
State Spaces,” Theor. Comput. Sci., vol. 96, no. 1, pp. 157–174,
1992.

[11] R. Cleaveland and B. Steffen, “A Linear-Time Model-Checking
Algorithm for the Alternation-Free Modal Mu-Calculus,” Form.
Methods Syst. Des., vol. 2, no. 2, pp. 121–147, 1993.

[12] E. A. Emerson and C. L. Lei, “Efficient Model Checking in
Fragments of the Propositional Mu-Calculus,” in LICS ’86.
IEEE Computer Society Press, 1986, pp. 267–278.

[13] J. F. Groote and T. A. Willemse, “Parameterised Boolean
Equation Systems,” Theoretical Computer Science, vol. 343,
no. 3, pp. 332 – 369, 2005.

[14] D. Zhang and R. Cleaveland, “Efficient Temporal-Logic Query
Checking for Presburger Systems,” in ASE ’05. New York,
NY, USA: ACM, 2005, pp. 24–33.

[15] D. L. Dill, “Timing Assumptions and Verification of Finite-
State Concurrent Systems,” in Proceedings of the International
Workshop on Automatic Verification Methods for Finite State
Systems. London, UK: Springer-Verlag, 1990, pp. 197–212.

[16] G. Behrmann, A. David, and K. G. Larsen, “A Tutorial on
Uppaal,” in Formal Methods for the Design of Real-Time
Systems, vol. 3185. Springer Berlin / Heidelberg, 2004, pp.
200–236.

[17] J. Bengtsson and W. Yi, “Timed Automata: Semantics, Al-
gorithms,” in Lecture Notes in Computer Science, vol. 3098.
Springer, 2004, pp. 87–124.

[18] F. Wang, “Efficient Verification of Timed Automata with BDD-
Like Data-Structures,” in VMCAI 2003. London, UK: Springer-
Verlag, 2003, pp. 189–205.

[19] E. M. Clarke, O. Grumberg, and D. A. Peled, Model Checking.
The MIT Press, 1999.

[20] K. Larsen, F. Larsson, P. Pettersson, and W. Yi, “Efficient
Verification of Real-Time Systems: Compact Data Structure
and State-Space Reduction,” in RTSS 1997. IEEE Computer
Society, December 1997, pp. 14–24.

[21] D. Beyer and A. Noack, “Can decision diagrams overcome state
space explosion in real-time verification?” in FORTE 2003.
Springer Berlin / Heidelberg, 2003, vol. 2767, pp. 193–208.

[22] E.-R. Olderog and H. Dierks, Real-Time Systems: Formal Spec-
ification and Automatic Verification. Cambridge University
Press, 2008.

[23] S. Yovine, “Model Checking Timed Automata,” in Lectures on
Embedded Systems, European Educational Forum, School on
Embedded Systems. London, UK: Springer-Verlag, 1998, pp.
114–152.

[24] R. K. Ahuja, T. L. Magnanti, and J. B. Orlin, Network Flows:
Theory, Algorithms and Applications. Prentice-Hall, 1993.

[25] T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein,
Introduction to Algorithms, 2nd ed. MIT Press, 2001.

[26] C. L. Heitmeyer, B. G. Labaw, and R. D. Jeffords, “A Bench-
mark for Comparing Different Approaches for Specifying and
Verifying Real-Time Systems,” Naval Research Laboratory,
Tech. Rep. ADA462244, 1993.

[27] J. L. Devore, Probability and Statistics for Engineering and the
Sciences, 6th ed. Duxbury Press, 2003.

[28] D. Beyer, C. Lewerentz, and A. Noack, “Rabbit: A tool for bdd-
based verification of real-time systems,” in CAV ’03. Springer
Berlin / Heidelberg, 2003, vol. 2725, pp. 122–125.

TABLE IV
EXPERIMENT RESULTS—A EXAMPLES—TIME (S): CORRECT

SYSTEM, CORRECT SPECIFICATION.

Example DBM CRDZone CRDArray
CSMACD-3-a 0.10 0.20 (200%) 0.20 (200%)
CSMACD-4-a 3.16 4.48 (142%) 6.50 (206%)
FDDI-20-a 2.04 3.03 (149%) 4.66 (228%)
FDDI-40-a 58.49 79.2 (135%) 126.82 (217%)
FDDI-50-a 169.66 230.7 (136%) 370.71 (219%)
MUX-5-a 1.22 2.14 (175%) 2.75 (225%)
MUX-6-a 35.49 74.44 (210%) 98.08 (276%)
MUX-7-a 2623.61 5742.55 (219%) 7383.73 (281%)
LEADER-6-a 0.41 0.71 (173%) 0.92 (224%)
LEADER-7-a 12.99 25.89 (199%) 34.22 (263%)
LBOUND-6-a 0.51 1.02 (200%) 1.32 (259%)
LBOUND-7-a 17.36 37.07 (214%) 49.64 (286%)
PATHOS-4-a 13.7 35.23 (257%) 50.58 (369%)
GRC-3-a 0.92 1.63 (177%) 2.12 (230%)
GRC-4-a 252.05 431.63 (171%) 748.01 (297%)

TABLE V
EXPERIMENT RESULTS—A EXAMPLES—SPACE (MB): CORRECT

SYSTEM, CORRECT SPECIFICATION.

Example DBM CRDZone CRDArray
CSMACD-3-a 2.88 7.55 (262%) 11.02 (382%)
CSMACD-4-a 209.97 104.47 (50%) 179.53 (86%)
FDDI-20-a 5.96 9.00 (151%) 13.57 (227%)
FDDI-40-a 27.55 57.24 (208%) 100.30 (364%)
FDDI-50-a 53.91 116.79 (217%) 209.29 (388%)
MUX-5-a 14.57 12.73 (87%) 18.55 (127%)
MUX-6-a 84.05 116.35 (138%) 168.38 (200%)
MUX-7-a 625.42 1667.94 (267%) 2302.39 (368%)
LEADER-6-a 3.57 6.59 (185%) 7.82 (219%)
LEADER-7-a 20.98 104.02 (496%) 133.39 (636%)
LBOUND-6-a 3.93 8.66 (220%) 10.39 (264%)
LBOUND-7-a 27.89 157.54 (565%) 199.99 (717%)
PATHOS-4-a 40.73 38.11 (94%) 57.45 (141%)
GRC-3-a 10.48 7.87 (75%) 11.23 (107%)
GRC-4-a 318.22 220.64 (69%) 355.02 (112%)

APPENDIX

EXPERIMENTAL DATA

For the experiments, we use three kinds of examples:
• Valid A Examples (in Tables IV and V): Correct

system implementations with valid safety specifica-
tions.

• Invalid B Examples (in Tables VI and VII): A
examples with invalid specifications.

• Invalid C Examples (in Tables VIII and IX):
A examples with buggy implementations of the
systems that do not satisfy the A specifications.

DIFTS 2011 20

TABLE VI
EXPERIMENT RESULTS—B EXAMPLES—TIME (S): CORRECT

SYSTEM, INVALID SPECIFICATION.

Example DBM CRDZone CRDArray
CSMACD-4-b 0.10 0.10 (100%) 0.20 (200%)
CSMACD-5-b 0.51 0.51 (100%) 0.71 (139%)
CSMACD-6-b 3.35 2.73 (81%) 3.97 (119%)
FDDI-30-b 1.53 1.53 (100%) 2.23 (146%)
FDDI-40-b 4.66 4.58 (98%) 6.60 (142%)
FDDI-60-b 8.64 5.07 (59%) 5.48 (63%)
MUX-20-b 0.41 0.41 (100%) 0.51 (124%)
MUX-30-b 0.92 0.91 (99%) 1.21 (132%)
MUX-40-b 1.93 1.73 (90%) 2.23 (116%)
LEADER-10-b 0.10 0.10 (100%) 0.10 (100%)
LEADER-20-b 0.10 0.20 (200%) 0.20 (200%)
LBOUND-10-b 0.10 0.10 (100%) 0.20 (200%)
LBOUND-40-b 6.82 17.46 (256%) 29.54 (433%)
PATHOS-7-b 0.10 0.10 (100%) 0.10 (100%)
PATHOS-8-b 0.10 0.10 (100%) 0.10 (100%)
PATHOS-9-b 0.10 0.10 (100%) 0.10 (100%)
GRC-3-b 0.10 0.10 (100%) 0.10 (100%)
GRC-4-b 0.51 0.61 (120%) 0.82 (161%)
GRC-5-b 9.75 13.4 (137%) 19 (195%)

TABLE VII
EXPERIMENT RESULTS—B EXAMPLES—SPACE (MB): CORRECT

SYSTEM, INVALID SPECIFICATION.

Example DBM CRDZone CRDArray
CSMACD-4-b 2.88 2.89 (100%) 13.67 (474%)
CSMACD-5-b 144.14 72.38 (50%) 123.52 (86%)
CSMACD-6-b 1134.30 553.21 (49%) 961.90 (85%)
FDDI-30-b 9.60 9.06 (94%) 19.08 (199%)
FDDI-40-b 17.19 16.03 (93%) 39.00 (227%)
FDDI-60-b 27.85 14.53 (52%) 63.52 (228%)
MUX-20-b 19.37 11.15 (58%) 16.96 (88%)
MUX-30-b 28.28 16.87 (60%) 28.58 (101%)
MUX-40-b 43.01 21.85 (51%) 42.81 (100%)
LEADER-10-b 2.88 2.89 (100%) 2.89 (100%)
LEADER-20-b 2.88 4.59 (159%) 5.69 (197%)
LBOUND-10-b 2.88 2.89 (100%) 3.38 (117%)
LBOUND-40-b 18.29 15.23 (83%) 30.73 (168%)
PATHOS-7-b 2.88 2.89 (100%) 2.89 (100%)
PATHOS-8-b 2.88 2.89 (100%) 2.89 (100%)
PATHOS-9-b 2.88 2.89 (100%) 2.89 (100%)
GRC-3-b 2.88 2.89 (100%) 2.89 (100%)
GRC-4-b 58.74 32.08 (55%) 53.42 (91%)
GRC-5-b 717.21 379.44 (53%) 648.00 (90%)

The experimental data for the 53 example benchmarks
is provided in Tables IV, V, VI, VII, VIII and IX,
with the best entry(ies) in each row bolded and per-
centage change relative to the DBM, to the nearest %,

TABLE VIII
EXPERIMENT RESULTS—C EXAMPLES—TIME (S): BUGGY

SYSTEM, CORRECT SPECIFICATION.

Example DBM CRDZone CRDArray
CSMACD-6-c 0.51 0.41 (80%) 0.51 (100%)
CSMACD-7-c 2.03 1.82 (90%) 2.03 (100%)
CSMACD-8-c 9.55 8.42 (88%) 9.55 (100%)
FDDI-30-c 0.51 0.41 (80%) 0.41 (80%)
FDDI-40-c 1.52 0.92 (61%) 1.01 (66%)
FDDI-60-c 6.71 3.98 (59%) 4.17 (62%)
MUX-6-c 139.02 258.32 (186%) 401.84 (289%)
LEADER-60-c 6.81 3.96 (58%) 4.06 (60%)
LEADER-70-c 14.42 8.12 (56%) 8.13 (56%)
LEADER-100-c 82.94 45.78 (55%) 45.88 (55%)
LBOUND-6-c 0.10 0.10 (100%) 0.20 (200%)
LBOUND-7-c 0.61 0.81 (133%) 1.12 (184%)
LBOUND-8-c 12.48 32.00 (256%) 52.9 (424%)
PATHOS-5-c 0.10 0.10 (100%) 0.10 (100%)
PATHOS-6-c 0.10 0.10 (100%) 0.10 (100%)
PATHOS-7-c 0.10 0.10 (100%) 0.10 (100%)
GRC-3-c 0.10 0.10 (100%) 0.10 (100%)
GRC-4-c 0.51 0.81 (159%) 1.02 (200%)
GRC-5-c 9.65 13.31 (138%) 18.88 (196%)

TABLE IX
EXPERIMENT RESULTS—C EXAMPLES—SPACE (MB): BUGGY

SYSTEM, CORRECT SPECIFICATION.

Example DBM CRDZone CRDArray
CSMACD-6-c 85.32 18.53 (22%) 79.30 (93%)
CSMACD-7-c 337.43 191.84 (57%) 320.89 (95%)
CSMACD-8-c 1369.07 787.75 (58%) 1338.62 (98%)
FDDI-30-c 4.88 4.60 (94%) 9.93 (203%)
FDDI-40-c 9.55 6.41 (67%) 19.63 (206%)
FDDI-60-c 24.07 14.24 (59%) 55.57 (231%)
MUX-6-c 1607.73 1047.64 (65%) 1723.25 (107%)
LEADER-60-c 29.24 10.79 (37%) 63.66 (218%)
LEADER-70-c 51.18 15.30 (30%) 108.80 (213%)
LEADER-100-c 203.89 40.65 (20%) 431.71 (212%)
LBOUND-6-c 2.88 2.89 (100%) 4.48 (155%)
LBOUND-7-c 12.52 10.34 (83%) 14.42 (115%)
LBOUND-8-c 75.66 59.23 (78%) 90.48 (120%)
PATHOS-5-c 2.88 2.89 (100%) 2.89 (100%)
PATHOS-6-c 2.88 2.89 (100%) 2.89 (100%)
PATHOS-7-c 2.88 2.89 (100%) 2.89 (100%)
GRC-3-c 2.88 2.89 (100%) 2.89 (100%)
GRC-4-c 58.74 35.94 (61%) 59.47 (101%)
GRC-5-c 717.29 379.35 (53%) 647.94 (90%)

in parenthesis. Time data is given to the nearest 0.01s
(second) and space data is given to the nearest 0.01MB
(Megabyte). Given the percentage rounding, sometimes
an example with slightly different performance may still
have a 100% value.

DIFTS 2011 21

metaSMT: Focus On Your Application Not On
Solver Integration

Finn Haedicke Stefan Frehse Görschwin Fey Daniel Große Rolf Drechsler
Institute of Computer Science

University of Bremen, 28359 Bremen, Germany
{finn,sfrehse,fey,grosse,drechsle}@informatik.uni-bremen.de

Abstract—Decision procedures are used as core tech-
nique in many applications today. In this context, auto-
mated reasoning based on Satisfiability Modulo Theories
(SMT) is very effective. However, developers have to decide
which concrete engine to use and how to integrate the
engine into the application. Even if file formats like SMT-
LIB standardize the input of many engines, advanced
features remain unused and the integration of the engine
is left to the programmer.

This work presents metaSMT, a framework that inte-
grates advanced reasoning engines into the program code
of the respective application. metaSMT provides an easy to
use language that allows engine independent programming
while gaining from high performance reasoning engines.

State-of-the-art solvers for satisfiability and other theo-
ries are available for the user via metaSMT with minimal
programming effort. For two examples we show how
metaSMT is used in current research projects.

I. INTRODUCTION

In recent years, formal methods have become attractive
to solve complex computational hard problems. Decision
procedures are applied in many applications, like e.g.,
Model Checking [1], [2], Synthesis [3], [4] and, Automatic
Test Pattern Generation (ATPG) [5].

Despite the successful research and application of
decision procedures, the increasing complexity of soft-
ware and hardware systems demands for more effective
reasoning engines to overcome complexity issues. In
the last years, solvers for Satisfiability Modulo Theo-
ries (SMT) have been developed. Different theories are
combined to formulate the problem. Various works gave
empirical evidence that SMT reasoning engines increase
the efficiency of formal methods [6], [7], [8].

The performance of SMT reasoning engines remains an
active research topic. Annual SMT competitions [9], [10]
show their advances. However, SMT reasoning engines
have different strengths on different problem instances.
Therefore, evaluating different engines with respect to a
given problem instance allows to find the best performing
engine.

When using SMT in a concrete algorithm, the most
common way is to generate a problem instance in
SMT-LIB format [11]. Taking a user created SMT-
LIB file as input, an SMT solver decides whether the
instance is satisfiable or unsatisfiable. However, many
solvers additionally have custom native interfaces. These
interfaces are used to pass the instance to the engine and

This work was supported in part by the German Federal Ministry
of Education and Research (BMBF) within the project SANITAS
under contract no. 01M3088.

check for satisfiability. Furthermore, advanced features
are available, e.g., computing interpolants which are
utilized in SAT-based Model Checking [2]. Moreover
learnt information generated while reasoning can be
reused very efficiently in consecutive reasoning processes
to prune the search space [12]. Usually this can only be
done by calling native functions which access the learnt
information.

This work presents metaSMT a publicly available, easy
to use and powerful tool1 which provides an integration
of the native Application Programming Interface (API) of
modern reasoning engines into C++ code. The advantages
of metaSMT are: (1) engine independence through effi-
cient abstraction layers (2) simple use of various decision
procedures (3) extensibility in terms of input language
and reasoning engines (4) customizability in terms of
optimization and infrastructure (5) translation of the input
language into native engine calls at compile time.

The remaining work is structured as follows: Section II
gives a basic introduction into SMT and the programming
methods used in metaSMT . Afterwards an example
of a metaSMT-based application is given before in
Section IV the architecture of metaSMT is described.
Section V describes how this architecture is implemented
in metaSMT and Section VI gives an empirical evaluation
of metaSMT including its use in current research projects.
The work closes with conclusions.

II. PRELIMINARIES

This section provides background information. How-
ever, basic knowledge of C++ is assumed.

A. Satisfiability Modulo Theories
Boolean satisfiability is a decision problem, also known

as the SAT problem. The problem asks whether there
exists an assignment of Boolean variables such that the
Boolean function evaluates to true. The problem has
been proven NP-complete [13]. In spite of the huge
complexity of the problem, sophisticated algorithms
and clever heuristics help to solve instances with many
thousands variables and clauses very efficiently. Usually,
SAT solvers work on a Conjunctive Normal Form (CNF)
of a Boolean function that is a disjunction of conjunctions
of literals, where each literal is variable or its negation.

Satisfiability Modulo Theories is also a decision
problem but with more complex theories rather than
only propositional logic. A detailed introduction is given

1Available online at http://www.informatik.uni-bremen.de/agra/eng/
metasmt.php

DIFTS 2011 22

Listing 1. SMT instance for a · b = 21466342967
(benchmark factorization.smt

:logic QF_BV
:extrafuns ((a BitVec[32]))
:extrafuns ((b BitVec[32]))

:assumption (not (= a bv1[32]))
:assumption (not (= b bv1[32]))

:formula (=
bv21466342967[64]
(bvmul

(zero_extend[32] a)
(zero_extend[32] b)

))
)

in [14]. Already available SMT-solvers handle complex
formulas. In addition to the logics the SMT-LIB standard
also specifies a textual format that is commonly used for
input files of the solvers. Listing 1 shows an example of
such an SMT file: Two variables, a, b are declared as bit-
vectors and constrained to be the two factors of a product
resulting in the 64 bit number 21, 466, 342, 967. When
called with this input, an SMT-QF BV solver outputs
satisfiable and e.g., the assignment a = 740, 218, 723 and
b = 29.

Moreover, in addition to the SMT-LIB format many
solvers provide an Application Programming Inter-
face (API) that exposes features like incremental solving,
where the SMT instance can be changed after the
satisfiability check. Learnt information about the instance
is kept and reused. Consequently, using the API may
increase the overall performance.

An SMT solver can be utilized within an application in
different ways. Each of the following options has certain
advantages and disadvantages:

1) Generate an instance file according to SMT-LIB spec-
ification and call the solver. Different SMT solvers
can easily be evaluated. However, the instance
generation and result retrieval requires handling of
files and text within the application.

2) Use the solver specific API to call an SMT solver’s
functions directly. In particular, incremental satis-
fiability can be exploited. But the application is
restricted to a specific solver.

3) Introduce an abstraction layer specific to the appli-
cation. This technique combines high performance
using incremental satisfiability with the ability to
evaluate different solvers. However a custom layer
is not portable to different applications.

This work separates the programming model from
the reasoning engine. With metaSMT the application
specifies the instance in a simple, common notation. Many
reasoning engines are available without modifications of
the algorithm.

The Java package jSMTLIB [15] provides an interface
for the usage of different SMT solvers. The package reads,
checks and generates SMT-LIB files and executes the
respective SMT-solver executables. However, jSMTLIB
currently does not provide an embedded language for
instance generation directly from the application.

B. Boost.Proto
The Boost project [16] is a collection of libraries that

cover many features not included in the C++ standard
library. In particular, Boost.Proto [17] provides tools to
integrate Domain Specific Embedded Languages (DSEL)
into C++. Given a programming language, a DSEL in
that language is dedicated to a domain, e.g., parsing [18]
or vector arithmetic [19]. The DSEL provides a syntax
designed for this domain and, therefore, is easier to handle
than the original language. Due to space constraints an
in-depth description of Boost.Proto is omitted, the reader
is referred to the Boost documentation.

Technically, this work uses Boost.Proto to implement
a domain specific language for SMT logics in metaSMT .

III. MOTIVATING EXAMPLE

Before the subsequent sections give a complete descrip-
tion of metaSMT this section demonstrates how metaSMT
is used in a complete example application.

The usual integration of reasoning engines iteratively
calls API functions to construct the problem instance.
However, this reduces the readability of the source code
and makes it difficult to understand the program. A typical
example can be constructed using the Boolector API for
the C programming language. Figure 1 (a) shows the
code to construct the simple constraint c = a · b using the
Boolector C API (not including memory management).
The same expression, written quite concise in the SMT-
LIB format is shown in Figure 1 (b). The goal of metaSMT
is to allow this compact syntax to be used in C++
programs. Due to the limitations of C++ this requires
adaptions. Most notably, the expressions cannot easily be
written in a symbolic expression (S-expression) syntax as
in the SMT-LIB format, where each function is enclosed
in parenthesis. The syntax for calling functions is used
instead. Moreover, the solver is passed into the expression
using the context e.g., as btor_ctx in Figure 1 (c).

In order to illustrate the programming interface of
metaSMT an example written in C++ code is presented
in Listing 2. The listing shows the factorization of an
integer into two integers. More precisely, given an integer
in bit-vector representation ~c ∈ B2n, compute two integers
~a,~b ∈ Bn, such that ~a ·~b = ~c. To enforce non-trivial
factorization, both integers a and b may not be 1. As
the bit-vectors ~a and ~b are zero-extended, no overflows
are possible and as a result a valid assignment to the
constraint either gives a valid factorization of ~c or proves
that it is prime. The integer value of ~c is randomly
chosen and changed in each iteration of a loop for
10,000 iterations. A similar example is reconsidered in
the empirical evaluation.

The first line in Listing 2 defines the solver context,
which is not explained here but described later in this
work. The context specifies which reasoning engine to use
and how the input is handled by metaSMT . The next line
is a user parameter, which defines the bit-vector width of
the operands. The algorithm is therefore scalable to an
abitrary bit-width. In lines 4-6 the bit-vectors a, b and
c are declared and initialized.

Lines 8 and 9 constrain the operands to be different
from 1 in bit-vector representation. In line 11 the

DIFTS 2011 23

boolector_assume(btor,
boolector_eq(btor, c,
boolector_mult(btor, a, b)

))
(a) Boolector API calls

:assumption
(= c (bvmul a b))

(b) SMT-Lib format

assumption(btor_ctx,
equal(c, bvmul(a, b)))

(c) metaSMT C++ Code

Fig. 1. Examples for c = a · b

Listing 2. metaSMT factorization and prime test
1 Context ctx;
2 const unsigned width = <parameter>;
3
4 bitvector a = new_bitvector(width);
5 bitvector b = new_bitvector(width);
6 bitvector c = new_bitvector(width);
7
8 assertion(ctx, nequal(a, bvuint(1,width)));
9 assertion(ctx, nequal(b, bvuint(1,width)));

10
11 assertion(ctx, equal(zero_extend(width, c)

, bvmul(zero_extend(width, a),
zero_extend(width, b))));

12
13 for (unsigned i=0; i < 10000; ++i) {
14 unsigned r = random_number (2, 2ˆwidth -

1);
15 assumption(ctx, equal(c, bvuint(r, 2*

width)));
16
17 if(solve(ctx)) {
18 unsigned a_value = read_value(ctx, a);
19 unsigned b_value = read_value(ctx, b);
20
21 printf("factorized %d into %d * %d\n", r

, a_value, b_value);
22 } else {
23 printf("%d is prime.", r);
24 }
25 }

multiplication ~a · ~b = ~c is constrained. However the
multiplication is done in double width to avoid overflows.

These constraints are identical for each iteration of
the loop starting in line 13, therefore they are declared
outside the loop as an assertion, which is permanent.

Inside the loop, in lines 14-15 c is set equal to a random
number from 2 to 2width − 1 using an assumption,
which is only valid for the next satisfiability check of the
solver, i.e., for one loop iteration.

After setting up the SMT instance, the satisfiability
check is performed in line 17. If the instance is sat-
isfiable, the values of a and b are determined using
read_value. Both operands are printed out in line 21.
Otherwise the instance is unsatisfiable, the else branch
is executed, which outputs c is prime.

IV. ARCHITECTURE

In the following sections the architecture of metaSMT
is described. At first the basic layers are introduced. Then
each layer is described in detail. The terms frontend for
the input languages, middle-end for the intermediate layer
and backend for the solvers are taken from compiler
design to denote the metaSMT layers.
A. metaSMT Layers

metaSMT consists of three basic layers depicted in
Figure 2. The frontend layer provides primitives of

FRONTEND (C++)
QF BV Core Array

MIDDLE-END

DirectSolver GraphSolverBitBlast

SAT Clause SAT Aiger Groups

BACKEND

SWORD Z3

Boolector

CUDD

AIGER

MiniSAT

PicoSAT

Solver API

Fig. 2. metaSMT layer Architecture

the input languages, defined in the SMT-LIB format
(e.g., Core Boolean logic, QF BV). The middle-end
layer provides translations, intermediate representation
and optimizations of the input expressions. Optionally,
expressions can directly be passed to the the backend
layer where the solvers are integrated via their native API.
Various configurations of middle-ends with backends are
possible. The frontends allow to combine each translation
middle-end with any compatible backend. However, not
every backend supports every logic. Therefore, some
middle-ends supply emulation or translations to other
logics, e.g, a bit-vector expression can be translated into
a set of Boolean expressions.

The frontends are independent from the underlying
two layers and have no semantics attached. To evaluate
frontend expressions, a context is used that defines their
meaning. The context is the combination of at least
one middle-end and one backend, where the middle-end
defines how the input language is mapped to function
calls of the backend.

B. Frontends
The frontends define the input languages for metaSMT .

This includes Core Boolean logic and SMT QF BV as
well as a version of Array logic over bit-vectors. Each
frontend defines its own set of available functions as well
as public datatypes.

The Core Boolean logic defines the public datatype
predicate which describes propositional variables.

DIFTS 2011 24

Furthermore, Boolean constants are available, i.e., true
and false. This logic also defines primitive Boolean
functions, e.g., Or, And. The frontend creates a static
syntax tree for the expression described in the code. This
syntax tree is passed to the middle-end.
C. Middle-ends

The core of metaSMT are basic optimizations and
translations from the frontend to the backend. While the
frontends provide languages and the backends provide
solver integrations, the middle-ends allow the user to
customize metaSMT , i.e., on how the input language is
mapped to the backend. Even in the middle-end itself,
several modules can be combined.

1) DirectSolver: To enable a low-overhead translation
from a frontend to a backend the DirectSolver
is provided. All the elements of the input expression
are directly evaluated in the backend. Variables are
guaranteed to be constructed only once and are stored
in a lookup table. For example, given a multiplication
operation in QF BV logic directly corresponds to a
multiplication operation in the SMT solver Boolector.

The direct middle-end is very lightweight and allows
the compiler to inline all function calls. For a modern
compiler the resulting executable should perform equally
well to a hand-written application using the same backend.

2) GraphSolver: Instead of adding the frontend ex-
pressions directly to the solver, they are first inserted
into a directed graph. The graph models the explicit
syntax tree of the expression as a Directed Acyclic
Graph (DAG). Formally a node in the graph is a tuple
(Operation,Static Arguments) where the SMT command
and its static arguments are captured (e.g. extract and
the range to extract). The edges point from an operation
to the SMT expressions used in this command. A label
on the edges stores the position of the subexpression in
the command. Each time a new expression is evaluated
it is first searched in a lookup table before a new node is
created, when the node is not found. When the instance
is checked for satisfiability, the graph is traversed and
evaluated in the backend.

The graph-based translation provides a way to auto-
matically detect common subexpressions and efficiently
handle them to create smaller SMT instances which po-
tentially increases performance of the reasoning process.
This is especially useful if the user wants to automate this
process, but either does not want to manually optimize the
SMT instance or does not know the instance in advance
because it is created dynamically inside the program.

3) Groups: This middle-end provides an interface and
implementation of constraint groups for solvers that do
not have native support for groups. A group is a set
of constraints that belong together. The user can create
groups, add expressions to them and delete them at any
time. The solver will then disable all expressions in
the group. Groups are emulated using guard variables
and temporary assumptions, e.g., the expression x ∧ y
in group 1 is transformed to g1 → (x ∧ y) using the
guard variable g1 and an implication. Depending on the
solver deleting a group can either lead to the removal
of the constraints or to the constraint just being disabled
permanently.

4) BitBlast: This emulation of a QF BV bit-vector
backend uses only Core Boolean logic operations to allow
the transparent use of SAT or BDD solvers with bit-vector
expressions. The translation is performed in a standard
way: Given only the Core Boolean logic, each bit-vector
is transformed into a vector of Boolean variables. The
bitwise operations can be applied easily, e.g., an exclusive-
or over two bit-vectors is a bitwise exclusive-or for
each pair of Boolean variables. The bit-vector predicates
(equal, less-than, etc.) are mapped to a sequence
of Boolean predicates, e.g., a conjunction of exclusive-
nors for equal. Arithmetic operations are reduced to an
equivalent Boolean expression.
D. Backends

The respective solvers and other constraint solving
techniques are integrated as backends. For each reasoning
engine a dedicated backend is created that maps from the
internal metaSMT API to the API of the engine. Backends
do not have an explicit interface to inherit from. They
implement the required methods for the languages they
support using C++ template mechanisms to integrate
them into a context. This allows the compiler to optimize
the code and, in the case of DirectSolver, produces
code that is close to a hand-coded implementation using
the same API.

This section gives an overview of the backends inte-
grated into metaSMT . They are grouped by the input
language they support. The compatibility of the solvers
is also summarized in Table I.

1) Core Boolean logic backends: Several core logic
backends as well as higher level backends are available.
Core logic is directly supported by backends that accept
all common Boolean operations. For example, the Binary
Decision Diagram (BDD) package CUDD [20] supports
all Boolean operations and is integrated in metaSMT .
Furthermore, with some minor transformations based on
De-Morgan And-Inverter-Graphs (AIGs) are also able to
handle Boolean operations. Those AIGs are internally
represented by the AIGER package [21]. SAT solvers
can receive Boolean logic expressions either via the
SAT Clause adapter that creates one or more clauses
per logic operation or via the SAT Aiger adapter, that
builds an AIG for the expression using the AIGER
backend. Afterwards, the AIG is translated into a set
of clauses. This infrastructure allow the usage of any
SAT solver supporting CNF as input language either by
an API or externally through files. PicoSAT [22] as well
as MiniSAT [23] are directly supported as Core logic
backends via their APIs. Other solvers are supported by
generating CNF files and calling the executable of the
SAT solvers.

Furthermore, all SMT QF BV backends natively sup-
port Core logic as a subset of the language.

2) SMT QF BV backends: Native SMT bit-vector
solvers like Boolector [24], SWORD [25] and Z3 [26]
are directly connected through their API for QF BV
support. Furthermore, the BitBlast middle-end provides an
emulation for QF BV using only basic logic operations.
This emulation permits using QF BV expressions in
solvers that do not support them natively but support
Core Boolean logic e.g., CUDD or SAT-solvers.

DIFTS 2011 25

TABLE I
BACKEND COMPATIBILITY

BACKEND CORE QF BV ARRAY (BV) SAT
AIGER [21] yes emulated no no
Boolector [24] yes yes yes no
CUDD [20] yes emulated no no
MiniSAT [23] emulated emulated no yes
PicoSAT [22] emulated emulated no yes
SWORD [25] yes yes no no
Z3 [26] yes yes yes no
BitBlast yes yes no no
SAT Aiger yes emulated no no
SAT Clause yes emulated no no

equal

qf_bv_var&
{c,width} bvmul

qf_bv_var&
{a,width}

qf_bv_var&
{b,width}

Fig. 3. Syntax Tree for equal(c, bvmul(a, b)).

3) SMT QF ABV backends: In addition to Core
Boolean logic and bit-vector logic the Boolector and
Z3 backends also support arrays in the form of QF QBV
logic. Therefore metaSMT supports declaring and work-
ing with arrays over bit-vectors.

V. IMPLEMENTATION

This section describes how the architecture is imple-
mented in metaSMT and how metaSMT is integrated in
C++ programs.

A. Syntax and Semantics
For the evaluation of metaSMT expressions a context

is used which defines syntax and semantics. The context
concept and different kinds of contexts are described in
this section.

The syntax component is provided by Boost.Proto. An
expression like equal(c, bvmul(a, b)) is created
from the custom Boost.Proto functions equal and
bvmul as well as the variables a, b and c. From the
expression the syntax tree in Figure 3 is created. The
nodes are labeled with the C++ type and strings inside
the curly braces denote the content of the respective
nodes. For metaSMT the tree is used as static type of the
expression. The expression and the syntax tree are data,
i.e., they neither have semantics attached nor trigger any
actions.

The semantics for the expression is introduced by
the metaSMT context, that defines how the syntax tree
is evaluated and transformed for a specific solver. The
evaluation of Boost.Proto-based expressions is performed
in the metaSMT translation middle-end (e.g., GraphSolver
or DirectSolver) so that the backends do not need to
handle Boost.Proto expressions directly. This reduces the
overhead to implement new backends.

DirectSolver Boolector

GraphSolver Boolector

DirectSolver BitBlast SAT Clause MiniSAT

GraphSolver BitBlast SAT Aiger MiniSAT

Fig. 4. Data flow in different contexts

Listing 3. metaSMT command grammar
command ::= assert_cmd | assume_cmd

| eval_cmd
| solve_cmd | result_cmd

assert_cmd ::= ’assertion(’ context ’,’
expression ’);’

assume_cmd ::= ’assumption(’ context ’,’
expression ’);’

eval_cmd ::= ’evaluate(’ context ’,’
expression ’);’

solve_cmd ::= ’solve(’ context ’);’
result_cmd ::= ’read_value(’ context ’,’

variable ’);’
variable ::= boolean_variable

| bitvector_variable
expression ::= <expression in metaSMT DSEL>

Figure 4 gives some example contexts and visualizes
the data flow inside. This illustrates how different
contexts can change the evaluation of a constraint. The
first context defines a solver using Boolector without
intermediate representation (DirectSolver). The context
directly supports Core Boolean logic and QF BV. In
contrast, in the last example, MiniSAT is used. QF BV
as well as Core Boolean logic are emulated for this clause
based backend. Furthermore this context uses a graph
and an AIG as intermediate representations.

The GraphSolver-based and AIGER-based context first
create an internal representation and pass the complete ex-
pression directly before solving. When using approaches
without intermediate representation, the requests are
forwarded to the next layer until they reach the backend.
Only explicit transformations are applied before passing
the expression (e.g., BitBlast, SAT Clause).

B. Usage and API

The example from Listing 2 contains most of the
core commands of metaSMT . These are summarized in
Listing 3.

DIFTS 2011 26

Listing 4. Programmatic constraint construction using temporary
Variables
1 bitvector x = new_bitvector(8);
2 for(...) {
3 bitvector tmp = x;
4 x = new_bitvector(8);
5 assertion(ctx, equal(x, bvmul(tmp, ...)));
6 }
7 ...
8 solve(ctx)

The first three functions accept frontend expressions,
however they have different effects. The functions
assertion and assumption create the constraint
instance where the first adds a constraint permanently to
the (incremental) solver context while the latter adds the
constraint for the next call of the solver only. In both
cases the expression needs to have a Boolean result. The
third function evaluate does not change the instance
but returns a context specific representation of the input
expression only.

To query a context for satisfiability, the solve
function is provided. The result is a Boolean value directly
representing SAT (true) or UNSAT (false). After a call to
solve the assumptions are discarded while the assertions
are still valid for the subsequent calls.

Getting a SAT result for solve(ctx), i.e., the
instance is satisfiable, a model is generated. The model
can be retrieved with the read_value function. The
function takes a context and a variable and returns the
assignment of this variable in the given context. The
result of read_value is automatically convertible to
many C++ datatypes, including strings, bit-vectors (vector
of bool, tribool, bitset) or integers.

In addition to these core commands, custom middle-
ends may provide additional extensions. The Group
middle-end for example provides functions to add groups,
change the active group and delete groups. These func-
tions cannot be used in any other context.

C. Expression Creation
Typically it is necessary to create the metaSMT ex-

pression at run time, e.g., in a loop. As metaSMT syntax
trees are statically typed, an extension of the syntax tree
is not possible. To work around this limitation, metaSMT
provides two options. The first option is to create a partial
expression and constrain equality to a temporary variable
that is later reused to create the complete expression.
This would allow strict grammar checking but introduces
a temporary variable and a constraint, see Listing 4.

The second option is the use of the evaluate(Ctx,
Expr) function and the context’s result_type. The
function takes a context and a frontend expression
and returns the context specific representation of the
expression. The result of the evaluation is of the backend
specific type Ctx::result_type. This expression
can be stored and later be used in other expressions.
Note however that the return value is solver specific and
therefore not portable or reusable in other contexts, not
even contexts of the same type.

A powerful exception to this rule is the
result_type of a GraphSolver-based context,
where the result is a node in the internal graph.

Listing 5. Using a shared graph for different contexts
1 GraphSolver_Context<SWORD> sword;
2 GraphSolver_Context<Boolector> btor(sword);
3
4 GraphSolver_Context<SWORD>::result_type x =

evaluate(sword, bvuint(0, 8));
5
6 for(...) {
7 x = evaluate(sword, equal(x, bvmul(x,

...)));
8 }
9 assertion(sword, x);

10 assertion(btor, x);
11 solve(sword) == solve(btor);

When a GraphSolver is constructed using the copy
constructor, a shared graph is internally used by the
contexts. The newly created solver also copies all
assertions and assumptions, so that both solvers have
the same internal state. In this setup the results of
evaluate can be shared among the solvers. Each
backend will only evaluate the parts of the graph that
are required as parts of assertions or assumptions. The
application of evaluate is demonstrated in Listing 5.
This can be used for example when building multiple
instances from the same base. At a specific point the
context can be copied and from there both contexts can
diverge into seperate instances.

VI. EMPERICAL EVALUATION

This section presents two different applications of
metaSMT . Furthermore, a comparison of metaSMT with
the native API of an SMT solver is presented. The
experiments have been performed on a system with AMD
Opteron 2222 SE processor, 32 GB RAM and a Linux
operating system. In the following, the run times are
always given in CPU seconds.

A. Exact Synthesis
This section presents examples from exact synthesis of

reversible circuits [28], [29]. A reversible circuit computes
a bijective function, i.e., there is a unique input and output
mapping. Those circuits purely consist of reversible gates
– here, the universal Toffoli gate and basic quantum gates
are considered. The synthesis problem searches for a
reversible circuit consisting of reversible gates which
computes the function specified by a truth table. There
are several exact approaches to synthesize those circuits.
We considered the approach from [28], which translates
the problem into a decision problem and asks for a circuit
realization for a given number of gates. The size of the
problem instances grows exponentially with number of
input variables, because the entire truth table has to be
taken into account. This usually results in hard problem
instances even for small truth tables.

The underlying problem formulation has been encoded
in QF BV and an incremental algorithm searches for
a valid circuit implementation. Using metaSMT six-
teen different configurations have been evaluated. The
configurations consist of four internal API backend
solvers, i.e. Boolector, Z3, MiniSAT, and PicoSAT.
Additionally, metaSMT is used to generated CNF files
to run the external solvers PicoSAT, MiniSAT, Pre-
coSAT, and Plingeling [30]. All eight backends are used

DIFTS 2011 27

 0.1

 1

 10

 100

 1000

 10000

decod24-v0_incomplete_15

peres_complete_4

toffoli_complete_1

4mod5-v0_incomplete_8

graycode6_complete_19

fredkin_complete_3

alu-v0_incomplete_10

graycode6_complete_19

miller_complete_5

toffoli_double_complete_2

hwb4_complete_20

ti
m

e
[s

]
Direct<Boolector>

Direct<Z3>

Graph<Boolector>

Graph<Z3>

Dir<MiniSAT>

Dir<PicoSAT>

Graph<MiniSAT>

Graph<PicoSAT>

Direct<Plingeling*>

Graph<Plingeling*>

Direct<MiniSAT*>

Graph<MiniSAT*>

Direct<PicoSAT*>

Graph<PicoSAT*>

Direct<PreoSAT*>

Graph<PicoSAT*>

Fig. 5. Run times of reversible circuit synthesis for hard instances using a metaSMT-based version of RevKit [27]

with the DirectSolver middle-end as well as the
GraphSolver middle-end.

For the synthesis 11 specifications were used which are
publicly available from [31]. A timeout of 3,600 seconds
was applied. The results are presented in Figure 5. On
the x-axis the respective benchmark is shown, whereas
the y-axis denotes the run time in seconds for each
configuration in logarithmic scale. Externally called
solvers are marked with ∗.

From Figure 5 it is clear that no single solver
dominates the benchmarks. For example, for the
benchmarks from decode24-v0_incomple_5 to
graycode6_complete_19 Boolector performs much
better than any other solver. But for the benchmarks from
miller_complete_5, Boolector is outperformed by
the SAT solvers. MiniSAT as well as PicoSAT are evalu-
ated as internal and external versions. The accumulated
run times of the solvers MiniSAT and PicoSAT over all
benchmarks are 18,790 seconds for the internal version
and 8,989 seconds for the external version. Surprisingly,
the externally called solvers are much better here than the
internal called solvers, though the internal solvers may
benefit from learnt information. Overall, the externally
called PrecoSAT solver needs 326.24 seconds over all
benchmarks and Boolector needs 3,285.05 seconds.

To summarize, all the presented results can be achieved
very easily by using metaSMT . Only one parameter needs
to be switched to run a different solver.

B. Mutation Testing
Given a program, by mutation several faulty variants

of the program are created and combined into a single
program called meta-mutant. Using metaSMT the meta-
mutant is encoded into a set of constraints. Each satisfying
assignment yields a test case that discovers at least one
fault. Experiments of [32] where executed on a set of
metaSMT contexts. The results are shown in Table II.
Comparing the Boolector backend with the MiniSAT
backend using DirectSolver as well as GraphSolver
middle-ends.

The results significantly vary with the difficulty of
the instance. For easy instances the directly connected

TABLE II
RESULT FOR MUTATION TESTING USING DIFFERENT CONTEXTS

Name Time [s]
Direct Graph Direct Graph

Boolector Boolector MiniSAT MiniSAT
isl 0.05 0.22 0.34 0.47
min 0.34 0.48 0.82 0.65
mid 4.73 5.07 7.87 4.36
fmin3 5.02 5.85 4.45 2.55
fmin5 21.08 25.96 14.92 9.56
fmin10 310.52 260.38 997.65 550.94
tri 207.69 193.99 1596.99 652.64

Boolector contexts and the graph-based MiniSAT perform
better. However, for difficult instances with a run time
over 1 minute, the graph-based Boolector context is
fastest while MiniSAT-based contexts require significantly
more time. For these harder instances the GraphSolver
middle-end outperforms the direct variant of the same
backend. This effect is most likely due to the removal
of redundancies in the graph. For MiniSAT this amounts
to run time reductions of around 50%. With metaSMT
as abstraction layer it is easy to evaluate the effects of
different contexts or optimizations. When changes are
only in the abstraction layer no application code needs
to be changed and only little effort is required.

C. Comparison with direct API

For the factorization algorithm from Listing 2 a hand
coded implementation using the Boolector C API is com-
pared to a metaSMT DirectSolver-based implementation
with the Boolector backend. The resulting application is
available as part of the metaSMT package.

The experiment has the following setup: The algorithm
from Listing 2 was changed to work on sequences instead
of generating random numbers. A sequence of 10,000
random 64 bit numbers is generated and the algorithm it
applied to it 10 times. The same sequence is used for both
the hand coded and the metaSMT-based implementation
of the algorithm. The complete experiment was repeated 5
times with Boolector being executed first and 5 times with
metaSMT being executed first. Altogether each solver was
forced to solve 1,000,000 constraints of 64 bit numbers
factorized into two 32 bit numbers.

DIFTS 2011 28

The results showed no significant difference caused by
the metaSMT abstraction layer: 1, 736s for plain Boolec-
tor compared to 1, 729s for metaSMT with Boolector,
i.e., 1.7 seconds for 10,000 factorizations.

D. Other applications
In addition to the aforementioned projects metaSMT is

also used in a Constraint Random Stimuli generation Li-
brary. In the library elements of the SystemC Verification
Library [33] and techniques from [34] are combined.

VII. CONCLUSIONS

metaSMT is a library that abstracts details of reasoning
engines. Based on metaSMT very little programming
effort is required to integrate formal methods into a user‘s
application. Once this has been done, a wide range of
solvers as well as optimization techniques can be selected.

Various research projects already integrate metaSMT .
Future work on metaSMT includes the development
of the following features: New frontend logics will
complete the support for SMT logics (e.g. uninterpreted
functions, integer arithmetic), while new middle-ends
will increase solving performance (e.g. portfolio or multi-
threaded contexts) and new backends will provide access
to additional SMT solvers.

VIII. ACKNOWLEDGMENTS

We would like to thank Hoang M. Le, Heinz Riener
and Fereshta Yazdani for the helpful discussions, their
proposals for improvements, testing and contributions to
metaSMT .

REFERENCES

[1] A. Biere, A. Cimatti, E. Clarke, and Y. Zhu, “Symbolic model
checking without BDDs,” in Tools and Algorithms for the
Construction and Analysis of Systems, ser. LNCS, vol. 1579.
Springer Verlag, 1999, pp. 193–207.

[2] K. McMillan, “Interpolation and SAT-based model checking,”
in Computer Aided Verification, ser. LNCS. Springer Berlin /
Heidelberg, 2003, vol. 2725, pp. 1–13.

[3] E. Arbel, O. Rokhlenko, and K. Yorav, “SAT-based synthesis
of clock gating functions using 3-valued abstraction,” in Formal
Methods in Computer-Aided Design, 2009, 2009, pp. 198 –204.

[4] F. Haedicke, B. Alizadeh, G. Fey, M. Fujita, and R. Drechsler,
“Polynomial datapath optimization using constraint solving and
formal modelling,” in Computer-Aided Design (ICCAD), 2010
IEEE/ACM International Conference on, 2010, pp. 756 –761.

[5] R. Drechsler, S. Eggersgluss, G. Fey, A. Glowatz, F. Hapke,
J. Schloeffel, and D. Tille, “On acceleration of SAT-based ATPG
for industrial designs,” Computer-Aided Design of Integrated
Circuits and Systems, IEEE Transactions on, vol. 27, no. 7, pp.
1329 –1333, 2008.

[6] M. K. Ganai and A. Gupta, “Accelerating high-level bounded
model checking,” in International Conference on Computer-
aided design. New York, NY, USA: ACM, 2006, pp. 794–801.

[7] P. Bjesse, “A practical approach to word level model checking
of industrial netlists,” in International Conference on Computer
Aided Verification, 2008, pp. 446–458.

[8] A. Armando, J. Mantovani, and L. Platania, “Bounded model
checking of software using SMT solvers instead of SAT solvers,”
Int. J. Softw. Tools Technol. Transf., vol. 11, pp. 69–83, 2009.

[9] “SMT-COMP 2009,” http://www.smtcomp.org/2009, 2009.
[10] “SMT-COMP 2010,” http://www.smtcomp.org/2010, 2010.

[11] S. Ranise and C. Tinelli, “The Satisfiability Modulo Theories
Library (SMT-LIB),” http://www.smtlib.org, 2006.

[12] O. Shtrichman, “Pruning techniques for the SAT-based bounded
model checking problem,” in CHARME, ser. LNCS, vol. 2144,
2001, pp. 58–70.

[13] S. Cook, “The complexity of theorem proving procedures,” in 3.
ACM Symposium on Theory of Computing, 1971, pp. 151–158.

[14] C. Barrett, R. Sebastiani, S. A. Seshia, and C. Tinelli, Satisfia-
bility Modulo Theories, ser. Frontiers in Artificial Intelligence
and Applications. IOS Press, February 2009, vol. 185, ch. 26,
pp. 825–885.

[15] D. R. Cok, “jSMTLIB: Tutorial, validation and adapter tools
for smt-libv2,” in NASA Formal Methods, ser. LNCS, 2011, vol.
6617, pp. 480–486.

[16] “Boost C++ libraries,” http://www.boost.org/.
[17] E. Niebler, “Proto: A compiler construction toolkit for DSELs,”

in Proceedings of the 2007 Symposium on Library-Centric
Software Design, ser. LCSD ’07. New York, NY, USA: ACM,
2007, pp. 42–51.

[18] J. de Guzman and D. Nuffer, “The Spirit library: Inline parsing
in C++,” C/C++ User Journal, vol. 21, no. 9, 2003.

[19] T. L. Veldhuizen, “Arrays in Blitz++,” in Proceedings of the
Second International Symposium on Computing in Object-
Oriented Parallel Environments, 1998, pp. 223–230.

[20] F. Somenzi, CUDD: CU Decision Diagram Package Release
2.4.1. University of Colorado at Boulder, 2009.

[21] “Aiger,” http://fmv.jku.at/aiger/.
[22] A. Biere, “Picosat essentials,” JSAT, vol. 4, no. 2-4, pp. 75–97,

2008.
[23] N. Eén and N. Sörensson, “An extensible sat-solver,” in SAT,

ser. LNCS, E. Giunchiglia and A. Tacchella, Eds., vol. 2919.
Springer, 2003, pp. 502–518.

[24] R. Brummayer and A. Biere, “Boolector: An efficient SMT
solver for bit-vectors and arrays,” in Tools and Algorithms for
the Construction and Analysis of Systems, 2009, pp. 174–177.

[25] R. Wille, G. Fey, D. Große, S. Eggersglüß, and R. Drechsler,
“Sword: A SAT like prover using word level information,” in
VLSI of System-on-Chip, 2007, pp. 88–93.

[26] L. M. de Moura and N. Bjørner, “Z3: An efficient smt solver,”
in TACAS, ser. LNCS, C. R. Ramakrishnan and J. Rehof, Eds.,
vol. 4963. Springer, 2008, pp. 337–340.

[27] M. Soeken, S. Frehse, R. Wille, and R. Drechsler, “RevKit: A
toolkit for reversible circuit design,” in Workshop on Reversible
Computation, 2010, pp. 69 – 72.

[28] D. Große, R. Wille, G. Dueck, and R. Drechsler, “Exact
multiple-control toffoli network synthesis with SAT techniques,”
Computer-Aided Design of Integrated Circuits and Systems, IEEE
Transactions on, vol. 28, no. 5, pp. 703 –715, May 2009.

[29] R. Wille, D. Große, M. Soeken, and R. Drechler, “Using higher
levels of abstraction for solving optimization problems by
boolean satisfiability,” in Symposium on VLSI, 2008. ISVLSI

’08. IEEE Computer Society Annual, 2008, pp. 411 –416.
[30] A. Biere, “Lingeling, plingeling, picosat and precosat at

SAT race 2010,” Tech. Rep., 2010. [Online]. Available:
http://fmv.jku.at/papers/Biere-FMV-TR-10-1.pdf

[31] R. Wille, D. Große, L. Teuber, G. W. Dueck, and R. Drech-
sler, “RevLib: An online resource for reversible functions and
reversible circuits,” in Int’l Symp. on Multi-Valued Logic, 2008,
pp. 220–225, RevLib is available at http://www.revlib.org.

[32] H. Riener, R. Bloem, and G. Fey, “Test case generation from
mutants using model checking techniques,” in International
Conference on Software Testing, Verification and Validation
Workshops, 2011, pp. 388 – 397.

[33] SystemC Verification Standard Specification Version 1.0e, Sys-
temC Verification Working Group.

[34] R. Wille, D. Große, F. Haedicke, and R. Drechsler, “SMT-
based stimuli generation in the SystemC verification library,”
in Advances in Design Methods from Modeling Languages
for Embedded Systems and SoC’s: Selected Contributions on
Specification, Design, and Verification from FDL 2009, ser.
Lecture Notes in Electrical Engineering, D. Borrione, Ed.
Springer Netherlands, 2010, vol. 63, pp. 227–244.

DIFTS 2011 29

A Study of Sweeping Algorithms in the Context of

Model Checking

Zyad Hassan, Yan Zhang, and Fabio Somenzi

Dept. of Electrical, Computer, and Energy Engineering

University of Colorado at Boulder

Boulder, CO 80309

Abstract—Combinational simplification techniques have

proved their usefulness in both industrial and academic

model checkers. Several combinational simplification al-

gorithms have been proposed in the past that vary in

efficiency and effectiveness. In this paper, we report our

experience with three algorithms that fall in the com-

binational equivalence checking (sweeping) category. We

propose an improvement to one of these algorithms. We

have conducted an empirical study to identify the strengths

and weaknesses of each of the algorithms and how they

can be synergistically combined, as well as to understand

how they interact with ic3 [1].

I. INTRODUCTION

Combinational simplification eliminates redundancies

and increases sharing of logic in a design. It has been

successfully employed in logic synthesis, equivalence

checking, and model checking.

In the model checking context, combinational sim-

plification often dramatically improves the performance

of the proof engines. This has made it into a primary

component in both industrial [2] and academic [3],

[4] model checkers. Several combinational simplification

algorithms have been proposed in the past, such as

DAG-aware circuit compression [5], [6] and sweeping

methods [7]–[9]. Sweeping methods merge functionally

equivalent nodes. They include BDD sweeping [7], SAT

sweeping [8], [10], and cut sweeping [9].

When designing a model checker, the strengths and

weaknesses of each of the sweeping methods should

be taken into account. To the best of our knowledge,

no studies have been carried out so far to evaluate

and compare the different sweeping methods, with the

exception of a limited study reported in [9].

The effect of combinational simplification on several

model checking engines has been studied in the past.

In [8], SAT sweeping has been shown to positively

affect bounded model checking (BMC) [11]. In [12], it

is shown that combinational redundancy removal tech-

niques benefit interpolation considerably. The recently

introduced ic3 [1] incrementally discovers invariants

that hold relative to stepwise reachability information.

Designing a model checking flow that involves ic3

requires understanding how combinational simplification

algorithms affect it.

This paper makes the following contributions:

• We carry out a comparative study of the different

sweeping methods.

• We propose a BDD-based cut sweeping method that

is more effective than the original cut sweeping.

• We propose a combined sweeping approach in

which more than one sweeping method is applied.

We show that the combined approach can achieve

more simplification than any of the methods can

achieve individually.

• We perform an empirical study of the effect of

sweeping on ic3.

The rest of the paper is organized as follows. Section

II contains preliminaries. In Section III, we introduce

the BDD-based cut sweeping method. In Section IV,

we explain the rationale behind the combined sweeping

approach. In Section V we present the experimental

results and in Section VI we conclude.

II. PRELIMINARIES

A. AND-inverter-graph

The input and output of our sweeping algorithms

are AND-inverter-graphs (AIGs). An AIG is a directed

acyclic graph that has four types of nodes: source nodes,

sink nodes, internal nodes and the constant TRUE node.

A primary input (PI) is a source node in an AIG. A

primary output (PO) is a sink node and has exactly one

predecessor. The internal nodes represent 2-input AND

gates. A node v is a fanin of v0 if there is an edge (v, v0);
it is a fanout of v0 if there is an edge (v0, v). Left(v)
and Right(v) refer to the left and right predecessors of v.

DIFTS 2011 30

Fanin(v) and Fanout(v) denote the fanins and fanouts

of node v. An edge in an AIG may have the INVERTED

attribute to model an inverter. The Boolean function of

a PI is a unique Boolean variable. For an edge, it is

the function of its source node if the edge does not have

the INVERTED attribute, and the complement otherwise.

For an internal node, it is the conjunction of the functions

of its incoming edges. The Boolean function of a PO is

that of its incoming edge.

A path from node a to b is a sequence of nodes

〈v0, v1, v2, . . . , vn〉, such that v0 = a, vn = b and

vi ∈ Fanin(vi+1), 0 ≤ i < n. The height of a node v,
h(v), is the length of the longest path from a PI to v. The
fanin (fanout) cone of node v is the set of nodes that have

a path to (from) v. Two nodes are functionally equivalent

(complementary) if they represent the same (comple-

mentary) Boolean function(s). Functionally equivalent

(complementary) nodes can be merged transferring the

fanouts of the redundant nodes to their representative.

To simplify our presentation, in what follows we delib-

erately ignore detection of complementary functions.

B. BDD Sweeping

BDD sweeping identifies two nodes as equivalent if

they have the same BDD representation. The original

algorithm of Kuehlmann and Krohm [7] works in two

stages: equivalence checking and false negative detec-

tion. In the first stage, it builds BDDs for each node

and merges nodes having the same BDD. The algorithm

introduces an auxiliary BDD variable (cut point) for each

node that has been merged, which potentially leads to

false negatives. In the second stage, it takes the BDDs

of the output functions and for each of them, replaces

the auxiliary variables with their driving functions. The

algorithm is complete in the sense that it can find all

the equivalences in the circuit given a sufficiently large

limit on the BDD sizes. However, a large limit often hurts

efficiency. In this paper, we intend to use BDD sweeping

in conjunction with SAT sweeping which is complete

and avoids inherent BDD inefficiencies [8]. For that, we

employ a version of BDD sweeping that is incomplete

yet faster than the original.

The algorithm we adopt iterates the following steps

on each node v of the AIG in some topological order.

It builds a BDD for v and checks if there exists another

node that has the same BDD. If so, it merges these two

nodes and continues. Otherwise, if the BDD size exceeds

a given threshold, the algorithm introduces an auxiliary

BDD variables for v to be used in place of the original

BDD when dealing with the fanouts of v. An important

point is that the original BDD is kept for equivalence

checking, but is not used to produce new BDDs. The

algorithm is complete if the threshold is so large that

no auxiliary variable is introduced. In practice, however,

this can be prohibitive.

C. SAT Sweeping

The advancements in SAT solver technology over the

past two decades has proliferated SAT-based reasoning

methods. SAT sweeping is one such method proposed

by Kuehlmann [8] for combinational redundancy identi-

fication. SAT sweeping queries the SAT solver to prove

or refute the equivalence of two nodes in the circuit.

The basic SAT sweeping algorithm works as follows.

First, the circuit is simulated with random inputs, and

candidate equivalence classes are formed, where nodes

having the same simulation values are placed together.

Next, for each two nodes belonging to the same class,

the SAT solver is queried for their equivalence. If the

SAT solver reports they are equivalent, one of them is

merged into the other. Otherwise, the counterexample

provided is simulated to break this equivalence class,

and possibly rule out other candidate equivalences as

well. This process is repeated until a resource limit is

reached, or until all classes become singletons, indicating

the absence of further equivalences.

In our implementation of SAT sweeping, several

heuristics were applied. We mention each of them briefly.

1) Simulating Distance-1 Vectors: This heuristic was

proposed in [13]. Instead of just simulating the coun-

terexample to equivalence derived by the SAT solver,

all distance-1 vectors, that have a single bit flipped, are

simulated as well. Only the bits corresponding to the

inputs that are in the fanin cone of the two nodes being

checked for equivalence are flipped. We have found this

heuristic to be very effective in practice. In [13], this

process is repeated for vectors that were successful in

breaking up equivalence classes until convergence. In our

implementation, we only simulate the distance-1 vectors

for the original counterexample: for the benchmark suite

we experimented with, recurring on successful vectors is

too expensive for the number of refinements it achieves.

2) Clustering: Simulating distance-1 vectors often

results in considerable refinement of the equivalence

classes. This is desirable, since an equivalence class

is often broken up more cheaply by simulation than

by the SAT solver. Moreover, we have observed that

with distance-1 vector simulation, it becomes very likely

that nodes remaining in an equivalence class are indeed

equivalent. Therefore, rather than checking the equiva-

DIFTS 2011 31

lence of two nodes at a time, we check the equivalence

of all nodes in an equivalence class using a single SAT

query. If they are all indeed equivalent, we find that using

a single SAT query rather than n− 1 queries where n is

the number of nodes in the class.

3) Height-Based Merging: When two nodes are

proved equivalent, we merge the node with a larger

height into the one with a smaller height, instead of

merging based on a topological order as in [13]. The

intuition being that a node having a larger height often

has a larger fanin cone, which suggests that merging it

would lead to a larger reduction. Nodes coming later in a

topological order do not necessarily have a larger height

than nodes coming earlier.

D. Cut Sweeping

Cut sweeping [9] is a fast yet incomplete approach

for combinational equivalence checking. It iteratively

computes cuts for each AIG node and compares the

functions associated to the cuts.

A cut is defined with respect to an AIG node, called

root. A cut C(v) of root v is a set of nodes, called leaves,

such that any path from a PI to v intersects C(v). A cut-

set Φ(v) consists of several cuts of v. For cut-sets Φ(v1)
and Φ(v2), the merge operator ⊗ is defined as

Φ(v1)⊗ Φ(v2) = {C1 ∪ C2 | C1 ∈ Φ(v1), C2 ∈ Φ(v2)} .
(1)

Assume k ≥ 1. A k-feasible cut is a cut that contains

at most k leaves. A k-feasible cut-set is a cut-set that

contains only k-feasible cuts. The k-merge operator, ⊗k,

creates only k-feasible cuts. Cut enumeration recursively
computes all k-feasible cuts for an AIG. It computes the

k-feasible cut-set for a node v as follows:

Φ(v) =

{

{{v}} v ∈ PI

{{v}} ∪ Φ (Left(v))⊗k Φ (Right(v)) v ∈ AND ,
(2)

where PI and AND refer to the set of PIs and 2-input

AND gates respectively. Note that cuts are not built for

POs because they are never merged.

The function of a cut is the Boolean function of the

root in terms of the leaves. It can be represented in

different ways, for instance, using bit vectors or BDDs.

Two cuts are equivalent if their cut functions are equal.

Hence, two nodes are functionally equivalent if their cut-

sets contain equivalent cuts.

Cut sweeping is parametrized by k and N , the maxi-

mum cut size and the maximum cut-set size, respectively.

For each node v in some topological order of the AIG,

the algorithm builds a k-feasible cut-set Φ(v). Each cut

in Φ(v) is associated with a truth table. Next, it searches

for a node equivalent to v by looking for a cut equivalent

to some cut in Φ(v). If it succeeds, the two nodes are

merged. Otherwise, a heuristic is applied to prune Φ(v)
to at most N cuts. After pruning, the algorithm stores

Φ(v) as the cut-set of v and builds a cross-reference

between each of its cuts and v.
The heuristic for pruning, which we call the quality

heuristic, computes a value q for each cut:

q(C) =
∑

n∈C

1

|Fanout(n)|
. (3)

The cuts with the smallest values of q are kept. The

intuition of the quality heuristic is two-fold. First, it tries

to localize the equivalence and thus favors smaller cuts.

Second, it normalizes cuts by attempting to express them

with the same set of variables. The chosen variables are

those that have a large fanouts, i.e., that are shared by

many other nodes.

A good truth-table implementation is critical to the

performance of cut sweeping. In [9], truth tables are

implemented as bit vectors. An advantage of bit vectors

is the constant-time cost of Boolean operations. On the

other hand, bit interleaving is required to extend the bit

vectors to the same length so that the corresponding bits

represent the same minterm1.

III. BDD-BASED CUT SWEEPING

Representing functions having a small number of

inputs using bit vectors is very efficient. However, the

number of bits required grows exponentially with the

number of variables, which can easily lead to memory

blow-up. As an alternative, BDDs, which are more suit-

able for large functions, can also be used to represent cut

functions. Furthermore, the strong canonicity of BDDs

makes it trivial to check for equivalence. The use of

BDDs also enables a heuristic which we describe below.

The proposed algorithm differs from the original one

in two aspects. First, we introduce a new parameter s, the
maximum size of a BDD, to replace k. That is, instead of
k-feasible cuts, we keep cuts whose functions contain at

most s BDD nodes. Node count, as opposed to number

of inputs, is a more natural characterization of BDD size.

The second difference comes from the pruning heuris-

tic. We define the height h of a cut C as the average

height of its nodes:

h(C) =
∑

v∈C

h(v)

|C|
. (4)

1A good reference of bit-interleaving can be found at http://

graphics.stanford.edu/∼seander/bithacks.html.

DIFTS 2011 32

A smaller h indicates that the leaves in the cut are closer

to the PIs. The height heuristic keeps at most N cuts

choosing the ones with smallest values of h.

a

b

c

d

a

d

c

b

p

q

f

r

s

g

Fig. 1. Two implementations of a 4-input AND gate

A motivating example for the new heuristic is in

Figure 1, which shows two different 4-input AND gates.

Nodes a, b, c, and d are PIs. Nodes p, q, r, and s are

internal nodes. Nodes f and g can only be merged if

their cut-sets both contain {a, b, c, d}. However, if the

internal nodes have many more fanouts than the PIs, the

quality heuristic may select cuts containing the internal

nodes instead, causing the merge to be missed.

As mentioned before, the quality heuristic tries to

normalize the cuts on certain “attractors.” This reduces

the possibility that equivalent functions are represented

differently. However, this might also lead to the loss

of the opportunity to find equivalences that cannot be

expressed by those “attractors,” as in Figure 1.

On the other hand, the height heuristic tries to push the

cut boundary as far as possible. A supporting argument

is that, if a node is employed in equivalent cuts, then

replacing it with its predecessors preserve equivalence.

Furthermore, new merges that are otherwise undiscover-

able (consider other equivalences that require a and b in
the above example) may be found. The height heuristic

does not attract cuts to certain nodes, which may result

in different cuts for equivalent nodes. As shown in the

experiments, the effectiveness of the height heuristic

reduces as the height of nodes increases.

The two heuristics have their own strengths and weak-

nesses. A natural question is whether it is possible to

combine them to benefit from their individual strengths.

We can choose a few cuts with each heuristic. This may

lead to more merges but may also worsen the efficiency

if it significantly increases the number of cuts. To prevent

such an increase, a combined heuristic only records

height cuts for the lower nodes, while it keeps both types

of cuts for the others.

There is some connection between cut sweeping with

each of the two heuristics and BDD sweeping. With

the height heuristic, cut sweeping tries to build cuts as

large as possible, as BDD sweeping does. However, BDD

sweeping can store cuts that exceed the threshold while

cut sweeping only keeps those below the threshold. The

quality heuristic tries to attract cuts on certain nodes,

which is similar to the placement of auxiliary variables in

BDD sweeping. Nevertheless, the number of “attractors”

in the quality heuristic tends to be much larger than in

BDD sweeping.

IV. COMBINING SWEEPING METHODS

The idea of combining several simplification algo-

rithms is not new. Many existing model checkers iterate

several simplification algorithms before the problem is

passed to the model checking engines. However, we are

unaware of any studies that have been carried out to

identify the best way they could be combined. In this

section we attempt to give general guidelines to which

a combined approach should adhere. We support our

claims by empirical evidence collected in the experi-

ments reported in Section V.

The problem we address is as follows: given a time

budget for combinational simplification, how should it

be allotted to the different algorithms? The sweeping

algorithms discussed in previous sections vary in their

completeness and speed, with cut sweeping being the

most incomplete method yet the fastest of the three meth-

ods, SAT sweeping being a complete, yet the slowest,

and BDD sweeping lying in between, both in terms of

completeness and speed.

Possible solutions include allocating the whole time

budget to a single algorithm, or dividing it among two or

more algorithms. The fact that some methods are better

in approaching certain problems than others, suggests

that more than one method should be applied. If two or

more methods are to be applied in sequence, the intuition

suggests that the lower effort methods should precede

the higher effort ones. The advantages of doing so are

two-fold. First, although the higher-effort methods are

likely to discover the merges that a lower-effort method

discovers, in general, it will take them more time to do

so. Second, preceding higher-effort methods by lower-

effort methods is beneficial in having them present a

smaller problem that is easier to handle.

Finally, the percentages of total time that should be

allotted to each of the methods to yield the maximum

possible reduction is studied in Section V.

V. RESULTS

The experiments are divided into three parts. The first

part compares different variations of the cut sweeping

DIFTS 2011 33

algorithm. The second part shows the results of the com-

bined sweeping methods, and the third part is concerned

with the effect of sweeping on ic32.

We use the benchmark set from HWMCC’10 [14], a

set of 818 benchmarks in total. The experiments are run

on a machine with a 2.8GHz Quad-Core CPU and 9GB

of memory. We use CUDD [15] as our BDD package

for all the BDD-related algorithms.

A. BDD-based Cut Sweeping

Variations of cut sweeping are applied to the

HWMCC’10 benchmark set. The differences between

variations are two-fold. First, either the number of vari-

ables, k, or the number of BDD nodes, s, is used to

drop over-sized cuts. Second, we experiment with several

heuristics for pruning cut-sets: the quality heuristic,

the height heuristic, and two combined heuristics. The

naive combined heuristic (“combined-1”) chooses one

cut based on the height heuristic and the others based

on the quality heuristic. The other heuristic (“combined-

2”) sets a threshold on the node height (350 in our

experiments). For nodes that are below the threshold,

it only keeps a height cut. For higher nodes, it produces

cut-sets consisting of a height cut and two quality cuts.

We denote a method by a k or an s followed by the the

heuristic name. All the variations use BDDs to represent

the cut functions.

The results are shown in Table I; they are aggregated

over the 818 benchmarks. Based on experiments, both

the threshold of BDD sweeping and s in BDD-based

cut sweeping are set to 250. The total number of AIG

nodes before sweeping is 7.22M. “Final” is the size of

AIGs after sweeping. “Generated” and “Kept” are the

number of cuts generated and kept by the corresponding

methods. For an individual benchmark, its “height” is the

average height of all merged cuts. The “Height” column

is computed by taking the average of the “height” of

all the benchmarks. A smaller value indicates that more

merges are found by cuts that are close to the PIs. Note

that since we use BDDs, the results in terms of efficiency

of bit-vectors based methods may not be as good as in

[9]. Therefore, when dealing with them, we just compare

the effectiveness.

Results indicate that the resulting AIGs are con-

sistently smaller with s than with k. There are

a few interesting observations. First, the ratios

GeneratedCuts/Merge and KeptCuts/Merge are im-

2Detailed results for first and second parts can be found at http:

//eces.colorado.edu/∼hassanz/sweeping-study

proved significantly with s. This means that with s, each
cut has a larger chance of resulting in a merge.

Second, while “k-quality” and “k-combined-1” have

very close sweeping times, the latter achieves 19.8%
more merges. Furthermore, the decrease in the “Height”

column reveals that the height cuts indeed lead to

merges. Although “s-quality” is more effective than the

two above methods, it is less efficient due to the larger

cut sizes.

For the methods with s (excluding “s-quality”), we

observe that “s-heightN = 1” is the fastest and produces
a good number of merges. Increasing the number of

height cuts to two triples the run time without gaining

many more merges. Comparing it with “s-combined-1”,

an improvement on the merges is shown by the latter.

This indicates that maintaining one height cut and one

quality cut works better than two height cuts. For “s-

combined-2”, the number of merges is between the two

above methods, but with lower run time. Furthermore,

the numbers of generated cuts and kept cuts are even

comparable to “s-height N = 1”. That is, even though

we keep three cuts for those nodes with height larger

than 350, on average we compute only a few percent

more cuts than we do in the case of one cut per node.

The “Height” values of the three methods confirm the

assumption made in Section III: most merges produced

by the height heuristic come from cuts close to the

PIs. When the two heuristics are combined, a significant

increase on the “Height” value is observed. In Figure

2, we show the number of merges found by “s-height

N = 1” and “s-combined-2” on nodes within different

height ranges. The plot is normalized to “k-quality” and

has bin size of 50, i.e., a point at (2, 1) indicates that the
method finds the same number of merges as “k-quality”

for nodes with height from 100 to 149. Obviously, the
height heuristic works better on smaller height nodes,

while the quality heuristic catches more on larger height

ones. The combined heuristic takes the advantage of

both and produces an even better profile on nodes with

larger heights. Note that although the height heuristic

works worse on the nodes with larger heights, it can

still get more merges. This may be due to the fact that

in this benchmark set, a large percent of equivalences

are located at lower heights.

In our setup, cut sweeping is intended for usage as a

fast method. Thus we consider “s-height N = 1” and

“s-combined-2” to be the best variants. Compared to

BDD sweeping, those two variants are faster because

they create fewer BDD nodes than BDD sweeping, but

are less effective since BDD sweeping may keep BDDs

DIFTS 2011 34

TABLE I

RESULTS OF CUT SWEEPING, BDD SWEEPING AND SAT SWEEPING ON THE HWMCC’10 SET. BY DEFAULT, k = 8 AND s = 250.

Method Final (×10
6) Merges (×10

5) Time (s) Generated (×10
7) Kept (×10

7) Height

k-quality N = 5 6.82 2.62 123.26 5.83 1.92 10.20

k-combined-1 N = 5 6.75 3.14 129.64 5.84 1.90 8.57

s-quality N = 5 6.71 3.31 536.75 7.63 2.32 12.11

s-height N = 1 6.55 4.07 58.99 1.07 0.54 3.19

s-height N = 2 6.51 4.20 181.52 2.18 0.99 2.94

s-combined-1 N = 2 6.48 4.42 181.21 2.29 1.02 12.86

s-combined-2 6.52 4.28 74.64 1.10 0.54 12.72

BDD Sweeping 6.34 5.61 112.74 – – –

SAT Sweeping 6.10 6.37 2149.4 – – –

0 20 40 60 80 100 120
10

−1

10
0

10
1

10
2

Node Height (/50)

R
a
ti

o
 o

v
e
r

Q
u

a
li
ty

 H
e
u

ri
s
ti

c

Height Heuristic

Combined Heuristic

Fig. 2. Number of merges on nodes within different height ranges

that exceed the threshold.

B. Combined Sweeping Methods

In this section, we show experimental evidence that

supports the guidelines of combining sweeping methods

presented in Section IV. In particular, we try several pos-

sibilities of allotting the budget to the different sweeping

algorithms with the purpose of identifying empirically if

they should be combined, and if so, in which way. In

what follows we use the “s-height N = 1” variant of

cut-sweeping since it is the fastest, and we simply refer

to it as cut sweeping.

In our combined approach, SAT sweeping is always

run last since it is the only complete method of the three,

and should thus be given whatever time is left to find

equivalences not discovered by the other methods. Also,

the time not used by any of the preceding methods is

passed to SAT sweeping. For instance, if cut sweeping

is given a time budget of 4 seconds and only uses 3 of

them, SAT sweeping gets to run for one extra second.

We compare the reduction measured in terms of the

number of AIG nodes removed, and the total time

spent in sweeping. Data are aggregated over the 818

benchmarks. The base case for our comparisons is the

pure SAT sweeping case in which SAT sweeping gets

the whole budget. The time budget used in our study is

10 seconds.

We consider the following policies: (a) allocating

the budget to two methods, (b) allocating it to three

methods, and (c) allocating the whole budget to SAT

sweeping. For (a) and (b), we consider all the different

permutations of assigning integer time values to each

method, such that they sum up to 10 seconds. Note that if

a sweeping algorithm times out, what it has achieved thus

far is used in what follows. In all cases, a set of light-

weight sequential simplification algorithms are applied

before sweeping. This set of algorithms includes cone-

of-influence reduction, stuck-at-constant latch detection,

and equivalent latch detection. The total number of

AIG nodes for all 818 benchmarks measured after the

sequential simplification step is 6.1M.

Results are presented in Table II. The first column lists

the methods, where the number before each sweeping

method indicates the number of seconds given to it.

The second column shows the number of AIG nodes

removed. The third column shows the total time spent in

sweeping. The methods are listed in order of decreasing

reduction. The last row is for pure SAT sweeping. We

only show the best three setups in terms of reduction for

each of the possible orders of the method sequences.

Several observations can be made. First, when it

comes to running two methods in sequence, BDD

sweeping combined with SAT sweeping outperforms cut

sweeping combined with SAT sweeping. The method

that achieves maximum reduction (8 seconds of BDD

sweeping followed by 2 seconds of SAT sweeping)

removes 56K more nodes than pure SAT sweeping (7.7%

more reduction). Second, more reduction is achievable

by running three methods in sequence. As suggested in

Section IV, ordering the methods by increasing effort

DIFTS 2011 35

TABLE II

EFFECT OF BUDGET ALLOCATION ON REDUCTION.

Method Reduction Total Sweeping Time (s)

4 Cut, 5 BDD, 1 SAT 801,932 518
2 Cut, 5 BDD, 3 SAT 801,137 516
6 Cut, 3 BDD, 1 SAT 801,119 522

4 BDD, 1 Cut, 5 SAT 794,052 517
8 BDD, 1 Cut, 1 SAT 793,921 515
7 BDD, 2 Cut, 1 SAT 793,814 519

8 BDD, 2 SAT 793,226 500
7 BDD, 3 SAT 793,068 503
5 BDD, 5 SAT 792,797 508

1 Cut, 9 SAT 772,563 512
6 Cut, 4 SAT 771,070 513

3 Cut, 7 SAT 769,483 511

10 SAT 736,594 619

(or equivalently by increasing degree of completeness)

achieves more reduction than otherwise. Here, the best

method (4 seconds, 5 seconds, and 1 second for cut,

BDD and SAT sweeping, respectively), has an edge

of 65K nodes over pure SAT sweeping (about 8.9%

more reduction). Third, in terms of sweeping time, it

is clear that a large drop occurs (> 100 seconds) when

two or three methods are combined versus pure SAT

sweeping, which is due to the often smaller time needed

by BDD and cut sweeping to discover equivalences than

SAT sweeping. Given an overall model checking budget,

smaller sweeping time allows more time for the model

checking engine, which is desirable.

The question of whether such difference has a consid-

erable effect on the performance of the model checking

engine is answered in the next section.

C. Effect on ic3

The recently developed model checking algorithm,

ic3 [1], has been regarded as the best standalone model

checking algorithm developed up till now [16]. As the

interaction of combinational simplification methods with

different model checking algorithms has been studied in

the past, we here aim to study how they interact with

ic3. In particular, we would like to empirically find

out if ic3 benefits from preprocessing the netlist with

a simplification algorithm or not, and if it does, how

sensitive it is to the magnitude of reductions achieved

through simplification.

In the first experiment, we compare two runs of ic3,

one that is preceded by SAT sweeping, and one that

is not. The experimental setup is as follows. A total

timeout of 10 minutes is used. The budget for SAT

sweeping is 10 seconds. The light-weight sequential

simplification algorithms referred to in Section V-B are

applied once in the no-sweeping case, and twice (before

TABLE III

EFFECT OF SWEEPING ON ic3’S PERFORMANCE.

Solves Solves Runtime (s) Runtime (s)
Seed (No (With (No (With
Index Sweeping) Sweeping) Sweeping) Sweeping)

1 693 698 96,297 91,762
2 689 699 95,629 90,341
3 691 699 95,050 92,714
4 696 697 93,691 91,141
5 693 698 95,007 89,656
6 690 695 96,270 91,559
7 693 699 94,784 92,056
8 690 701 94,351 90,837
9 693 693 95,491 92,847
10 690 693 95,124 93,048

Average 691.8 697.2 95,169 91,596

and after sweeping) in the sweeping case. We compare

the number of solves, and the aggregate runtime among

all benchmarks.

It is important to note that the ic3 algorithm has a

random flavor. In particular, the order by which gener-

alization (dropping literals) is attempted is randomized.

Also, since the algorithm is SAT-based, randomization

occurs in the SAT solver decisions. To have reliable

experimental results, each experiment is repeated with

10 different seeds, and the results are averaged over the

different seeds.

Results are shown in Table III. The first column shows

the seed index, the second and third columns show the

number of solves without and with sweeping, and the

fourth and fifth columns show the aggregate runtime

without and with sweeping.

The results confirm a positive effect of sweeping on

the performance of ic3. On average, five more solves

are achieved with sweeping, and the aggregate runtime

drops by 3.8%.

The enhancement in the performance of ic3 in pres-

ence of sweeping can be attributed to two factors. First,

reduction in the number of gates caused by sweeping can

result in the reduction in the SAT solver time. Second,

simplification often results in dropping of latches (e.g.,

if it merges the next-state functions of two latches). For

example, for the benchmark set used in our experiments,

sweeping reduces the aggregate number of latches from

279,161 to 269,091 (3.6% decrease). This reduces the

amount of work done by ic3 in generalization of

counterexamples to induction.

We now repeat the previous experiment, but this time

we compare the number of solves and the aggregate

runtime between pure SAT sweeping and the empirically

optimum combined sweeping scheme of Section V-B.

The purpose of this experiment is to understand how

DIFTS 2011 36

TABLE IV

OPTIMUM SWEEPING VERSUS PURE SAT SWEEPING.

Solves Solves Runtime (s) Runtime (s)
(Pure (Optimum (Pure (Optimum

Seed SAT Sweeping SAT Sweeping
Index Sweeping) Scheme) Sweeping) Scheme)

1 698 696 91,762 91,567
2 699 696 90,341 91,113
3 699 697 92,714 92,373
4 697 702 91,141 90,478
5 698 697 89,656 90,327
6 695 699 91,559 90,606
7 699 697 92,056 91,498
8 701 699 90,837 92,228
9 693 696 92,847 91,252
10 693 697 93,048 92,663

Average 697.2 697.6 91,596 91,411

sensitive ic3 is to the magnitude of reductions.

Results are shown in Table IV, where the second and

third columns compare the number of solves for pure

SAT sweeping and the optimum sweeping scheme, and

the fourth and fifth columns compare the total runtime.

As the results indicate, ic3 does not benefit much

from the better reduction achieved by the combined

sweeping scheme. The lack of performance enhancement

on ic3 can be attributed to the small improvement

in reduction the combined sweeping approach achieves

over pure SAT sweeping. In particular, while pure SAT

sweeping removes 737K nodes out of the total 6.1M

nodes in the 818 benchmarks (12.1% reduction), the

combined approach removes 802K nodes (13.2% reduc-

tion); a mere 1.1% improvement. This suggests that ic3

has a small sensitivity to the magnitude of reduction.

VI. CONCLUSION

In this paper, we presented an empirical study of

the different sweeping methods proposed in the past.

We have shown that a combined sweeping approach

outperforms any of the sweeping methods alone. We

have also proposed a BDD-based cut sweeping method

that is more effective than the original cut sweeping.

Finally, we have studied the effect of sweeping on the

new model checking algorithm, ic3, and investigated

the causes of the better performance it experiences with

sweeping. The goal of this analysis is to help designers

of model checkers to make decisions regarding the

incorporation of sweeping methods and to provide a

deeper understanding of how sweeping methods interact

with ic3.

ACKNOWLEDGEMENTS

We thank Aaron Bradley who motivated this work

and contributed to many discussions. We also thank the

reviewers for their insightful comments regarding cut

sweeping’s pruning heuristics that prompted us to try

the “combined-2” heuristic.

REFERENCES

[1] A. R. Bradley, “SAT-based model checking without unrolling,”

in Proc. Int. Conf. on Verification, model checking, and abstract

interpretation, 2011, pp. 70–87.

[2] H. Mony, J. Baumgartner, V. Paruthi, R. Kanzelman, and

A. Kuehlmann, “Scalable automated verification via expert-

system guided transformations,” in Formal Methods in

Computer-Aided Design, 2004, pp. 159–173.

[3] R. Brayton and A. Mishchenko, “ABC: An academic industrial-

strength verification tool,” in Computer Aided Verification,

2010, pp. 24–40.

[4] G. Cabodi, S. Nocco, and S. Quer, “Benchmarking a model

checker for algorithmic improvements and tuning for perfor-

mance,” in Proc. Hardware Verification Workshop, 2010.

[5] P. Bjesse and A. Boralv, “DAG-aware circuit compression for

formal verification,” in Proc. Int. Conf. on Computer-aided

design, 2004, pp. 42–49.

[6] A. Mishchenko, S. Chatterjee, and R. Brayton, “DAG-aware

AIG rewriting a fresh look at combinational logic synthesis,”

in Proc. Design Automation Conference, 2006, pp. 532–535.

[7] A. Kuehlmann and F. Krohm, “Equivalence checking using cuts

and heaps,” in Proc. Design Automation Conference, 1997, pp.

263–268.

[8] A. Kuehlmann, “Dynamic transition relation simplification for

bounded property checking,” in Proc. Int. Conf. on Computer-

aided design, 2004, pp. 50–57.

[9] N. Eén, “Cut sweeping,” Cadence Design Systems, Tech. Rep.,

2007.

[10] A. Mishchenko, S. Chatterjee, and R. Brayton, “FRAIGs: A

unifying representation for logic synthesis and verification,”

EECS Dept., UC Berkeley, ERL, Tech. Rep., Mar 2005.

[11] A. Biere, A. Cimatti, E. M. Clarke, and Y. Zhu, “Symbolic

model checking without BDDs,” in TACAS, 1999, pp. 193–207.

[12] G. Cabodi, M. Murciano, S. Nocco, and S. Quer, “Stepping

forward with interpolants in unbounded model checking,” in

Proc. Int. Conf. on Computer-aided design, 2006, pp. 772–778.

[13] A. Mishchenko, S. Chatterjee, R. Brayton, and N. Een, “Im-

provements to combinational equivalence checking,” in Proc.

Int. Conference on Computer-aided design, 2006, pp. 836–843.

[14] A. Biere and K. Claessen, “Hardware model checking compe-

tition,” in Hardware Verification Workshop, 2010.

[15] F. Somenzi, CUDD: CU Decision Diagram Package, University

of Colorado at Boulder, ftp://vlsi.colorado.edu/pub/.

[16] R. Brayton, N. Een, and A. Mishchenko, “Continued relevance

of bit-level verification research,” in Proc. Usable Verification,

Nov. 2010, pp. 15–16.

DIFTS 2011 37

1

Enhancing ABC for LTL Stabilization Verification
of SystemVerilog/VHDL Models

Jiang Long, Sayak Ray, Baruch Sterin, Alan Mishchenko, Robert Brayton
Berkeley Verification and Synthesis Research Center (BVSRC)

Department of EECS, University of California, Berkeley
{jlong, sayak, sterin, alanmi, brayton}@eecs.berkeley.edu

Abstract—We describe a tool which combines a commercial
front-end with a version of the model checker, ABC, enhanced to
handle a subset of LTL properties. Our tool, VeriABC, provides
a solution at the RTL level and produces models for synthesis
and formal verification purposes. We use Verific (a commercial
software) as the generic parser platform for SystemVerilog and
VHDL designs. VeriABC traverses the Verific netlist database
structure and produces a formal model in the AIGER format.
LTL can be specified using SVA 2009 constructs that are
processed by Verific. VeriABC traverses the resulting SVA parse
trees and produces equivalent LTL formulae using the F,G, Until
and X operators. The model checker in ABC has been enhanced
to handles LTL stabilization properties, an important subset of
LTL. The paper presents VeriABC’s implementation strategy,
software architecture, tool flow, environment setup for formal
verification, use model, the specification of properties in SVA
and translation into LTL. Finally the properties are translated
into safety properties that can be verified by the ABC model
checker.

I. INTRODUCTION

We present an integrated tool flow for liveness model check-
ing using industry hardware description languages (HDLs) and
SystemVerilog Assertions: (i) VeriABC: a front-end to read in
hardware models expressed in HDLs, and (ii) capability of
model checking a subset of liveness properties. VeriABC is
able to read in hardware models expressed in SystemVerilog
or VHDL. SystemVerilog and VHDL languages are the most
popular HDLs being used in industry today for digital designs.
VeriABC generates a formal model in the AIGER[2] format
and relies on a commerical front-end, Verific, to build a generic
parser platform for HDLs. This allows down-stream tool flows
in synthesis and verification. A version of ABC was enhanced
from a safety-only verification engine to allow both safety and
liveness verification. Our current version supports a particular
subset of liveness properties called stabilization properties or
generalized fairness constraints (defined in Section IV).

In a typical use model, a user will develop a hardware
design in SystemVerilog or VHDL, and specify its correctness
requirements in the property specification language SystemVer-
ilog Assertion (SVA). SVA has been adopted into IEEE
SystemVerilog standard and is supported by major commer-
cial tools in simulation, synthesis and verification. The SVA
language in SystemVerilog 2009 standard contains liveness
constructs that allow full specification of liveness properties
as those defined in LTL formulas. In our framework, a user
can specify both safety properties and liveness properties

(stabilization properties, to be precise). In this paper, we detail
its liveness capabilities.

After reading in a design, VeriABC bit-blasts it into a bit-
level netlist and converts the SVA stabilization properties into
an intermediate LTL representation. Then the LTL properties
are folded into the bit-level netlist in an appropriate way
(using an extended liveness-to-safety conversion, explained
later in Section IV). The resulting bit-level netlist represents
a formal model of the design, represented as an and-inverter
graph (AIG). And-inverter graphs are concise representations
of finite state machines. The AIGER[2] format is a prevalent
format for AIG representation. supported by various academic
tools and used in annual hardware model checking competi-
tions. Since our liveness verification is based on liveness-to-
safety conversion, eventually the safety verification backend in
ABC[1] is called which works on the bit-level netlist produced
by the VeriABC front-end. We have used this methodology
to verify liveness in the context of compositional verification
of deadlock freedom of micro-architectural communication
fabrics. Preliminary experimental results are encouraging.

A. Related work
Although parsing and elaborating RTL languages are a stan-

dard practice for commercial EDA products, it is a daunting
task for academics due to language complexity and continuous
language evolution over the years. Although, vl2mv[12] was an
academic tool that attempted to treat a significant subset of the
Verilog language for synthesis and verification purposes, it was
not maintained and language support was not complete. Tools
like ABC[1], VIS[9] parse subsets of Verilog language too
strict and not applicable in a broad setting. Freely accessible
tools like icarus[3] contain Verilog languages front-end but are
not up-to-date with newer SystemVerilog features.

Our choice of a commercial and stable front-end Verific,
allows academics to get around the language barrier to access
real-world designs.

Liveness-to-safety conversion was first proposed in [7],
[24]. They demonstrated that verification problems for any
ω-regular property can be converted into a verification prob-
lem of an equisatisfiable safety problem. Their algorithm
has been deployed successfully in industrial setups and used
to verify liveness properties of microprocessor designs [6].
Our liveness-to-safety conversion algorithm for stabilization
is essentially an extension of the algorithm proposed in [24]
and is broader than discussed in [6].

DIFTS 2011 38

B. Contribution

As illustrated in Figure 1, we combine a commercial front-
end, Verific, with a version of our model checker, ABC,
enhanced to handle a subset of LTL properties. Our tool
processes the Verific output, conducts various modeling pro-
cedures on the design, compiles SVA into LTL formulas, then
the enhanced ABC processes the LTL formulas for liveness
model checking. We detail the software architecture, tool flow,
formal model construction, SVA compilation and downstream
LTL modeling checking.

RTL+SVA

Verific Netlist Databse

AIGER + LTL Formula

AIGER

Error
Trace

Verific Parser Platform

VeriABC

L2S

ABC Backend Engines

DEBUG

Proven

Fig. 1. Complete Tool Flow

C. Organization of the Paper

We first discuss the capabilities of the Verific parser plat-
form. In Section III we describe the architecture, formal
modeling of VeriABC and translation of SVA into LTL. In
Section IV the stabilization properties are described in further
detail. Section V describes the liveness-to-safety conversion
for stabilization properties. Experimental results are presented
in Section VI.

II. BACKGROUND: VERIFIC PARSER PLATFORM

Verific Design Automation[4] builds SystemVerilog and
VHDL Parser Platforms which enable its customers to develop
advanced EDA products quickly and at low cost. Verific’s
Parser Platforms are distributed as C++ source code or library
and build on all 32 and 64 bit Unix, Linux, and Windows
operating systems. Applications vary from formal verification
to synthesis, simulation, emulation, virtual prototyping, in
circuit debug, and design-for-test. We chose Verific as our
front-end for its commercial success and stability in supporting
the latest language constructs in SystemVerilog.

Figure 2 shows the architecture of the Verific parser front-
end. The main commands we use in Verific library are analyze
and elaborate. Analyze creates parse-trees and performs
type-inferencing to resolve the meaning of identifiers. The
Parser/Analyzer supports the entire SystemVerilog IEEE 1800,

Fig. 2. Verific Parser Flow

VHDL IEEE 1076-1993, and Verilog IEEE 1364-1995/2001
languages, without any restrictions. The resulting parse tree
comes with an extensive API.
Elaborate supports both static elaboration and RTL elab-

oration. Static elaboration elaborates the entire language, and
specifically binds instances to modules, resolves library ref-
erences, propagates defparams, unrolls generate statements,
and checks all hierarchical names and function/task calls.
The result after static elaboration is an elaborated parse tree,
appropriate for simulation like applications. RTL elaboration is
limited to the synthesizable subset of the language. In addition
to the static elaboration tasks for this subset, it generates
sequential networks through flipflop and latch detection, and
Boolean extraction. The result after RTL elaboration is a netlist
database, appropriate to applications such as logic synthesis
and formal verification. This netlist database is the starting
point of VeriABC and we utilize Verific provided C++ APIs
to access the database.

A. Verific Netlist Database Structure

In this Section, we use Verilog terminology to present
Verific’s netlist database structures. The netlist database is
rather intuitive and adheres to the module definitions. Shown
in Table I, there is a one-to-one correspondence between the
C++ API class definitions and Verilog constructs.

A Netlist corresponds to module definitions in Verilog
while an Instance object corresponds to module instantiation,

DIFTS 2011 39

Verific Database C++ API Class Verilog RTL Objects
Netlist Module definition

Instance Module instantiation
Port Module port declarations
Net wire/reg/assign

PortRef Port to Net connectivity

TABLE I
VERIFIC NETLIST OBJECTS

after the module’s parameters have been characterized. An
Instance is a thin copy of the Netlist plus a pointer to its
parent netlist. A Netlist contains a set of Ports, Nets and
Instances for its internal logic structure. A Port corresponds
to the Verilog port definitions which can be input, output
or inout. A Net is a named component, intuitively a wire.
PortRef contains the connectivity between a Port and a
Net. The direction of the PortRef can be in, out, or inout
depending on the type of Port it contains. Using these C++
objects, the Verific netlist database defines a directed hyper-
graph and encapsulates the following types of information:

Design Hierarchy
Design hierarchy is captured as an instance tree by
the parent pointers in the Instance with a top-level
netlist as the root.

Unique Hierarchical Name
Following the design hierarchy through the instance
tree, each internal object is assigned a unique hier-
archical name.

Connectivity
A directed hyper-graph is defined through Port, Net
and PortRef : Port being the node, Net being the
edge, and PortRef containing the connectivity and
direction information between pairs of a Port and a
Net. As an edge in the hyper-graph, a Net can be
referenced in multiple PortRef objects.

Logic Definition
At the leaf of the design hierarchy, a Netlist of
primitive operator types such as and, or, adder,
flipflop, latches etc defines the basic logic operators.

Recursively, the functional behavior of the design is cap-
tured through the directed hierarchical hyper-graph with basic
logic operators at its leaf level.

III. VERIABC

VeriABC traverses the above netlist database and transforms
it into a monolithic AIG which can be treated as a directed
acyclic graph (DAG). The AIG contains primary input, pri-
mary output, register nodes and and-inverter nodes. Each
named Port and Net in the Verific netlist has a mapped node
in the AIG graph. Additional book-keeping information such
as hash tables are created that map the hierarchical name to
the corresponding AIG node. The down-stream model checker
ABC then reads in this AIG to conduct formal analysis.

A. Architecture

A hyper-graph is rather hard to traverse and conduct anal-
ysis/transformation at the same time.

As shown in Figure 3, we employ a two phase approach.
First we construct an intermediate netlist graph, a DAG with
extra annotated node types representing logic structure and
connectivity of the flattened design. In addition to the simple
node types in and-inverter graphs, extra node types contain
annotations for language constructs such as tri states, flipflops
and latches etc. For example, flipflops contain set/reset pins
and driving d-pins; latches contain additional gated-clock defi-
nitions. By language definition, a design can specify any signal
for the clock and reset signals. Design behavior is defined
by event-driven semantics. Further analysis needs be done to
determine if there is an AIG representation that can capture the
original design semantics. The intermediate netlist is a DAG
for which various traversal algorithms can be conducted for
the later analysis. For this step, VeriABC only traverses the
design hierarchy and hyper-graph in the Verific netlist database
to gather information and construct the intermediate DAG
representation without conducting any design style checking
or transformation.

Verific Netlist
Database

Intermediate
Netlist Graph

AIG

Fig. 3. VeriABC Architecture

B. Formal Modeling

The end result of VeriABC is an AIG model that is
consistent with the original RTL design semantics. AIG is
recognized as a finite state machine model. Compared to
the event-driven semantics in HDL language, the execution
semantics of an AIG is synchronous with an implicit universal
clock that ticks at every step of the execution. The register
loads in its driver value at the beginning of each step. The
semantics inferred from the Verific netlist structure is more
complex, such as its flip-flop can have arbitrary reset logic and
clock network. The task in formal modeling is to transform the
above design components into AIG registers with additional
glue logic so that it maintains the consistency. In its simplest
form, the following check determines if the design can be
readily represented by an AIG.
• All registers are clocked by the same primary input signal

which does not fanout to other nodes.
• Reset/Set signals are primary inputs

DIFTS 2011 40

• No combinational loops
• No multiple drivers per node
More complex design modeling and transformations can

be achieved by identifying certain patterns by traversing the
intermediate netlist graph. Our current implementation sup-
ports the above form and produces a design style summary
for debugging purposes. Though capacity and performance
depends on the type of individual transformation and anal-
ysis, for the above ones, the transformation and design style
checking is very fast, as it conducts only a few traversals of
the intermediate netlist graph. After design style checking, a
final traversal of the intermediate netlist graph generates an
AIGER file representing the formal model.

C. Commands Implemented

VeriABC implementation utilizes the Tcl command inter-
face shipped with the Verific library distribution. The following
is the list of commands implemented to manage the environ-
ment setup for formal verification.
veriabc analyze

This command constructs the intermediate netlist
graph in Figure 3 and conducts design style checking.

veriabc set reset
Although a reset signal can be automatically de-
tected in certain situations, this command provides
the user with the option to specify the length of
the reset sequence and phase of the reset condition.
A user can also specify the initial value of the
registers through a VCD waveform or textual file.
In the generated formal model, the initial value of
the registers will be valued at the end of the reset
sequence and the reset condition will be disabled
after reset.

veriabc set clock
A user can specify the clock periods and relation-
ships in the situation when multi-clocks are in the
design. A phase-counter network will be created in
the formal model to generate the corresponding clock
signals.

veriabc set cutpoint
This command will prune the cone-of-influence at
cutpoint signal and treat it as free input.

veriabc set constant
This command sets either an input or a cut-point
signal to a constant value.

veriabc set assume
This constrains the design signal to be a constant.

veriabc write
write out the final formal model in AIGER format.

The above commands give the user flexibility to model the
environment with constraints and conduct design abstractions
during verification.

D. SVA to LTL Compilation

In SystemVerilg 2009 standard, a rich set of LTL operators
are added into SVA language. The SVA properties shown in

Figure 4 are the templates for matching the basic LTL opera-
tors used in the set of stabilization properties. For stabilization
properties, in our current implementation, we restrict the p and
q to be Boolean expressions which seems to be sufficient in
practice. The SVA verification directive assume is used to
specify a fairness constraint, while assert is used to specify
the target LTL properties.

property Until(p,q);
p s_until q;

endproperty

property GF(p);
always (s_eventually p);

endproperty

property FG(p);
s_eventually (always p);

endproperty

property X(p);
s_nexttime (p);

endproperty

Fig. 4. SVA Liveness Template

Verific also processes SVA constructs into the netlist
database structure, essentially a corresponding parse tree is
integrated into the netlist. We conduct traversals of the parse
tree, identify specific liveness constructs and map them into
the corresponding LTL formula. At the end of the procedure,
along with the AIGER file generated, a separate file containing
the LTL formulas are generated indicating target liveness
assertions and fairness constraints. The support signals referred
to in the LTL formulas are named output signals in the
AIGER file. Although we currently only support stabilization
properties in LTL, the full LTL language using X , F , G,
U operators can be specified fully and translated through
SVA constructs. In doing so, this completes the formal model
generation and SVA compilation at the RTL level.

IV. LIVENESS MODEL CHECKING IN VERIABC
In the FSM modeling formalism, the most intuitive notion

of stabilization states that the system will always reach a
particular state and stay there forever, no matter which state the
system started from or which path it took. Relaxing this notion
a bit, stabilization means that the system will eventually reach
and stay within a given subset of states. Also, stabilization may
denote conditions on the input and output signals of a system
when it attains a stable state. Applications of stabilization
properties have been demonstrated in [14] and [18], to name
a few. We review some basic temporal logic terminology and
formally define stabilization properties using LTL below.

A. LTL, model checking and stabilization property
Familiarity is assumed with LTL, basic model checking

algorithms, and related terminology like Kripke structures and

DIFTS 2011 41

Büchi automata. For further details, see [13]. In our current
context, we use LTL properties GFp and FGp, and thus
overview their semantics here: let π be a path in some Kripke
structure K; π |=K Gp means property p will hold on every
state along π; π |=K Fp means the property p will hold
eventually on some state along π; π |=K GFp means p will
hold along π infinitely often, and π |=K FGp means p will
hold eventually on π forever. Since temporal operators F and
G are dual (i.e. Fp ≡ ¬G¬p), operators FG and GF are also
dual (i.e. FGp ≡ ¬GF¬p).

Definition 1 (GF-atom): Any LTL formula of the form
GFp or FGp, where p is some atomic proposition or some
Boolean formula involving atomic propositions only, will be
called a ‘GF-atom’.

Stabilization properties are defined as the family of LTL for-
mulas that are Boolean combinations of GF-atoms. Formally:

Definition 2 (Stabilization Property): The set of stabiliza-
tion properties is the syntactic subset of LTL defined as
follows:
• any GF-atom is a stabilization property
• if φ is a stabilization property, then so is ¬φ
• if φ and ψ are stabilization properties, then so are φ∧ψ

and φ ∨ ψ
Example 1: FGp, GFp ⇒ GFq, FGp ∧ FGq ⇒ FGr,

and FGp ⇒ FGq ∨ (FGr ∧GFs) are stabilization proper-
ties where p, q, r, and s are atomic propositions or Boolean
formulas involving atomic propositions only and a⇒ b is the
usual shorthand for ¬a ∨ b. However, G(r ⇒ Fg) is an LTL
liveness property but not a stabilization property.

Needless to say, these are all liveness properties. But not
all of them specify so-called system stabilization directly.
Properties like FGp and FGp∧FGq ⇒ FGr (or its general-
ization ∧ki=1FGpi ⇒ FGq) are perhaps the most elementary
stabilization properties. FGp means that the system eventually
will reach a state from where p will always hold, i.e. the
system will eventually ‘stabilize’ at p. FGp ∧ FGq ⇒ FGr
means that if the system stabilizes at p and also at q (at
perhaps some other time), then it will stabilize eventually
at r. Hence, semantics of these properties are close to the
intuitive notion of stabilization. [14] demonstrates the use
and significance of stabilization properties in the context
of biological system analysis. However, our definition of
stabilization captures a broader family of specifications. It
includes FGp ⇒ FGq ∨ (FGr ∧ GFs) which may look
contrived, but for example, [18] uses many such complicated
stabilization properties for compositional deadlock analysis
of micro-architectural communication fabrics. On the other
hand, our definition includes many properties not intended to
specify so-called stabilization behavior. For example, GFp or
GFp⇒ GFq.

The main motivation behind considering this broader subset
of LTL is that we offer a short-cut L2S conversion, avoid-
ing Büchi automaton construction, in a uniform way (due
to the duality between FG and GF operators). The most
significant applications of this class that we have encountered
is “stabilization verification”, and hence the name is coined
for the family. (This name was inspired by [14]). Thus the
L2S conversion proposed here may be applied for proving

properties beyond the context of stabilization verification (eg.
GFp⇒ GFq).

The class of LTL properties defined as stabilization prop-
erties in this paper is a very important class of temporal
properties extensively studied in the literature. It is related
to so-called fairness specifications. Operators GF and FG
are often called infinitary operators [19] and symbols F∞

and G∞ are used respectively instead [15]. The class itself
(i.e. Boolean combination of GF-atoms) has been called
general fairness constraints [16], [19]. As shown in [16],
various notions of fairness like impartiality [21], weak fairness
[20](also called justice [21]), strong fairness [20] (also called
compassion [21]), generalized fairness [17], state fairness [22]
(also known as fair choice from states [23]), limited looping
fairness [5], and fair reachability of predicate [23] can be
expressed by stabilization properties. These properties are used
to exclude “unfair” counterexamples in liveness verification
in both linear time and (fair) branching time paradigms. For
liveness verification, we usually have a liveness property (the
actual proof obligation) along with a set of fairness constraints.
Liveness properties may not be stabilization properties. In that
case we may need to construct the product of the system
and the Büchi automaton of the (negation of the) liveness
property before performing the L2S conversion. Interestingly,
for many interesting applications as in [14] and [18], the
liveness verification obligations fall entirely in the family of
stabilization properties. For these applications, the simple L2S
scheme proposed in this paper works. Note that some liveness
properties like G(request ⇒ Fgrant) are not stabilization
properties, but also have a direct L2S conversion [24]. It is,
therefore, an interesting question that under what more general
conditions there exists a direct L2S conversion.

V. L2S CONVERSION FOR STABILIZATION PROPERTIES

It is important to understand that any counterexample to
a liveness property (which must be an infinite trace) can be
seen as a “lasso” like configuration with a finite handle and
a finite loop. Therefore a liveness counter-example is a lasso
which does not satisfy the property on the loop but satisfies
all imposed fairness constraints on the loop.

In general, a liveness problem is converted to a safety prob-
lem by adding a loop-detection logic and property-detection
logic on top of the product of the FSM of the original system
and the Büchi automaton of the property to be verified. The
loop-detection logic consists of a set of shadow registers,
comparator logic, and an ‘oracle’. The oracle saves the system
state in the shadow registers at a non-deterministically chosen
time. In all subsequent time frames, the current state of the
system is compared to the state in the shadow registers.
Whenever these two states match, the system has completed a
loop. The non-deterministic nature of the oracle allows all such
loops to be explored. The property verification logic checks if
any of the liveness conditions are violated in any such loop
and all fairness conditions always hold in the loop. This check
is done as a safety obligation. For a more detailed exposition,
see [24].

As mentioned, for some simple properties L2S conversion
can be achieved while avoiding explicit Büchi automata con-

DIFTS 2011 42

struction. This is done by adding more functionality to the
property detection logic. As presented in [24], these properties
are Fp,GFp,FGp, pUq, ,G(r ⇒ Fq), and F(p∧Xq) (Table
1 of [24]). This approach, reviewed in Figure 5, depicts an L2S
converted circuit for verifying the LTL property Fp.

In the next paragraph, we describe how this construction
verifies Fp. In Section V-A we explain how to extend the ideas
of Figure 5 for stabilization properties. Instead of presenting
the liveness-to-safety conversion through Kripke structure-
based representations (i.e. through explicit state machines
based representations), we present the idea in terms of an ac-
tual circuit construction (i.e. through symbolic representation
of the state space). Also, although we do not discuss it further,
the same mechanism handles fairness constraints, which are
always stabilization properties, so they just entail adding
additional logic to the circuit for the monitor. For Kripke
structure-based descriptions of liveness-to-safety conversion,
see [24].

In Figure 5, save represents an additional primary input
added to the circuit. This plays the role of the ‘oracle’. When
save is asserted for the first time, the current state of the
circuit is saved in the set of shadow registers, and register
saved is set. saved thus remembers that input save has
been asserted and allows any further activity on save to
be ignored. For subsequent time frames, saved enables the
equality detection between the current state of the circuit and
the state in the shadow registers. Clearly, signal looped is
asserted iff the system has completed a loop. Signal live
remembers if the signal p has ever been asserted. The safety
property that the circuit verifies is, therefore, looped ⇒
live. (In general this would be looped & fair⇒ live.)
The block marked with “⇑” represents this logical implication
- the direction of the arrow distinguishes the antecedent signal
from the consequent signal of the implication.

A. L2S for stabilization properties

In [24], the authors show how to do the L2S conversion for
GFp and FGp, which are GF-atoms. We demonstrate how to
extend this to any Boolean combination of GF-atoms using an
example, omitting a formal proof of correctness.

Consider a simple stabilization property φ of the form
FGa ⇒ FGb + FGc. An L2S converted circuit for this
is shown in Figure 6. (For simplicity, we do not show any
fairness constraints in the example.) Note that, signal live
in Figure 5 monitors if signal p has ever been asserted from
the very initial time frame. But for verifying GFp, we need to
monitor whether signal p has been asserted between the time
when saved is set and the time when looped becomes true.
Using this fact, the duality between FG and GF operators,
and the Boolean structure Xa ⇒ Xb+Xc of the given formula,
we can derive the circuit of Figure 6. Logic that captures the
Boolean structure of φ is marked with a dotted triangle in
Figure 6. Hence, for any arbitrary stabilization property, we
need to create monitors for individual GF-atoms and a crown
of combinational logic on top of these monitors that captures
the Boolean structure of the property. We can formulate the
following theorem.

Theorem 1: For any stabilization property, the given proce-
dure finds one counter-example if one exists.

(Proof Sketch) Any stabilization property can be trans-
formed into another stabilization property with GF operators
only. Let f be the Boolean structure in the negation of the
given stabilization property. The procedure described above
will create a monitor that will search for a lasso-loop where
f is violated inside the loop. Since the procedure implicitly
enumerates all possible cycles in the state space, it will detect
a violating cycle if one such exists.

VI. EXPERIMENTAL RESULTS

We implemented our L2S scheme for general stabilization
properties in ABC and experimented with several designs of
communication fabrics from industry. Our objective was to
verify all stabilization properties defined for every structural
primitive of the XMAS framework [18]. The properties,
though local to each component, are verified in the context
of the whole design in order to avoid explicit environmental
modeling. BLIF models of the communication fabrics were
generated by the XMAS compiler [11] from high-level C++
models. The L2S monitor logic was then created by ABC
on these BLIF models. The XMAS compiler also generates
SMV models from C++ models so that the LTL encoding of
the stabilization properties can be verified directly on the SMV
models using the NuSMV model checker.

We found that the ABC based L2S implementation has
much better scalability than NuSMV. NuSMV can solve only
toy designs while on the large designs of interest, it fails
to produce a result. On the other hand, our tool works well
even on large designs. For most cases, it produces a result
almost immediately. For a few cases, initial trials could not
produce a proof, but with the latest version of ABC using
simplification, abstraction, speculative reduction, and property
directed reachability (PDR) analysis [8], the proofs were
completed. This observation supports the premise that the use
of highly developed safety techniques can pay off for liveness
verification.

Experimental results are shown below. Among all the local
properties that the XMAS compiler generated, we provide
results for the most challenging one. Call this property ψ; it
is defined for a FIFO buffer, and has the following LTL form

ψ := FG(¬a)⇒ FG(¬b) ∨ FG(c)

where a, b, and c are appropriate design signals (i.e. interface
signals of a FIFO buffer). Table 1, 2, and 3 compare the
performance of ABC with NuSMV on small examples. These
examples are instances of communication fabrics or sub-
modules thereof, and are explained in full detail in [10].
simple credit and simple vc (Table 1 and 2, respectively)
are designs corresponding to Figure 4 and 5 of [10], and
simple ms (Table 3) is a much simpler version of the design
shown in Figure 6 of [10]. Note from the table, how perfor-
mance of NuSMV degrades even for small designs. For large
designs, NuSMV could not finish for any single instance of
ψ.

Since ψ is defined for a FIFO buffer and the XMAS
compiler created one instance of ψ for each FIFO buffer, the

DIFTS 2011 43

.

.

.

.

.

.

Save

1

0

0

1

Shadow Registers

state bits

=

p

Saved

Looped

Live

Verification

Circuit Under

Fig. 5. Liveness-to-safety transformation for Fp

.

.

.

.

.

.

.

.

.

.

.

.
=

Save

=

1

0

0

1

Shadow Registers

state bits

Saved

Looped

Circuit Under
Verification

b

c

a

Fig. 6. L2S for stabilization property FGa ⇒ FGb+ FGc

Prop # ABC NuSMV
(sec) (sec)

0 0.25 0.115
1 0.05 0.14
2 0.02 0.09

TABLE II
SIMPLE CREDIT

Prop # ABC NuSMV
(sec) (sec)

0 0.09 33.23
1 0.07 31.8
2 0.06 39.57
3 0.03 16.46
4 0.5 41.37
5 0.03 16.89

TABLE III
SIMPLE VC

Prop # ABC NuSMV
(sec) (sec)

0 0.03 431.5
1 0.12 379.59
2 0.8 471.36
3 0.8 385.67

TABLE IV
SIMPLE MS

DIFTS 2011 44

number of ψ instances is the same as the number of FIFO
buffers. For example, the designs corresponding to Table 1, 2,
and 3 above have 3, 6, and 4 FIFO buffers, respectively.

We also experimented on two large communication fabrics
of practical interest [10], [18]. One has 20 buffers and the
other has 24 buffers. 19 out of 20 of the first design and 23
out of 24 from the second design were proved by ABC by a
light-weight interpolation engine within a worst case time of
5.83 seconds (most were proved in less than a second). Light-
weight interpolation could not prove one instance from each
design. These were proved using advanced techniques from
ABC’s arsenal of safety verification algorithms. For example,
ABC took a total of 217.2 seconds to prove one of these harder
properties. In this time span, ABC first did some preliminary
simplification, then it tried interpolation, BMC, simulation
and PDR in parallel for a time budget of 20 seconds. But
this attempt failed and it moved on to further simplification
by reducing the design using localization abstraction and
speculation. It ran interpolation, BMC, simulation, BDD-based
reachability and PDR engines in parallel both after abstraction
and speculation, using an elevated time budget of 100 seconds
and 49 seconds respectively. The iteration after abstraction
could not prove the property, but the iteration after speculation
managed to prove it with the PDR engine, which produced the
final proof in 7 seconds.

VII. CONCLUSION & FUTURE WORK

We have developed a tool, VeriABC, which allows us to
access real industrial designs written in SystemVerilog or
VHDL and to process them into the AIGER format. The result
can be used for synthesis and verification using a tool like
ABC. We described how the RTL processing is done using
the commercial front-end, Verific. SVA assertions are also
processed by Verific, and VeriABC creates a separate file of
equivalent LTL formulas. We showed an application of this
to property checking, where ABC was enhanced to convert a
subset of LTL into a circuit structure, thus effectively allowing
liveness checking in ABC.

The use of a stable, supported and complete language
processing tool like Verific, allows academics access to real in-
dustrial designs, without going through the hassle and daunting
task of building their own equivalent tool. Liveness property
checking is a growing interest in industry, and our enhanced
ABC with a front end that automatically converts to a circuit
structure for liveness checking, can use the advanced safety
property methods of ABC.

In the future, the development of VeriABC will allow us
to extract higher level constructs from SystemVerilog and
VHDL by accessing Verific’s parse trees. These constructs
can be passed on using an extended AIGER format to an
enhanced ABC, which will use this information in synthesis
and verification.

VIII. ACKNOWLEDGMENT

This work has been supported in part by SRC contract
2057.001 and our industrial sponsors: Abound Logic, Actel,
Altera, Atrenta, IBM, Intel, Jasper, Magma, Oasys, Real Intent,
Synopsys, Tabula, and Verific.

REFERENCES

[1] ABC - a system for sequential synthesis and verification. Berkeley
Verification and Synthesis Research Center, http://www.bvsrc.org.

[2] Aiger, http://fmv.jku.at/aiger/.
[3] Icarus verilog, http://iverilog.icarus.com.
[4] Verific Design Automation: http://www.verific.com.
[5] K. Abrahamson. Decidability and expressiveness of logics of processes.

In PhD Thesis, University of Washington, 1980.
[6] J. Baumgartner and H. Mony. Scalable liveness checking via property-

preserving transformations. In DATE, pages 1680–1685, 2009.
[7] A. Biere, C. Artho, and V. Schuppan. Liveness checking as safety

checking. In In FMICS02: Formal Methods for Industrial Critical
Systems, volume 66(2) of ENTCS. Elsevier, 2002.

[8] A. Bradley. Sat-based model checking without unrolling. 2011.
[9] R. Brayton, G. D. Hachtel, A. Sangiovanni-vincentelli, F. Somenzi,

A. Aziz, S. tsung Cheng, and S. Edwards. Vis : A system for verification
and synthesis. pages 428–432. Springer-Verlag, 1996.

[10] S. Chatterjee and M. Kishinevsky. Automatic generation of inductive
invariants from high-level microarchitectural models of communication
fabrics. In CAV, pages 321–338, 2010.

[11] S. Chatterjee, M. Kishinevsky, and U. Ogras. Modeling communication
micro-architectures (with one hand tied behind your back). Intel
Technical Report, 2009.

[12] S.-T. Cheng and R. K. Brayton. Compiling verilog into automata, 1994.
[13] E. Clarke, O. Grumburg, and D. Peled. Model checking. 2000.
[14] B. Cook, J. Fisher, E. Krepska, and N. Piterman. Proving stabilization

of biological systems. 2011.
[15] E. A. Emerson. Handbook of theoretical computer science (vol.

b). chapter Temporal and modal logic, pages 995–1072. MIT Press,
Cambridge, MA, USA, 1990.

[16] E. A. Emerson and C.-L. Lei. Modalities for model checking: branching
time logic strikes back. Sci. Comput. Program., 8:275–306, June 1987.

[17] N. Francez and D. Kozen. Generalized fair termination. In Proceedings
of the 11th ACM SIGACT-SIGPLAN symposium on Principles of pro-
gramming languages, POPL ’84, pages 46–53, New York, NY, USA,
1984. ACM.

[18] A. Gotmanov, S. Chatterjee, and M. Kishinevsky. Verifying deadlock-
freedom of communication fabrics. 2011.

[19] R. Hojati, R. K. Brayton, and R. P. Kurshan. Bdd-based debugging of
design using language containment and fair ctl. In Proceedings of the
5th International Conference on Computer Aided Verification, CAV ’93,
pages 41–58, London, UK, 1993. Springer-Verlag.

[20] L. Lamport. ”sometime” is sometimes ”not never”: on the temporal
logic of programs. In Proceedings of the 7th ACM SIGPLAN-SIGACT
symposium on Principles of programming languages, POPL ’80, pages
174–185, New York, NY, USA, 1980. ACM.

[21] D. J. Lehmann, A. Pnueli, and J. Stavi. Impartiality, justice and
fairness: The ethics of concurrent termination. In Proceedings of the 8th
Colloquium on Automata, Languages and Programming, pages 264–277,
London, UK, 1981. Springer-Verlag.

[22] A. Pnueli. On the extremely fair treatment of probabilistic algorithms.
In Proceedings of the fifteenth annual ACM symposium on Theory of
computing, STOC ’83, pages 278–290, New York, NY, USA, 1983.
ACM.

[23] J. P. Queille and J. Sifakis. Fairness and related properties in transition
systems a temporal logic to deal with fairness. In Acta Informat, pages
195–220, 1983.

[24] V. Schuppan and A. Biere. Efficient reduction of finite state model
checking to reachability analysis. Int. J. Softw. Tools Technol. Transf.,
5(2):185–204, 2004.

DIFTS 2011 45

On Incremental Satisfiability and Bounded Model Checking

Siert Wieringa∗

Aalto University, Finland
siert.wieringa@aalto.fi

Abstract

Bounded Model Checking (BMC) is a symbolic
model checking technique in which the existence
of a counterexample of a bounded length is rep-
resented by the satisfiability of a propositional
logic formula. Although solving a single instance
of the satisfiability problem (SAT) is sufficient to
decide on the existence of a counterexample for
any arbitrary bound typically one starts from
bound zero and solves the sequence of formu-
las for all consecutive bounds until a satisfiable
formula is found. This is especially efficient in
the presence of incremental SAT-solvers, which
solve sequences of incrementally encoded formu-
las. In this article we analyze empirical results
that demonstrate the difference in run time be-
havior between incremental and non-incremental
SAT-solvers. We show a relation between the ob-
served run time behavior and the way in which
the activity of variables inside the solver propa-
gates across bounds. This observation has not
been previously presented and is particularly
useful for designing solving strategies for paral-
lelized model checkers.

∗Financially supported by the Academy of Finland
project 139402

1 Introduction

Model checking is a formal verification technique
revolving around proving temporal properties of
systems modelled as finite state machines. A
property holds for the model if it holds in all pos-
sible execution paths. If the property does not
hold this can be witnessed by a counterexample,
which is a valid execution path for the model in
which the property does not hold. Because the
model has a finite number of states any infinite
execution of the system includes a loop, and can
thus be represented by a finite sequence of exe-
cution steps. Bounded Model Checking (BMC)
[1] is a symbolic model checking technique in
which the existence of a counterexample con-
sisting of a bounded number of execution steps
is represented by the satisfiability of a proposi-
tional logic formula. It thus allows the use of
decision procedures for the propositional satisfi-
ability problem (SAT) for model checking. De-
spite the theoretical hardness of SAT [7] such de-
cision procedures, called SAT-solvers [9, 14, 17],
have become extremely efficient. BMC is pop-
ular as a technique for refuting properties, and
although BMC based techniques can be used for
proving properties we do not consider such tech-
niques here.

A typical BMC encoding will have semantics
such that if there exists a counterexample of

DIFTS 2011 46

length k then there also exists a counterexam-
ple of any length greater than k. Thus in prin-
ciple solving a single propositional logic formula
is sufficient to decide on the existence of a coun-
terexample for any arbitrary finite bound. How-
ever, one typically starts to solve the formula
corresponding to bound zero and then solves se-
quentially each consecutive bound until a coun-
terexample is found. We will refer to this as the
standard sequential search strategy. This strat-
egy has the nice property that it always finds a
counterexample of minimal length. As with ev-
ery bound the representing formula grows larger
it also avoids solving unnecessarily large formu-
las. Importantly, the performance of this strat-
egy benefits greatly from the availability of incre-
mental SAT-solvers. Incremental SAT-solvers
can solve sequences of formulas that share large
parts in common efficiently in a single solver pro-
cess, allowing reuse of information between for-
mulas.

2 Motivation

Automated SAT based planning is a problem
closely related to BMC. It deals with the same
sequences of parameterized formulas, except
that the satisfiability of a formula now corre-
sponds to the existence of a plan of a bounded
length. In [15] evaluation strategies for plan-
ning were suggested that are more opportunis-
tic than the standard sequential search strategy.
They suggest to spend some amount of the to-
tal solving effort at attempting to solve formu-
las for bounds ahead of the currently smallest
unsolved one. It was inspired by the empirical
observation that if a plan exists then amongst
the smallest satisfiable formulas in the sequence
there are typically formulas that are much eas-

ier to solve than the largest unsatisfiable ones.
A more opportunistic search strategy may re-
duce the total time required to find a satisfiable
formula by skipping over hard instances. Such
strategies are natural for environments in which
multiple computing nodes are available in paral-
lel, where one may define some nodes to use a
more opportunistic strategy than others.

The observation on the empirical hardness of
the smallest satisfiable formulas compared to the
largest unsatisfiable ones can also be made for
BMC. We attempted to implement opportunis-
tic strategies in our parallelized BMC framework
Tarmo [18]. This however turned out to be less
efficient then we would have expected, with per-
formance degrading for many benchmarks. In
this article we evaluate the performance of the
incremental solver and compare it against that
of solving each bound separately. The purpose
of this study is not to illustrate that incremen-
tal solvers are more effective for BMC than non-
incremental ones, as that is well known, but to
understand when and how opportunistic strate-
gies can be applied. This is done by compar-
ing against non-incremental solver run times be-
cause solvers applying opportunistic strategies
benefit less from the incremental interface of the
solver, as the problem is no longer introduced
one bound at a time.

3 Preliminaries

The majority of modern SAT-solvers are based
on the Davis Putnam Logemann Loveland
(DPLL) procedure [8]. The DPLL-procedure is
a backtracking search procedure for SAT that
builds a partial assignment by iteratively decid-
ing on a branching variable to be assigned a
value in the partial assignment. When the par-

DIFTS 2011 47

tition of the search space defined by the partial
assignment is without solutions the algorithm
backtracks. In addition to this modern SAT-
solvers typically employ conflict clause learning
[17]. Such solvers record a new conflict clause
whenever they are forced to backtrack. They
then backtrack non-chronologically to a decision
point at which the conflict clause was still satis-
fied.

The performance of the DPLL-procedure de-
pends heavily on its branching variable decisions.
A commonly used decision heuristic for clause
learning SAT-solvers is the Variable State Inde-
pendent Decaying Sum (VSIDS) heuristic first
presented in the solver Chaff [14]. The idea of
the heuristic is to favor variables that are in-
cluded in recently derived conflict clauses. For
each variable an initially zero value called the ac-
tivity is maintained. Whenever a conflict clause
is learnt the activity of all variables that occur in
the clause is increased. Periodically the activity
of all variables is divided by a constant.

All results presented in this article were ob-
tained using the SAT-solver MiniSAT 2.2.0 [9]1.
The solver core was not modified but a num-
ber of small modifications2 were made in aux-
iliary routines such as the file parser in order
to read incremental SAT sequences from disk.
When employing BMC typically the SAT-solver
will not read the formula sequence from disk but
it will rather be integrated into a BMC engine
that is generating formulas for new bounds on
the fly. We use sequences stored on disk as this
is convenient for testing the performance of the
SAT-solver independently. As our sequences are
streamable one can also use them as an interface
between a BMC engine and a SAT-solver with-

1Available from http://www.minisat.se
2Available from http://users.ics.tkk.fi/swiering

out the need for integrating them into one appli-
cation. The input sequences used were the same
as the benchmarks used for experimental results
presented in [18]. These sequences were gener-
ated with the current state-of-the-art encoding
for model checking of linear time temporal logic
properties with past (PLTL) [2] as implemented
in the model checker NuSMV 2.4.3 [6].

4 Run time

In our experiments we have studied the behav-
ior of SAT-solvers on problem sequences from
BMC regarding both the run time and variable
activity. A selection of the results is presented in
the figures in this article. For each benchmark
there are two subfigures, a run time graph la-
beled (a) and a variable activity graph labeled
(b). In this section we will focus only on the run
time graphs, which have bounds on the x-axis
and time on the y-axis. For each bound a ver-
tical bar displays the time it took to solve the
formula corresponding to that single bound us-
ing the SAT-solver in non-incremental fashion.
If the solver found unsatisfiable a solid red bar
is drawn, if the solver found satisfiable only the
outline of the bar is drawn in green.

The incremental solver solves using the stan-
dard sequential strategy and whenever it com-
pletes a bound it reports the run time up to
that point. The points in the graphs marked
with crosses (x) and connected by the thick line
represent these run times.

The thin dotted line connecting the plusses
(+) is representing the cumulative run time of
the non-incremental solver, i.e. for each bound
k the value displayed is the sum of all run times
of the non-incremental solver tests from bound
0 to k. This demonstrates the time required

DIFTS 2011 48

 0

 10

 20

 30

 40

 50

 60

 70

 80

 0 10 20 30 40 50 60

ti
m

e
 (

s
)

bound

(a)

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

 0 10 20 30 40 50 60

h
y
p

e
ra

c
ti
v
e

 v
a

ri
a

b
le

s

bound

(b)
Figure 1: Benchmark irst.dme6 from [3]

 0

 10

 20

 30

 40

 50

 60

 0 20 40 60 80 100

ti
m

e
 (

s
)

bound

(a)

 0

 1000

 2000

 3000

 4000

 5000

 6000

 7000

 8000

 9000

 10000

 0 20 40 60 80 100

h
y
p

e
ra

c
ti
v
e

 v
a

ri
a

b
le

s

bound

(b)

Figure 2: Benchmark bc57sensors.p2neg from [3]

 0

 20

 40

 60

 80

 100

 0 20 40 60 80 100 120 140

ti
m

e
 (

s
)

bound

(a)

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 0 20 40 60 80 100 120 140

h
y
p
e
ra

c
ti
v
e
 v

a
ri
a
b
le

s

bound

(b)

Figure 3: Benchmark eijk.S1238.S from [3]

DIFTS 2011 49

for the standard sequential strategy using a non-
incremental solver. This line is intentionally not
influencing the range of the y-axis, as it typically
grows so large that it would make the other re-
sults hard to see.

From Fig. 1(a) it can be seen that the shortest
counterexample for benchmark irst.dme6 is of
length 53. The run times of the non-incremental
SAT-solver clearly show the behavior that in-
spired the opportunistic strategies of [15], i.e.
the run time of the non-incremental solver for
small satisfiable formulas is much smaller than
that of the largest unsatisfiable ones. It may
be observed from Fig. 2(a) that for benchmark
bc57sensors.p2neg the run times for the two
smallest satisfiable formulas corresponding to
bounds 104 and 105 are relatively large. An easy
satisfiable formula can however be found a little
further ahead at bound 106, thus the use of an
opportunistic strategy could possibly be benefi-
cial.

Note that all results presented in this arti-
cle demonstrate that the use of the incremental
solver is crucial when performing the standard
sequential strategy. Fig. 3(a) presents run time
behavior for the benchmark eijk.S1238.S which
is the encoding of model checking a property that
holds on all execution paths of the model. This
implies that the formulas are unsatisfiable for all
bounds. Here, the crucial role that incremen-
tal SAT solving often plays in solving BMC is
even clearer. Whereas a non-incremental solver
would take about 100 seconds to find that bound
150 alone is unsatisfiable, the incremental solver
finds this result for all bounds from 0 to 150 se-
quentially in half that time. This is typical be-
havior for many benchmarks corresponding to
model checking a property that holds. It seems
that in these cases the solver learns that the
property holds for all short execution paths in

a way that is easy to update when the bound on
the length of the execution paths is extended.
The solver can be thought of as having tuned it-
self towards verifying the property holds in the
exact same way over and over.

Another way to look at the result presented in
Fig. 3(a) is that by using the standard sequen-
tial strategy we are aiding the solver in proving
the unsatisfiability of the formula corresponding
to the counterexample of length 150, the largest
bound tested here. By forcing it through the se-
quence of formulas we force a direction on the
search that is natural to our problem descrip-
tion, and apparently this is helpful for the SAT-
solver. For benchmarks with this kind of run
time behavior there is clearly no hope for any
opportunistic strategies.

An incremental solver can be started from
any arbitrary bound, and it is possible to pro-
ceed by increasing the bound by more than one
every time a formula is solved. Using bound
increments larger than one is one of the sim-
ple strategies we have tried in our experiments.
This strategy should still be considered oppor-
tunistic because of the “missing information” it
causes for the solver, leading it further away from
the efficiency of incremental solving, and further
towards non-incremental behavior. Given the
small margin of error available for opportunis-
tic approaches for satisfiable benchmarks, and
no chance of any performance improvement for
many unsatisfiable benchmarks, we need to be
careful when applying these approaches. They
are however amongst the most natural ways of
diversifying search strategies amongst nodes in
an environment with parallel computation re-
sources.

DIFTS 2011 50

5 Parallel SAT solving

There are two common architectures for parallel
SAT-solvers [11]. The first is the classic divide-
and-conquer approach in which the formula is
split into multiple disjoint subformulas each of
which are then solved on a different comput-
ing node [4, 19]. The second approach is the
so called portfolio approach [10]. The basic idea
is that every computing node is running a SAT-
solver that is attempting to solve the same for-
mula. As modern SAT-solvers make some deci-
sions randomly their run time varies greatly be-
tween runs. This makes the portfolio approach
surprisingly efficient as it is able to decide the
satisfiability of the formula as soon as the fastest
solver finishes. Further diversification may be
achieved by using different parameters on differ-
ent computation nodes. Obviously opportunistic
search strategies provide means for diversifica-
tion when we are considering solving incremen-
tally encoded SAT formulas in a parallel envi-
ronment.

The current implementation of our paral-
lelized BMC framework Tarmo can be seen as
a parallelized incremental SAT-solver using the
portfolio approach. Each computing node is run-
ning an incremental SAT-solver in the conven-
tional sequential fashion. The novelty of Tarmo
is that it allows sharing of conflict clauses be-
tween SAT-solvers even if they are working on
different bounds. The solvers operate otherwise
independently, i.e. if one solver solves a formula
this does not stop the other solvers from at-
tempting to solve that same formula. This choice
was made after observing that interrupting a
solver to make it “catch-up” with another breaks
its ability to benefit from incremental SAT to the
full extent. As we made this observation in an
environment where clause sharing takes place it

seems that the interrupted solver is missing more
information than just conflict clauses. This was
one of the reasons to look at the way the activ-
ity of variables propagates across bounds on the
incremental SAT-solver runs.

6 Variable activity

To obtain data on the activity of variables the
SAT-solver was modified to print the activity of
all variables after each bound it completed. For
each bound we are interested in which variables
are the most active, and especially in whether
this activity remains high across several bounds.
We consider a variable hyperactive if its activity
is within the highest 2% of variables with non-
zero activity.

The graphs labeled (b) in this article visual-
ize the hyperactive variables. All variables that
are hyperactive for at least one bound are rep-
resented by an integer value on the y-axis of the
graph. The variables are sorted on the y-axis
by their index such that if we define y(v) as the
integer on the y-axis corresponding to the vari-
able with index v then for any v′ > v we have
y(v′) > y(v).

Just like in the run time graphs the values on
the x-axis of the graph represent bounds. If a
variable was hyperactive starting from bound k
up to but not including bound k′ > k then a hor-
izontal line was drawn in the graph from bound
k to k′ at the y position corresponding to that
variable. In other words for all variables v and all
bound intervals [k, k′) on which v is hyperactive
a line was drawn from (k, y(v)) to (k′, y(v)).

One may observe that generally variables with
larger indices become active later. This is be-
cause in the solver each newly introduced vari-
able is given a larger index than all existing vari-

DIFTS 2011 51

 0

 5

 10

 15

 20

 0 20 40 60 80 100 120 140

ti
m

e
 (

s
)

bound

(a)

 0

 500

 1000

 1500

 2000

 2500

 0 20 40 60 80 100 120 140

h
y
p
e
ra

c
ti
v
e
 v

a
ri
a
b
le

s

bound

(b)
Figure 4: Benchmark abp4.ptimoneg from [2]

ables, and for each bound a set of new variables is
created. For each bound a subset of the new vari-
ables becomes hyperactive quickly, as the solver
runs into conflicts on the newly added clauses.

The hyperactive variables in the satisfiable
benchmarks irst.dme6 and bc57sensors.p2neg
are displayed in Fig. 1(b) and Fig. 2(b). Note
that although for each bound some of the new
variables become hyperactive all these vari-
ables tend to remain hyperactive throughout the
whole process. This means that whenever a
bound is added the solver still runs into new con-
flicts regarding variables that represent the state
at smaller timepoints. We say that the activity
of variables is bound global.

For the benchmark eijk.S1238.S the activity
graph looks very different. For each bound the
solver creates conflict clauses including the new
variables, thus creating a new set of hyperactive
variables, but there are only very few variables
for which hyperactivity is maintained. This is in
line with observation on the run time behavior of
this benchmark which also indicate that hardly
any work has to be performed to find unsatisfi-
ability. We say that the activity of variables is

bound local.

We have generated graphs like the ones pre-
sented in this paper for a large set of bench-
marks3. We observe that on benchmarks with
a bound global variable activity the run time of
the non-incremental SAT-solver for the largest
bound solved is smaller than the time spent for
the incremental solver to get to the same bound
and solve it. For benchmarks with a bound lo-
cal variable activity this is never the case and
thus a opportunistic heuristic will not improve
performance.

Although we expect all hard satisfiable bench-
marks to have a bound global variable activity it
is not the case that all unsatisfiable benchmarks
have a bound local variable activity. The bench-
mark abp4.ptimoneg represented in Fig. 6 is an
example of an unsatisfiable benchmark with a
bound global variable activity. Apparently the
correctness of the property is not implied within
a short number of execution steps here, and the
incremental solver needs to evaluate large por-
tions of the search space for every bound. Note
also that for this benchmark an opportunistic ap-

3Available from http://users.ics.tkk.fi/swiering

DIFTS 2011 52

proach may help to find unsatisfiable formulas at
larger bounds faster.

7 Conclusions

In this article we have shown a relation between
the run time of the standard sequential strat-
egy for bounded model checking and the activ-
ity of decision variables in solvers employing this
strategy. We can use this observation in a SAT-
solver to predict during the search whether a
more opportunistic strategy could be beneficial
for the search. This is especially useful for par-
allel solvers in which different threads may be
executing different strategies.

It is also easy to envision how these techniques
could be useful for model checkers that use a
combination of truly different model checking
techniques such as PdTrav [5]. One could eas-
ily engineer a system which would do BMC for
some amount of time, after which the variable
activity could play a role in the decision on how
to continue. If the variable activity appears to
be bound local then the property is likely to hold
for the model and thus we may want to start do-
ing a complete model checking technique based
on for example k-induction [16], Craig interpola-
tion [13] or BDDs [12] to prove this.

Another observation we made is that for de-
ciding the satisfiability of the last formula in an
incrementally encoded sequence of formulas it
can sometimes be faster to solve all formulas in
the sequence. This raises the question whether
other applications of SAT solving that currently
rely on solving a single SAT formula could ben-
efit from the use of incremental problem encod-
ings. Such encodings allow enforcing a search
direction on the SAT-solver that is natural to
the application and therefore possibly beneficial

to the solver. Tolerance to bad choices for such
an incremental encoding could be achieved by
doing this in a parallel environment with some
opportunistic nodes.

References

[1] Armin Biere, Alessandro Cimatti, Ed-
mund M. Clarke, and Yunshan Zhu. Sym-
bolic model checking without BDDs. In
Rance Cleaveland, editor, TACAS, volume
1579 of Lecture Notes in Computer Science,
pages 193–207. Springer, 1999.

[2] Armin Biere, Keijo Heljanko, Tommi A.
Junttila, Timo Latvala, and Viktor Schup-
pan. Linear encodings of bounded LTL
model checking. Logical Methods in Com-
puter Science, 2(5), 2006.

[3] Armin Biere and Toni Jussila. Hard-
ware model checking competition 2007
(HWMCC07). Organized as a satellite event
to CAV 2007, Berlin, Germany, July 3-7,
2007.

[4] Max Böhm and Ewald Speckenmeyer. A
fast parallel SAT-solver - efficient workload
balancing. Ann. Math. Artif. Intell., 17(3-
4):381–400, 1996.

[5] Gianpiero Cabodi, Paolo Camurati, Luz
Garcia, Marco Murciano, Sergio Nocco,
and Stefano Quer. Trading-off SAT search
and variable quantifications for effective un-
bounded model checking. In Alessandro
Cimatti and Robert B. Jones, editors, FM-
CAD, pages 1–8. IEEE, 2008.

[6] Alessandro Cimatti, Edmund M. Clarke,
Enrico Giunchiglia, Fausto Giunchiglia,

DIFTS 2011 53

Marco Pistore, Marco Roveri, Roberto Se-
bastiani, and Armando Tacchella. NuSMV
2: An opensource tool for symbolic model
checking. In Ed Brinksma and Kim Guld-
strand Larsen, editors, CAV, volume 2404 of
Lecture Notes in Computer Science, pages
359–364. Springer, 2002.

[7] Stephen A. Cook. The complexity of
theorem-proving procedures. In STOC,
pages 151–158. ACM, 1971.

[8] Martin Davis, George Logemann, and Don-
ald Loveland. A machine program for
theorem-proving. Commun. ACM, 5:394–
397, July 1962.

[9] Niklas Eén and Niklas Sörensson. An exten-
sible SAT-solver. In Enrico Giunchiglia and
Armando Tacchella, editors, SAT, volume
2919 of Lecture Notes in Computer Science,
pages 502–518. Springer, 2003.

[10] Youssef Hamadi, Säıd Jabbour, and
Lakhdar Sais. ManySAT: A parallel SAT
solver. JSAT, 6(4):245–262, 2009.

[11] Antti Eero Johannes Hyvärinen, Tommi A.
Junttila, and Ilkka Niemelä. Partitioning
search spaces of a randomized search. In
Roberto Serra and Rita Cucchiara, editors,
AI*IA, volume 5883 of Lecture Notes in
Computer Science, pages 243–252. Springer,
2009.

[12] Kenneth L. McMillan. Symbolic model
checking. Kluwer, 1993.

[13] Kenneth L. McMillan. Applications of Craig
interpolants in model checking. In Nico-
las Halbwachs and Lenore D. Zuck, edi-
tors, TACAS, volume 3440 of Lecture Notes

in Computer Science, pages 1–12. Springer,
2005.

[14] Matthew W. Moskewicz, Conor F. Madi-
gan, Ying Zhao, Lintao Zhang, and Sharad
Malik. Chaff: Engineering an efficient SAT
solver. In DAC, pages 530–535. ACM, 2001.

[15] Jussi Rintanen, Keijo Heljanko, and Ilkka
Niemelä. Planning as satisfiability: parallel
plans and algorithms for plan search. Artif.
Intell., 170(12-13):1031–1080, 2006.

[16] Mary Sheeran, Satnam Singh, and Gunnar
St̊almarck. Checking safety properties us-
ing induction and a SAT-solver. In Warren
A. Hunt Jr. and Steven D. Johnson, editors,
FMCAD, volume 1954 of Lecture Notes in
Computer Science, pages 108–125. Springer,
2000.

[17] João P. Marques Silva and Karem A.
Sakallah. GRASP: A search algorithm for
propositional satisfiability. IEEE Trans.
Computers, 48(5):506–521, 1999.

[18] Siert Wieringa, Matti Niemenmaa, and
Keijo Heljanko. Tarmo: A framework for
parallelized bounded model checking. In
Lubos Brim and Jaco van de Pol, editors,
PDMC, volume 14 of EPTCS, pages 62–76,
2009.

[19] Hantao Zhang, Maria Paola Bonacina,
and Jieh Hsiang. PSATO: A distributed
propositional prover and its application to
quasigroup problems. J. Symb. Comput.,
21(4):543–560, 1996.

DIFTS 2011 54

DIFTS’11 Keyword Index

Keyword Index

BMC 46

combinational simplification 30

Data structure 13
Domain Specific Embedded Language (DSEL) 22
Dynamic Spectrum Access 3

empirical results 46
Engine Independence 22

front-end engineering 38

liveness to safety 38

model checking 30
Model checking 13

On-the-fly 13

Policies 3

Real-time 13
Reasoning 3

SAT 46
Satisfiability Modulo Theories (SMT) 22
SMT solving 3
solving strategies 46
stabilization 38
sweeping 30

Timed automata 13

1

DIFTS’11 Author Index

Author Index

Arkoudas, Konstantine 3

Brayton, Robert K. 38

Chadha, Ritu 3
Chiang, Jason 3
Cleaveland, Rance 13

Drechsler, Rolf 22

Fey, Goerschwin 22
Fontana, Peter 13
Frehse, Stefan 22

Grosse, Daniel 22

Haedicke, Finn 22
Hassan, Zyad 30

Kuehlmann, Andreas 1

Long, Jiang 38

Mishchenko, Alan 38
Morrison, Chris 2

Ray, Sayak 38

Somenzi, Fabio 30
Sterin, Baruch 38

Wieringa, Siert 46

Zhang, Yan 30

1

	frontpage
	toc
	invited_paper_1
	invited_paper_2
	paper_11
	Introduction
	Policy representation
	Policy reasoning
	Computing optimal adjustments to transmission parameters
	Performance
	Related Work & Conclusions
	References

	paper_12
	paper_5
	paper_7
	paper_2
	paper_4
	keyword_index
	author_index

