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Abstract. Preprocessing SAT instances can reduce their size consid-
erably. We combine variable elimination with subsumption and self-
subsuming resolution, and show that these techniques not only shrink
the formula further than previous preprocessing efforts based on vari-
able elimination, but also decrease runtime of SAT solvers substantially
for typical industrial SAT problems. We discuss critical implementation
details that make the reduction procedure fast enough to be practical.

1 Introduction

The size of CNF formulas is often very large, particularly in the context of formal
verification. In theory, a very large formula may be easy to solve and a small
formula hard. However, in practice, it is often observed that the runtime of a
SAT solver is very much related to the size of the input formula, at least when
the formulas stem from the same set of problems.

This paper presents new techniques which reduce the size of a CNF formula
in order to speed up overall SAT solving time. Our experiments on problems
from industrial circuit verification show large speedups, not only compared to
plain SAT solving, but also compared to related preprocessing techniques [21].

Modern SAT solvers use unit propagation and the pure literal rule in a pre-
processing phase, as already described in the original DPLL algorithm [6]. More
sophisticated techniques focus on deriving units, implications and equivalent lit-
erals [1,4,15,16,20]. Other similar techniques have been used in the context of
ATPG, such as recursive learning [14], or in circuit verification, in particular
and-inverter graphs [13] and BDD-sweeping [13]. The latter techniques have in
common that they allow to restructure circuits but do not directly apply to
CNF. Our approach is orthogonal to these techniques in the sense that it can be
applied in addition to restructuring, after a CNF has been produced. Further-
more, from the CNF, individual clauses can be removed, an operation without
correspondence in the circuit representation.

Preprocessing in SAT is a trade-off between the amount of reduction achieved
and invested time. Light weight approaches such as [15] focus on fast preprocess-
ing. Their running time is usually negligible compared to the overall solving time.
On the other side of the spectrum lie techniques which in practice take consider-
able time. Examples are saturation of hyper binary resolution [1], k-saturation
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for k ≥ 2 in St̊almarck’s method [20], or saturation of recursive learning for
larger recursion depths. These techniques can only be applied if a huge benefit is
expected—which is application domain depended—or if a time limit is enforced.

Recently, the rule of elimination of atomic formulas from [7], which elim-
inates variables from a CNF by clause distribution, has been reconsidered as
a basis for symbolic DPLL in the ZDD based SAT solver ZRES [5], as a way
to eliminate variables in the QBF solver QUANTOR [2], and, independently in
the preprocessor NIVER [21]. Clause distribution is a light weight preprocessing
technique, as long as a limit on the growth of the clause data base is enforced.

We extend [21] by three new techniques: subsumption, self-subsuming res-
olution, and variable elimination by substitution. This results in much higher
reduction rates and faster SAT solving, as we show in our experiments. The
description of the implementation of NIVER [21] stays on a very high level. We
describe two implementation techniques for speeding up the process, based on
(1) restricting the set of variables considered for elimination to touched vari-
ables, and (2) using signatures for fast subsumption checks. The latter has has
also been used in [2], but the focus there is QBF, and no experimental results
for preprocessing SAT instances are given. The optimizations allow us to keep
the runtime small enough for a light weight approach.

Finally, we believe that preprocessing and encoding are two sides of the same
coin. One way of speeding up SAT solving is to work on sophisticated CNF en-
coding algorithms such as [3,12,18,23]. We suggest, as an alternative, that the
CNF is simplified after its generation, which is less application domain depen-
dent. From a pragmatic point of view, it also eases the burden of developing
good domain specific CNF encoders if the SAT solver is known to do a good
job of reducing verbose CNF formulations. Furthermore, our simplification tech-
niques are all resolution based and can therefore easily be incorporated in a
solver with refutation generation. We leave it to future work to compare the two
different approaches, particularly since the number of available CNF encoders
and propositional non-CNF problems is currently rather small.

Generally, our simplification techniques can be applied in three different ways:
(1) during preprocessing, (2) during SAT solving, e.g. at restart, or (3) between
two incremental SAT problems. We will focus on applying simplification as a pre-
processor, although a small study is included of an application in an incremental
SAT problem.

To summarize, our contributions are the following. We extend NIVER [21] by
subsumption, which was already discussed by one of the authors in the context
of QBF [2]. Furthermore, we present two new techniques, self-subsuming reso-
lution and variable elimination by substitution. Beside a compact description of
the preprocessing algorithm itself we discuss two important low-level optimiza-
tions. Finally we show the effectiveness of these techniques as implemented in
SATELITE on a comprehensive set of industrial benchmarks.
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2 Preliminaries

A CNF consists of a set of clauses, where each clause C is a set of literals. A
literal is a boolean variable x or its negation x.

Given two clauses C1 = {x, a1, . . . , an} and C2 = {x, b1, . . . , bm} the implied
clause C = {a1, . . . , an, b1, . . . , bm} is called the resolvent of the two original
clauses by performing resolution on the variable x. We write C = C1⊗C2. This
notion can be lifted to sets of clauses. Let S1 be a set of clauses which all contain
x, S2 a set of clauses which all contain x. Then S1 ⊗ S2 is defined as

S1 ⊗ S2 = {C1 ⊗ C2 | C1 ∈ S1, C2 ∈ S2}

The basic simplification technique in this paper, and also in NIVER [21], follows
[7] and simply eliminates variables. In a given CNF, let Sx be the set of clauses in
which x occurs, Sx be the set of clauses in which x occurs and define S = Sx∪Sx.

The elimination of a variable x in the whole CNF can be computed by pair-
wise resolving each clause in Sx with every clause in Sx. The produced resolvents
S′ = Sx⊗Sx replace the original clauses S containing x or x, resulting in a satis-
fiability equivalent problem. We refer to this procedure as elimination by clause
distribution, and count only non-trivial clauses as part of the result. A clause is
trivial if it contains a variable and its negation.

In principle, the resolution operator ⊗ should have the resolution variable
x as parameter. However, if clauses can be resolved with respect to different
resolution variables, then all the resolvents will be trivial anyhow.

3 New Simplifications

In early experiments and also in the context of QBF [2] we observed that clause
distribution produces many subsumed clauses. A clause C1 is said to (syntac-
tically) subsume C2 if C1 ⊆ C2. A subsumed clause is redundant and can be
discarded from the SAT problem. Particularly, a subsumed clause never needs
to be part of a resolution proof of unsatisfiability.

We also observed that often similar clauses of a particular kind occur: one
clause C2 almost subsumes a clause C1, except for one literal x, which, occurs
with the opposite sign in C2. For instance, let C1 = {x, a, b}, and C2 = {x, a},
then resolving on x will produce C ′

1 = {a, b}, which subsumes C1. Thus after
adding C ′

1 to the CNF, we can remove C1, in essence eliminating one literal.
In this case, we say that C1 is strengthened by self-subsumption using C2. This
simplification rule is called self-subsuming resolution.

As we will show in the experimental section, adding these subsumption tech-
niques to variable elimination through clause distribution gives huge benefits
compared to [21].

If a circuit is encoded in CNF, typically using the Tseitin transformation
[22], then many variables are actually functionally dependent on other variables,
particularly those introduced for gate outputs. In previous work, this informa-
tion has been used to restrict the set of decision variables in a SAT solver to
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functionally independent variables [10,17]. We use the information to simplify
the CNF, essentially extracting gates as in [17]. Output variables of gates are
functionally dependent on input variables. If the following three clauses

. . . {x, a, b}, {x, a}, {x, b} . . . (1)

are part of a CNF then the AND gate x = (a ∧ b) can be extracted, showing
that x is functionally dependent. We also call this equation a definition of x.

If x has a definition and is eliminated by clause distribution, many redundant
resolvents are generated. By using the definition these clauses can be removed
easily. Let G be the set of clauses used for extracting a gate with output x.
Further recall that Sx is the set of clauses of S in which x occurs and similarly
define Gx, and Gx. Then the set S of all clauses with x or x can be partitioned
into S = G ∪ R, with R ≡ S\G the set of remaining clauses not used for
extracting the gate. From S = (Gx ∪Rx) ∪ (Gx ∪Rx) it follows that the set S′

of all resolvents can be partitioned into S′ = S′′ ∪G′ ∪R′ with

S′′ = (Rx ⊗Gx) ∪ (Gx ⊗Rx), G′ = Gx ⊗Gx, and R′ = Rx ⊗Rx.

Furthermore, we have the following Theorem, which shows that S′′ implies G′

and R′, allowing S′ to be replaced by S′′.

Theorem. S′′ |= G′ ∪R′

The proof follows by first noticing, as in [11], that G′ contains only trivial clauses.
All the resolvents in R′ can be obtained through several resolution steps (linear
in the width of the gate or by just one hyper resolution step [1]) from clauses in
S′′. Another view is to substitute in R all occurrences of x by its definition (x
by a∧ b and x by a ∧ b in the example) and then apply the distributivity law to
obtain a flat CNF.

As a result, in the elimination of a functional dependent variable the clauses
in G′ and R′ do not have to be added, which always reduces the number of added
resolvents. We call this simplification rule variable elimination by substitution.
To continue the example in Eqn. (1) , let S be

1

{x, c},
2

{x, d}︸ ︷︷ ︸
Rx

,
3

{x, a, b}︸ ︷︷ ︸
Gx

,
4

{x, a},
5

{x, b}︸ ︷︷ ︸
Gx

,
6

{x, e, f}︸ ︷︷ ︸
Rx

The resolvents are:
1⊗4

{c, a},
1⊗5

{c, b},
2⊗4

{d, a},
2⊗5

{d, b},
3⊗6

{a, b, e, f} (S′′)
3⊗4

{a, b, a},
3⊗5

{a, b, b} (G′)
1⊗6

{c, e, f},
2⊗6

{d, e, f} (R′)

G′ has only trivial clauses. Since trivial clauses are not counted, we have |S′| =
7 > 5 = |S′′|. Replacing S with S′′ results in a decrease of the number of clauses
from 6 to 5, while the full clause distribution actually results in an increase from
6 to 7. Also note that the redundant clauses in R′ can be obtained from S′′
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through two resolution steps each (actually by one hyper resolution step [1]):
1⊗6 = (1⊗4)⊗ ((1⊗5)⊗ (3⊗6)) and 2⊗6 = (2⊗4)⊗ ((2⊗5)⊗ (3⊗6)) .

We also realized that subsumption sometimes removes clauses which could
be used to extract a gate. For instance if the clause C = {a, b} is added to the
CNF in Eqn. (1), then the clause {x, a, b} is removed and no AND gate can
be extracted anymore. However, by one hyper resolution step, or two ordinary
resolution steps, of C with the original two binary clauses the unit x can be
derived, which, of course, simplifies the CNF even further. For all clauses C, we
try to find binary clauses, that, if resolved with C in one hyper resolution step
produce a unit. We call this simplification rule hyper-unary-resolution, similar
to hyper-binary-resolution of [1].

4 Implementation

We present an implementation that should work for any clause based SAT solver,
including those with an incremental SAT interface. In that context, the simpli-
fication can be applied between the different incremental SAT instances.

The techniques in this paper aim at simplifying a SAT problem by reducing
its size. Variable elimination is applied greedily until no more improvement can
be made to the clause database by a single elimination. Different notions of
“improvement” can be used, and previous work [21] is focused on minimizing the
number of literal occurrences. In our implementation we minimize the number of
clauses. The rationale behind this is that propagation in a SAT solver is roughly
proportional to the number of clauses, independent of their size.

4.1 Touched-lists

Subsumption and variable elimination interact, such that strengthening or re-
moving a clause by (self-) subsumption can turn the elimination of a variable
into an improvement, and eliminating a variable, which produces new clauses,
might give new opportunities for subsumption.

In our implementation, subsumption and elimination are alternated until a
fixed-point is reached. To make this efficient, it is important not to loop repeat-
edly over all clauses. Therefore, three sets are maintained, storing information
about the modifications made to the clause database:

Touched (set of variables). A variable is added to this set if it occurs in a clause
being added, removed, or strengthened. Initially all variables are “touched”.

Added (set of clauses). When a clause is added to the SAT problem (e.g. by
variable elimination), it is also added to this set. Initially all clauses are
considered “added”.

Strengthened (set of clauses). When a clause is strengthened (one literal is
removed, either by self-subsumption or toplevel propagation1) it is added to
this set. Initially the set is empty.

1 Unit propagation performed under no assumptions, as opposed to during the search.
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These sets are repeatedly cleared during the simplification procedure described
in Sect. 4.3, then populated again as new clauses are produced during variable
elimination, and while existing clauses are removed or strengthened by subsump-
tion and self-subsumption. The algorithm terminates with all sets empty. In an
incremental context—although not the focus of this paper—we note that new
clauses can be added between SAT problems, populating Added , and that unit
facts learned during the solving of one incremental SAT instance might remove
or strengthen clauses, populating Touched and Strengthened .

4.2 Subsumption

The efficiency of subsumption is most important and is achieved by two imple-
mentation techniques. First, for each clause a 64-bit signature is stored [2]. The
signature abstracts the set of literals of a clause in the following way: A hash
function h maps literals to numbers 0..63, and the signature of a clause C is
calculated as the bitwise Or of 2h(p) over its literals p ∈ C. Then for each literal
an occur list is maintained, pointing to all the clauses in which the literal occurs.

Now, backward subsumption, that is checking if a clause subsumes (as op-
posed to being subsumed by) some other clause in the database, can be imple-
mented as follows:2

findSubsumed(Clause C)
pick the literal p in C with the shortest occur list
for each C ′ ∈ occur(p) do

if (C 6=C ′ && size(C)≤size(C ′) && subset(C, C ′))
add C ′ to result

return result

subset(Clause C, Clause C ′)
if (sig(C) & s̃ig(C ′) 6= 0) return False
else return result of iterating over C and C ′ in a

complete (expensive) subset test

This algorithm is very fast and allows backward subsumption to be applied
eagerly to each added or strengthened clause. We rely on this fact in Sect. 4.3.
Given a procedure for finding subsumed clauses, we can now define a method
for using a clause C to strengthen other clauses by self-subsumption:

selfSubsume(Clause C)
for each p ∈ C do

for each C ′ subsumed by C[p := p] do
strengthen(C ′, p) – remove p from C ′

For the clause {a, b, c} this method would call findSubsumed() for {a, b, c}, {a, b, c},
{a, b, c}, and strengthen any result returned. It should be noted that the order
of strengthening matters, but is not optimized in our implementation.
2 && denotes logical And, & bitwise And, and ˜ bitwise negation.
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4.3 The toplevel simplification method

We now state the main algorithm. The post-conditions are: (1) No opportunities
remain for subsumption or self-subsumption. (2) No improvement can be made
by eliminating a variable, unless the heuristic cut-off is used (see below). (3) The
three sets Touched , Added , and Strengthened are empty.

simplify()
do

– Subsumption:
S0 = {set of clauses containing a literal occurring in

some clause in Added}
do

S1 = {set of clauses containing a literal occurring
negatively in some clause in Added}

∪ Added ∪ Strengthened
clear Added and Strengthened
for each C ∈ S1 do selfSubsume(C)
propagateToplevel() – may strengthen/remove clauses

while (Strengthened 6= ∅)
for each C ∈ S0 not deleted do subsume(C)

– Variable Elimination:
do

S = Touched ; clear Touched
for each x ∈ S do maybeEliminate(x)

– eliminating variables will touch other variables
while (Touched 6= ∅)

while (Added 6= ∅)

The method subsume(C) removes any clause subsumed by C, and similarly
selfSubsume(C) removes a literal from any clause that may be strengthened
using C. The method maybeEliminate(x) removes x by clause distribution or
substitution if the number of clauses is reduced. Finally, propagateToplevel()
removes any satisfied clause or false literal permanently from the clause database,
assigning variables and repeating the process if unit clauses are produced.

In the subsumption phase, two sets are computed: S0 for standard subsumption,
and S1 for self-subsumption. Self-subsumption is applied first as it may render
more (standard) subsumptions possible.

Because backward subsumption is eagerly applied to all added or strength-
ened clauses, the only candidates for being subsumed are the clauses of Added .
Strengthened clauses cannot be subsumed as they now have fewer literals and
were not subsumed before strengthening. A necessary condition for C to sub-
sume C ′ is that C has at least one literal in common with C ′. This motivates
the definition of S0.

Let “original clause” denote a clause not in Added or Strengthened . For self-
subsumption (the set S1) any added or strengthened clause can be used to re-
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move literals from an original clause. Original clauses may self-subsume added
clauses. This does not apply to strengthened clauses, since they have already
been checked while still containing more literals. It remains to add to S1 the
original clauses that may strengthen a clause in Added . All the candidate clauses
have to contain one literal p for some p in the added clauses.

4.4 Variable elimination

The variable elimination procedure relies on three readily implemented methods,
which we state here without pseudo-code:

maybeClauseDistribute(x) eliminates x by clause distribution if the result has
fewer clauses than the original (after removing trivially satisfied clauses).

findDefinition(x) returns either x ↔ p1∨p2∨ . . .∨pn or x ↔ p1∧p2∧ . . .∧pn

or NoDef. Unit information is also detected by hyper-unary-resolution and
returned as x ↔ True or x ↔ False. Note that in general there may
be many definitions. We use the shortest one and do not extract further
information from this.

maybeSubstitute(def ) takes the definition of a functionally dependent variable
and substitutes each occurrence of the variable by its definition, provided
this results in fewer clauses. Substituting a literal by a disjunction is unprob-
lematic; substituting by a conjunction requires duplicating the destination
clause for each literal of the conjunction, as explained in Sect. 3.

maybeEliminate(Var x)
if (x assigned or has zero occurrences) return
if (#occurs of x and x are both > 10) return – heuristic cut-off

def = findDefinition(x)
if (def 6= NoDef) maybeSubstitute(def )
else maybeClauseDistribute(x)

if (x was eliminated)
propagateToplevel()
remove learned clauses with x – for incremental SAT only

It was observed in an early implementation of the simplification procedure that
on some problems the majority of time was spent on failed attempts to eliminate
variables occurring frequently in both polarities. This is why these variables are
heuristically excluded. The last line of the pseudo-code is only relevant in an
incremental context; if variable elimination is applied during preprocessing, no
learned clauses will exist.

4.5 Variable elimination related issues

The elimination of variables results in a partial model if the problem is satisfiable.
Clauses removed during variable elimination must therefore be stored and used
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to complete the model, if the full model is not needed. If not, removed clauses
can simply be discarded.

Variable elimination also causes problems for the incremental SAT interface.
Later extensions of the SAT instance might reintroduce eliminated variables,
rendering the elimination unsound. Bringing back the removed clauses will solve
the problem, but a simpler solution is to extend the solver interface to let the
user explicitly prevent the elimination of selected variables.

5 Experimental results

The techniques presented in this paper were implemented in a tool SATELITE. It
is downloadable together with the benchmarks and the result files used to pro-
duce the tables and diagrams of this section.3 Three SAT solvers were used in our
evaluation: (1) MINISAT v1.13 [8] with an improved conflict clause analysis [19];
(2) ZCHAFF version “Chaff II”; and (3) BERKMIN v5.61. The benchmarks were
selected to be relevant for circuit verification. To get a relevant measure for the
reduction achieved by our preprocessing techniques, unit clauses were removed
by performing a toplevel propagation using MINISAT prior to benchmarking.

For our evaluation, two benchmark sets were created. The first set, referred
to as “IBM Problems”, is a subset of the huge BMC benchmark set made avail-
able by E. Zarpas at IBM.4 The benchmark set is divided into directories, each
containing BMC problems of different lengths generated from the same circuit
with the same specification. Without any prior knowledge of the benchmarks,
we randomly selected a subset of the directories resulting in 355 problems.

The second set, referred to as “Industrial Mix” contains a mix of hardware
verification problems, obtained as follows: The available industrial problems of
the SAT-2004 Competition were downloaded. Problems concerning graph color-
ing, set covering and planning problems were removed. Our focus is on circuit
verification. We also removed Miroslav Velev’s problems because SATELITE ran
out of memory on some of them, which complicated benchmarking.5 However, we
note that the problems are already clausified in a smart way [23], which leaves
little room for improvement by our methods. For the CNFs which SATELITE
could preprocess, reduction rates of less than 5% were achieved, and no measur-
able speedup. This supports our hypothesis that our method is an alternative to
producing optimized CNFs directly from the source problem.

Finally, we added 18 satisfiable and 18 unsatisfiable BMC problems used
in [9], mainly from the Texas’97 benchmarks;6 18 unsatisfiable BMC problems

3 www.cs.chalmers.se/ ẽen/SatELite
4 www.haifa.il.ibm.com/projects/verification/RB Homepage/bmcbenchmarks.html
5 The occurrence lists necessary for our preprocessing double the memory footprint.

Although this is not a big issue, Velev’s problems are among the largest that today’s
SAT solvers can handle. The current version of SATELITE has not been optimized
for memory performance.

6 www-cad.eecs.berkeley.edu/Respep/Research/vis/texas-97/
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Original NIVER SATELITE as NIVER Full SATELITE

Name v c l v c l : t v c l : t v c l : t

6pipe 16 395 1157 15 393 1155 : 4.4 15 393 1155 : 2.2 12 323 1018 : 53.0
abp1-1-k31 15 48 124 8 34 98 : 0.6 8 33 94 : 0.3 3 18 63 : 1.2
barrel9 9 37 102 4 21 66 : 0.5 4 20 65 : 0.5 2 16 87 : 3.3
cache 10 227 880 2192 130 606 1680 : 20.6 92 417 1146 : 7.9 29 178 748 : 58.6
comb2 32 112 274 20 89 231 : 1.6 20 89 231 : 0.8 3 18 63 : 4.4
f2clk 40 28 80 186 10 44 125 : 1.4 7 32 90 : 0.5 4 25 81 : 1.2
fifo8 400 260 708 1602 69 301 859 : 13.6 42 164 451 : 6.5 23 129 446 : 11.2
guid-1-k56 99 307 758 45 193 553 : 3.9 44 189 540 : 3.1 23 130 443 : 8.0
ibm-03 k80 89 375 973 56 308 887 : 5.5 44 230 661 : 1.9 28 190 629 : 5.8
ibm-20 k45 91 373 945 46 281 832 : 6.7 41 250 725 : 2.1 20 156 546 : 7.0
ip50 66 215 513 34 148 398 : 5.1 12 50 134 : 1.6 8 43 139 : 4.2
longmult15 8 24 59 4 16 46 : 0.3 3 14 39 : 0.1 1 9 28 : 0.4
w08 14 120 425 1038 69 324 859 : 7.2 69 324 856 : 3.7 34 220 688 : 15.7

Table 1. Size-reduction comparison with NIVER. “v”, “c”, “l” denote the num-
ber of variables, clauses, and literals in thousands respectivly. Times “t” are
in seconds as provided by the Unix command “time”, and include parsing and
writing the result file. “SATELITE as NIVER” uses no subsumption and has
the same heuristic as NIVER for variable elimination (enforce fewer literals).
It shows that SATELITE can mimic NIVER well, and that our implementation
techniques runs faster. The last column shows SATELITE with all reductions on,
which results in a strict improvement in size.

generated from the PicoJava design7 and 13 liveness problems from SatLib.8

The result contains 115 CNF files.
Study 1 – Comparing reduction rates with NIVER. This study shows
that SATELITE is an improvement over earlier work. We use the same problem
set as presented in the NIVER paper [21]. The results are shown in Table 1.
Study 2 – Reduction rates and preprocessing time. Figure 1 shows the
effect of applying preprocessing in terms of the number of remaining variables,
clauses, and literal occurrences. We see that for most problems the number of
clauses drop significantly, as well as the number of literal occurrences (with some
exceptions), resulting in smaller CNFs and faster unit propagation.

The runtime of the preprocessing is also plotted in relation to the time of
solving the original CNF. For problems requiring between 30 seconds and 30
minutes to solve, preprocessing took less than 1/10th of the total time. Only for
some of the easiest problems did preprocessing dominate runtime, but never in
any really harmful way.
Study 3 – Runtime comparison solving with/without preprocessing. In
Figure 2 we plotted the preprocessing plus SAT solving time using the strongest
version of our preprocessing (y-axis) against SAT solving without preprocessing
(x-axis). Although not a consistent improvement time-wise, in the big majority
of cases preprocessing lead to a significant performance increase. In particular
for ZCHAFF, the improvement was virtually exceptionless.
7 www.sun.com/microelectronics/communitysource/picojava/download.html
8 www.cs.ubc.ca/ hoos/SATLIB/Benchmarks/SAT/BMC/bmc.tar.gz
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Fig. 1. Relative Reduction and Preprocessing Time. The plots show the re-
maining size of each one of the 115 problems in the Industrial Mix after
reduction by our preprocessing techniques. The abbreviations are: “ve” variable
elimination, “s” subsumption, “ss” self-subsumption, “ds” definitional substitu-
tion. The reduction is measured relative to the size of the original CNF after
applying unit propagation (= 100%). The curves show the remaining variables
(upper left), clauses (upper right), and literals (lower left). For all three plots the
instances on the x-axis are sorted in the same way. The order is determined
by the percentage of remaining variables for the most effective ver-
sion of the preprocessor (the lower curve in the upper left plot labelled “ve
s ss ds”). Our primary simplification target, the elimination of variables induces
a simplification of the number of clauses in most cases as well. The number of
literals follows more loosely the same trend. These three plots also show that
our new simplification techniques are very effective compared to the approach
taken by NIVER [21], which corresponds to the curves labelled “ve”. Often an
additional factor of two in reduction can be achieved.

The lower right plot shows in logarithmic scale the absolute time needed for
preprocessing in relation to the overall solution time. The upper curve refers to
the time for solving an instance with MINISAT not using preprocessing (timeout
set to 1800 seconds). The remaining five curves show only the time used for
preprocessing alone with decreasing effort. Preprocessing time turns out to be
negligible compared to the overall solution time in most cases, even when our
most aggressive techniques are used. Only for very simple instances is it better
to run the solver without preprocessing.
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Fig. 2. Heads-up comparison, with and without preprocessing. The graphs shows
a time comparison between “SAT solving” and “preprocessing + SAT solving”
(using all reduction techniques). A mark below the diagonal means faster total
solving time when first applying preprocessing. A dot (•) represents MINISAT,
a plus (+) ZCHAFF, and a cross (×) BERKMIN. A timeout of 1800 seconds was
used, and marks along the edges represent tests which timed out for one of the
two executions.

Study 4 – Runtime effect of the different techniques. To evaluate the ben-
efit of the different levels of reduction, we run all three SAT solvers on all bench-
marks, both the IBM Problems and the Industrial Mix, with 5 different levels
of optimization: (1) Nothing (original CNF after propagating unit clauses), (2)
only variable elimination, (3) variable elimination plus subsumption, (4) variable
elimination, subsumption and self-subsumption, (5) variable elimination using
definitional substitution (when possible), subsumption and self-subsumption.

The result is plotted in Figure 5. The curves show that not only are more
problems solved fast by preprocessing, but also more problems in total when a
long timeout is given.
Study 5 – Incremental k-induction. In Table 2 and Figure 4, a small study
of applying our reduction techniques in an incremental context is presented. The
internal SAT solver of SATELITE, a less optimized version of MINISAT, allows
SATELITE to be used not only as a preprocessor, but also as an incremental
SAT solver. Simplification is applied between each incremental SAT problem.
Although this is a small study, the preliminary results suggest that our tech-
niques pay off in an incremental context too.

6 Conclusion

New simplification techniques were presented together with important imple-
mentation details. On a large representative set of industrial benchmarks it was
shown, that they speed up SAT solvers considerably. We also believe that pre-
processing techniques partially provide a solution to the important problem of
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Fig. 3. Comparing different preprocessing options using SATELITE. Time in-
cludes both preprocessing and solving. Even though variable elimination by def-
initional substitution gives a consistent reduction compared to variable elimina-
tion by clause distribution, it is not a clear winner in terms of CPU time, but
seems to depend on which solver you apply (the solid line vs. the long-dashed
line). However, both lines are clearly above the “(nothing)”-line, representing no
preprocessing. The addition of self-subsumption to normal subsumption seems to
be a clear winner (often better, never worse). To get an estimate of the speedup,
the graphs could be read by fixing a particular number of solved instances, and
see what timeout is required to solve that number of instances. On the IBM
benchmarks, MINISAT requires a timeout of about 250 seconds to solve 275
problems with full preprocessing, but a timeout of more than 600 seconds with
no preprocessing.
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Name Depth Plain Simplifying

vis.prodcell 12 29 62.7 s (266k) 25.3 s (88k)
vis.prodcell 14 16 7.8 s (124k) 6.4 s (29k)
vis.prodcell 15 23 30.5 s (200k) 14.0 s (56k)
vis.prodcell 17 27 64.5 s (253k) 24.1 s (76k)
vis.prodcell 18 13 7.5 s (114k) 5.0 s (35k)
vis.prodcell 19 22 19.2 s (192k) 12.3 s (55k)
vis.prodcell 23 13 9.5 s (120k) 5.9 s (37k)
vis.prodcell 24 37 120.5 s (319k) 34.3 s (94k)

Table 2. Study on k-induction. We modified TIP [9] to use SATELITE as a back-
end and ran the zigzag incremental induction algorithm on the “prodcell” prob-
lem distributed with VIS. The table shows the total runtime of each problem
in seconds, omitting examples solved in less than 1 second. Within parenthesis,
the number of clauses of the final incremental SAT instance is printed. In the
rightmost column, all simplifications of SATELITE were invoked between each in-
cremental step. The “depth” is the induction depth needed to prove the property
(all properties are true).

generating good CNFs in the application domain of circuit verification. As fu-
ture work, it would be interesting to compare SAT solving time on problems that
have been (1) clausified in a good way, and (2) clausified in a naive way, but pro-
cessed with SATELITE. We also want to combine and compare our preprocessing
techniques with the orthogonal techniques mentioned in the introduction.
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