
Duplex Encoding of Staircase At-Most-One
Constraints for the Antibandwidth Problem

Katalin Fazekas1 (B), Markus Sinnl2 ,
Armin Biere1 , and Sophie Parragh2

1 Institute for Formal Models and Verification
katalin.fazekas@jku.at, armin.biere@jku.at

Johannes Kepler University, Linz, Austria
2 Institute of Production and Logistics Management
markus.sinnl@jku.at, sophie.parragh@jku.at

Johannes Kepler University, Linz, Austria

Abstract. Decision and optimization problems can be tackled with dif-
ferent techniques, such as Mixed Integer Programming, Constraint Pro-
gramming or SAT solving. An important ingredient in the success of each
of these approaches is the exploitation of common constraint structures
with specialized (re-)formulations, encodings or other techniques. In this
paper we present a new linear SAT encoding using binary decision dia-
grams over multiple variable orders as intermediate representation of a
special form of constraints denoted as staircase at-most-one-constraints.
The use of these constraints is motivated by recent work on the antiband-
width problem, where an iterative solution procedure using feasibility-
mixed integer programs based on such constraints was most effective. In
a computational study we compare the effectiveness of our new encoding
against traditional SAT-encodings for staircase at-most-one-constraints.
Additionally we compare against previous exact solution methods for the
antibandwidth problem, such as a constraint programming approach and
the one based on feasibility-mixed integer programs.

1 Introduction

An important ingredient in the success of computational approaches, such as
Mixed Integer Programming (MIP), Constraint Programming (CP) or proposi-
tional satisfiability solving (SAT), for solving optimization and decision problems
is the exploitation of common constraint structures with specialized encodings,
(re-)formulations or other techniques (see e.g. [1–3]).

In this paper we present a new and specialized SAT encoding of problems
where an at-most-one constraint slides over a sequence of Boolean variables.
We denote this special case of sliding sequence constraints [4–7] as staircase at-
most-one constraint (SCAMO) and illustrate the reason for this name with the
following example.

Example 1. Given a sequence of variables X = 〈x1 x2 · · ·x10〉, the staircase at-
most-one constraint set of width 4 is the following formula:

http://orcid.org/0000-0002-0497-3059
http://orcid.org/0000-0003-1439-8702
http://orcid.org/0000-0001-7170-9242
http://orcid.org/0000-0002-7428-9770

x1 + x2 + x3 + x4

x2 + x3 + x4 + x5

x3 + x4 + x5 + x6

x4 + x5 + x6 + x7

x5 + x6 + x7 + x8

x6 + x7 + x8 + x9

x7 + x8 + x9 + x10 ≤ 1.

≤ 1 ∧
≤ 1 ∧
≤ 1 ∧
≤ 1 ∧
≤ 1 ∧
≤ 1 ∧

This research is motivated by recent work [8] of the second author on the
antibandwidth problem (ABP). The ABP is a graph labeling problem (see e.g. [9]
for more on such problems) where the goal is to maximize the smallest differ-
ence between labels of neighbouring nodes. It has various applications, such as
scheduling [10], obnoxious facility location [11], radio frequency assignment [12]
and map-coloring [13]. It has been studied from a theoretical point of view (see
e.g. [14–19]), and several heuristics and metaheuristics (e.g. [20–23]) have been
designed for it. In [21], aside from a metaheuristic, also a MIP approach was
presented to solve the ABP exactly.

In [8] new MIP formulations were presented, and based on one of them,
an iterative solution procedure, which repeatedly solved feasbility-MIPs, was
designed. For a given number k, these MIPs encode the question whether there
exists a solution with antibandwidth greater than k. This iterative procedure
actually proved to be the most effective one in the computational study of [8].

Our proposed encoding can be used for more difficult problem structures than
the one given in Example 1. In the ABP, for example, the difference of labels
of neighbouring nodes is restricted by combining two SCAMO constraints on
two sequences of variables. Aside from the ABP (and other labeling problems),
the SCAMO constraints can potentially be used in many further application
contexts, such as scheduling problems (see e.g. [24–26]) or in staff rostering [27,
28] and car sequencing problems [29, 30], when at most one variable is allowed
to take a given value in every sequence of variables.

As at-most-one constraints are ubiquitous in applications of SAT they are
featured prominently in the literature, see e.g. [31–36]. They are forming a special
case of cardinality constraints [37–39], which in turn are instances of Pseudo-
Boolean constraints [40–43] and thus 0/1 integer linear programs. Encoding con-
straints (for an overview see [36]) instead of handling them natively (as in [38])
allows to make full use of the power of SAT solving. For some applications mixed
strategies [44] are better though. In practice, size is the most important criteria
to evaluate such encodings, while at least in theory also propagation strength is
considered. See [45] for a discussion of these trade-offs. In particular, the path
based encoding of binary decision diagrams introduced in [45] has the goal to
improve propagation. However, as the authors point out, it can not be used for
encoding shared constraints, which is the main reason of the efficiency in our
encoding. Thus we also provide a new set of benchmarks for which such sharing
occurs naturally.

2 Preliminaries

A propositional formula in conjunctive normal form (CNF) consists of a set of
clauses, where each clause C is a disjunction of literals, which are Boolean (also
called 0/1) variables (e.g. x) or their negation (¬x or 1−x). A truth assignment
T maps truth values (0/1 values) to Boolean variables and can be represented
by a set of consistent literals; it satisfies a literal ` (i.e. assigns value 1 to `) if
` ∈ T , and falsifies it (assigns value 0 to `) if ¬` ∈ T , where ¬` = ¬x if ` = x and
¬` = x if ` = ¬x. The satisfiability problem (SAT) for a formula in CNF asks
whether there is a truth assignment such that all clauses contain at least one
satisfied literal. A truth assignment satisfying a formula is also called a model.

An at-most-one (AMO) constraint is an expression of the form
∑n
i=1 xi ≤ 1,

where x1, x2, . . . , xn are Boolean variables. Similarly, we can formulate at-most-
zero (AMZ) constraints (as

∑n
i=1 xi ≤ 0), which actually states that each vari-

able must be false (i.e. assigned value 0). Further, an exactly-one (EO) constraint
is an expression of the form

∑n
i=1 xi = 1. Notice that we define and use these

constraints over Boolean variables, but they are trivially extensible to literals.

A binary decision diagram (BDD, see e.g. [46, 47]) is a rooted, directed,
acyclic graph with at most two leafs, labeled with ⊥ (false or 0) and > (true
or 1). Every non-leaf (also called nonterminal) node of a BDD is labeled with
a Boolean variable and has exactly two outgoing edges (called low and high
in [46]). In this paper we use BDDs to represent AMO and AMZ constraints.
Figure 1a depicts an example BDD of an AMO constraint over variables x1, x2
and x3. Each path from the root of the BDD that ends in the true leaf (>) is a
model of x1 +x2 +x3 ≤ 1. Whenever the low or high child (marked with dashed
resp. solid line in Fig. 1) of a node labeled with variable x is taken, it means that
x is assigned to be false (true respectively) on that path. Since all our BDDs
represent AMO or AMZ constraints, we will depict them rather in an expanded
form where each node contains the whole Boolean expression represented by
the sub-graph starting from it, as it can be seen on Fig. 1b. To emphasize the
decision variables of the nodes, we mark them explicitly on the edges. Further,
beyond the non-terminal (i.e. non-leaf) nodes we distinguish non-unit nodes that
are representing a constraint over more than one variable. For example, the BDD
of Fig. 1b contains two leaf nodes (> and ⊥), two unit nodes (over x3) and three
non-unit non-leaf nodes. The ordering of the variables appearing in BDDs is
fixed (e.g. x1 < x2 < x3 in Fig. 1), i.e. we use ordered BDDs (OBDD in short).
Even though we merge isomorphic subtrees in our BDDs, they are not reduced
because nodes with identical children are kept (see e.g. x3 in Fig. 1). Thus we
use partially reduced ordered BDDs (ROBDD) over multiple variable orders.

Given a graph G = (V,E), a feasible solution to the antibandwidth problem
consists of assigning each node v ∈ V a unique label from the range 1, . . . , |V |.
Given such a labeling f , the antibandwidth ABf (v) of a node v is defined as
min{|f(v) − f(v′)| : {v, v′} ∈ E}, and the antibandwidth ABf (G) is defined as
min{ABf (v) : v ∈ V }. The goal of the ABP is to find a labeling f∗, such that
f∗ = arg maxf∈F(G)ABf (G), where F(G) denotes the set of all labelings of G.

x1 x2

x2

x3

x3 >

⊥
(a) BDD of (x1 + x2 + x3 ≤ 1)

x1 + x2 + x3 ≤ 1 x2 + x3 ≤ 1

x2 + x3 ≤ 0

x3 ≤ 1

x3 ≤ 0 >

⊥

x1

¬x1

x2

¬x2

x3¬x3¬x2

x2

¬x3

x3

(b) Expanded BDD of (x1 + x2 + x3 ≤ 1)

Fig. 1: Different BDD representations of AMO constraint (x1 + x2 + x3 ≤ 1).

We briefly discuss previous work [8] on which our new SAT solution is based.
Let binary variables x`i = 1 if and only if vertex i is assigned label ` (i.e. fi = `).
For a given k, the question, whether there exists a solution with AB(G) ≥ k+ 1,
can be formulated as MIP as follows. We will denote this formulation as Fe(k).

max 0∑
i∈V

x`i = 1 ∀` ∈ {1, . . . , |V |} (Labels)∑
`∈{1,...,|V |}

x`i = 1 ∀i ∈ V (Vertices)

∑
λ≤ `≤λ+k

(x`i + x`i′) ≤ 1 ∀{i, i′} ∈ E, 1 ≤ λ ≤ |V | − k (Objk)

x`i ∈ {0, 1} ∀i ∈ V, ∀` ∈ {1, . . . , |V |}

Constraints (Labels) make sure that each label is used only once and constraints
(Vertices) ensure that each node i ∈ V gets assigned one label. Thus, the
solution encoded by these constraints corresponds to a labeling. Constraints
(Objk) describe that for each edge {i, i′}, the labels fi, fi′ are not allowed to
be within a range of k. Thus, any solution of the above constraints corresponds
to a labeling with antibandwidth at least k + 1. The iterative algorithm of [8]
starts with a value of k obtained by a heuristic, which constructs a feasible
labeling, and then iteratively solves Fe(k) and increases k by one, until either
Fe(k) becomes infeasible (proving optimality of k) or a time limit is reached.

3 Staircase At-Most-One Constraint Sets

As a first step we define and illustrate the main concept of our paper, the so-called
staircase AMO constraint set (SCAMO). Following that, in the next section we
demonstrate step-by-step our proposed SAT encoding of these constraints.

Definition 1. Given a sequence of Boolean variables X = 〈x1 x2 · · ·xn〉 and a
width w s.t. 1 < w ≤ n, a staircase constraint set is formulated as follows:

SCAMO(X,w) =

(n−w)∧
i=0

(i+w)∑
j=i+1

xj ≤ 1

 where n = |X|.

Notice that this constraint is a special sub-case of SEQUENCE constraints (see
e.g. [4–7]) and so could be formulated as SEQUENCE(0, 1, w,X, {1}).

In Example 1 we saw, that there is an ordering of the constraints in that
problem such that each constraint differs only slightly from the previous one.
For instance, in Example 1 the 1st and 2nd constraints both include the sum
of x2, x3 and x4 while the 2nd and 3rd both contain the sub-expression x3 +
x4 +x5. Since addition is associative, the sum of the variables can be calculated
regardless of the grouping of the variables. However, if we would like to reuse
previous calculations, it is more beneficial to evaluate the first AMO constraint
for example as x1 + (x2 + x3 + x4) instead of considering any other variable
grouping (e.g. (x1 + x2) + (x3 + x4)). Doing so, the second constraint can just
simply consider the result of (x2 + x3 + x4) together with x5. Continuing the
evaluation with the next constraint, we could reuse (x3+x4) from (x2+x3+x4),
in case we calculated it as x2 + (x3 + x4), to decide x3 + x4 + x5 + x6 ≤ 1 by
combining it with (x5 + x6). In general, each constraint shares a sub-sum over
w−1 variables with the previous and at the same time with the next constraint.

Evaluating the very first constraint in this example in a right associative way
allows us to reuse (at least once) all its sub-expression in the following three
(i.e. w−1) constraints. However, in order to reuse these sub-expressions we need
a left associative grouping of variables in the constraint x5 + x6 + x7 + x8 ≤ 1,
since in the second constraint we need x5, then (x5 +x6) and then (x5 +x6 +x7)
to complement the reused sub-sums of x1 + x2 + x3 + x4.

All in all, considering only the first w constraints, we see that we need a
right associative evaluation of the first constraint and a left associative group-
ing of the (w + 1)’th constraint. Figure 2 depicts how these variable groupings
can be “bonded” together to reconstruct the original constraints of Example 1.
Extending this pattern to the whole set of constraints, we can see that each w
consecutive constraints need to be considered once left associative to combine
with the previous w constraints’ sub-expressions and once right associative, to
combine with the next w constraints. Thus, in Fig. 2 the sum over variables
x5, x6, x7 and x8 is actually considered twice, once with a left and once with a
right associative variable ordering. This duplicate view of constraints is the main
concept behind our proposed duplex encoding.

4 Duplex Encoding of Staircase Constraint Sets

Our goal is to exploit sharing of sub-expressions between constraints to obtain
a compact encoding. Again, the main idea of our approach can be seen in Fig. 2
where we identified common sub-sums. In our concrete encoding we have to
go one step further though and actually have to share sub-constraints. This is
achieved by decomposing longer AMO constraints into two smaller ones using
the following proposition. While the original longer constraints may be used only
once, smaller constraints potentially can be shared and reused multiple times.

Proposition 1. A constraint x1 + · · ·+ xn ≤ 1 holds iff for all 1 ≤ i < n

(x1+ . . .+xi ≤ 1)∧(xi+1+ . . .+xn ≤ 1)∧(x1+ . . .+xi ≤ 0∨xi+1+ . . .+xn ≤ 0).

(x1 + (x2 + (x3 + (x4))))

(x2 + (x3 + (x4))) + (x5)

(x3 + (x4)) + ((x5) + x6)

(x4) + (((x5) + x6) + x7)

((((x5) + x6) + x7) + x8)

(x5 + (x6 + (x7 + (x8))))

(x6 + (x7 + (x8))) + (x9)

(x7 + (x8)) +

(x8)

((x9) + x10) ≤ 1

≤ 1 ∧
≤ 1 ∧

≤ 1 ∧
≤ 1 ∧
≤ 1 ∧
≤ 1 ∧

Fig. 2: Decomposition of the staircase AMO constraint set of Example 1.

4.1 Sub-Constraint Construction

As a first step, given a sequence of variables X = 〈x1 · · ·xn〉 and width w, we
partition the variables into M = d nw e consecutive windows ω1, ω2, . . . , ωM , where
ω1 contains variables x1, . . . , xw, ω2 contains xw+1, . . . , x2w etc. Note that unless
(n mod w) = 0, the very last window contains fewer than w variables.

Example 2. Continuing the previous example, our width w = 4 splits X into
three windows: ω1 = {x1, x2, x3, x4}, ω2 = {x5, x6, x7, x8} and ω3 = {x9, x10}.

To encode a SCAMO set of constraints as compositions of smaller constraints,
we build two BDDs for each window with two different variable orderings (hence
the name “duplex”). Notice that any SAT encoding technique of AMO con-
straints could be employed instead of BDDs (as long as we do duplex encoding
by considering both directions). However, beyond the smaller AMO constraints,
we further need AMZ constraints in order to connect the parts together (see the
binary clause in Prop. 1). One benefit of BDDs is that we get these constraints
automatically already by encoding the AMO constraints. Thus in this paper we
will focus only on this BDD based approach.

Given window ωi over variables Xi = {xi1 , . . . xiw}, we construct two two-
rooted BDDs, both representing the same two constraints xi1 + · · ·+xiw ≤ 1 and
xi1 + · · · + xiw ≤ 0. The first BDD, which we call forward BDD, considers the
AMO and AMZ constraints with a right associative variable grouping (i.e. with
variable ordering xi1 < xi2 < . . . < xiw). The other BDD, called backward BDD,
represents the same constraints but with a left associative variable grouping
(i.e. with variable ordering xiw < xiw−1

< . . . < xi1).
Ab́ıo et al. in [42] proposed a generalized arc-consistent, polynomial size

ROBDD-based encoding for Pseudo-Boolean constraints. In our setting the con-
straints are all AMO or AMZ constraints without coefficients, and thus ap-
plying their approach leads to small and simple BDDs. The recursive algo-
rithms in Fig. 3 present the main steps of this building process. In these proce-
dures 〈xi · · ·xj〉 means an ordered sequence of consecutive variables and function
if-then-else builds a BDD node with the given decision variable and high and

BDD-AMO (consecutive variables 〈xi · · ·xj〉)

1 B := Search-AMO(〈xi · · ·xj〉)
2 if B = ∅ then
3 if |〈xi · · ·xj〉| = 1 then

4 BT ,BF := >,>
5 else

6 BT := BDD-AMZ(〈xi+1 · · ·xj〉)
7 BF := BDD-AMO(〈xi+1 · · ·xj〉)
8 B := if-then-else(xi,BT ,BF)

9 return B

BDD-AMZ (consecutive variables 〈xi · · ·xj〉)

1 B := Search-AMZ(〈xi · · ·xj〉)
2 if B = ∅ then
3 if |〈xi · · ·xj〉| = 1 then

4 BT ,BF := ⊥,>
5 else

6 BT := ⊥
7 BF := BDD-AMZ(〈xi+1 · · ·xj〉)
8 B := if-then-else(xi,BT ,BF)

9 return B

Fig. 3: Algorithms BDD-AMO and BDD-AMZ to construct binary decision diagrams
for constraints over a given sequence of consecutive Boolean variables.

low BDD nodes. Building the forward BDDs of a window ωi simply means to
call BDD-AMO and BDD-AMZ with 〈xi1 · · ·xiw〉 as parameter. To build the backward
BDDs, we need to call the methods with 〈xiw · · ·xi1〉 as argument. The result in
both cases (see Ex. 3) will be a two-rooted BDD with height of at most (w+ 1).

Consider the following layers of these constructed BDDs. A non-leaf layer lj
(where 1 ≤ j ≤ w) of a forward BDD (backward BDD) consists of two nodes,
one capturing the AMO and another node representing the AMZ constraint over
variables 〈xij · · ·xiw〉 (respectively 〈xiw−(j−1)

· · ·xi1〉 for the backward BDD).

Example 3. The upper part of Fig. 4 shows what the forward BDD of ω1 in
Example 2 looks like. The BDD is the result of calling BDD-AMO(〈x1 x2 x3 x4〉)
and BDD-AMZ(〈x1 x2 x3 x4〉). Notice that due to the search for already existing
BDDs at the beginning of each method (Search-AMO and Search-AMZ), the two
calls result in a single shared structure (i.e. we have a partially reduced ordered
BDD). Further notice that though node x4 ≤ 1 could be reduced simply to >,
we kept this node in the representation. In this BDD we can distuinguish four
layers (l1 − l4) that refer to four sub-constraints of the root expressions.

The lower part of the figure depicts the backward BDD of ω2 in Example 2,
resulting from calls BDD-AMO(〈x8 x7 x6 x5〉) and BDD-AMZ(〈x8 x7 x6 x5〉). The vari-
able ordering here is x8 < x7 < x6 < x5. Notice that the structure of the two
BDDs are identical, they just talk about different variables in different orders.

4.2 CNF Encoding of BDDs

During BDD construction (e.g. after Line 5 in both algorithms of Fig. 3), or later
in an independent traversal, we can assign new Boolean variables to each non-
unit non-leaf node. Notice that top nodes of the forward and backward BDDs
over the same variables can use the same Boolean variable.

Now, given a node with auxiliary Boolean variable b, that decides on variable
xi and has a true child node with variable t and a false child node with variable
f , we introduce clauses to encode xi → (b ↔ t) and ¬xi → (b ↔ f). However,
there are several simplification possibilities due to the structure of our BDDs and

l1 l2 l3 l4

x1 + x2 + x3 + x4 ≤ 1

x1 + x2 + x3 + x4 ≤ 0

x2 + x3 + x4 ≤ 1

x2 + x3 + x4 ≤ 0

x3 + x4 ≤ 1

x3 + x4 ≤ 0

x4 ≤ 1

x4 ≤ 0

>

⊥

b4 b5 b6

b1 b2 b3

x1

¬x1

x2

¬x2

x3

¬x3

x4

¬x4

x1

¬x1

x2

¬x2

x3

¬x3

x4

¬x4

l1 l2 l3 l4

x5 + x6 + x7 + x8 ≤ 1

x5 + x6 + x7 + x8 ≤ 0

x5 + x6 + x7 ≤ 1

x5 + x6 + x7 ≤ 0

x5 + x6 ≤ 1

x5 + x6 ≤ 0

x5 ≤ 1

x5 ≤ 0

>

⊥

b10 b11 b12

b7 b8 b9

x8

¬x8

x7

¬x7

x6

¬x6

x5

¬x5

x8

¬x8

x7

¬x7

x6

¬x6

x5

¬x5

Fig. 4: Forward BDD of ω1 with variable ordering x1 < x2 < x3 < x4 and
backward BDD of ω2 with ordering x8 < x7 < x6 < x5. Two-rooted partially
reduced OBDDs to represent constraints x1 + x2 + x3 + x4 ≤ K with right and
x5 +x6 +x7 +x8 ≤ K with left associative variable groupings, where K ∈ {0, 1}.

our problem. For instance, all AMZ nodes have ⊥ as a true child (see Fig. 4) and
all AMO nodes are assumed as unit clauses (due to using them with Prop. 1).
Nodes of a constraint xi ≤ 1 are simply encoded as >, while nodes of constraints
xi ≤ 0 are encoded as ¬xi in the clausal representation of the parent nodes.

Example 4. On Fig. 4 the introduced new Boolean variables are represented
together with their nodes. For example, variable b6 belongs to the node of con-
straint x3 + x4 ≤ 1. The introduced clause regarding this node is (¬x3 ∨ ¬x4).

4.3 Bonding Stairs

An AMO constraint of a SCAMO set is either a root node of one of our BDDs or
can be described by combining two layers of two BDDs via Prop. 1. As last step
of encoding a whole SCAMO set of constraints, we traverse the forward BDD
of each window (denoted as ωfi -BDD with i ∈ {1, . . . ,M − 1}) and combine its
nodes with those of the backward BDD of the next window (ωbi+1-BDD). Thus,

we combine layer lj of ωfi with layer l(w−j)+2 of ωbi+1 for each j = 2, . . . , w. At
the end, the bonding of two consecutive BDDs yields the following formula:

BOND(ωfi , ω
b
i+1) = ωfi -l1-AMO ∧

w∧
j=2

(
ωfi -lj-AMO ∧ ωbi+1-l(w−j)+2-AMO ∧ (ωfi -lj-AMZ ∨ ωbi+1-l(w−j)+2-AMZ)

)
.

(x1 + (x2 + (x3 + (x4)))) ≤ 1

(x2 + (x3 + (x4))) ≤ 1 ∧ (x5) ≤ 1

(x3 + (x4)) ≤ 1 ∧ ((x5) + x6) ≤ 1

(x4) ≤ 1 ∧ (((x5) + x6) + x7) ≤ 1

((((x5) + x6) + x7) + x8) ≤ 1

ωf
1 -l1

ωf
1 -l2

ωf
1 -l3

ωf
1 -l4

ωb
2-l1

ωb
2-l2

ωb
2-l3

ωb
2-l4

Forward BDD of ω1

Backward BDD of ω2

Fig. 5: Combining forward and backward BDDs to encode SCAMO constraints.

Example 5. We continue the running example. At this point we have seen how to
construct a BDD for each small stair structure in Fig. 2. Next we combine them
using Prop. 1 to capture all AMO constraints. Fig. 5 depicts how the layers of
the constructed BDDs are meant to be paired with each other. Applying Prop. 1
on layers of ωf1 -BDD and ωb2-BDD yields the following formula:

(x1 + x2 + x3 + x4 ≤ 1) ∧
(x2 + x3 + x4 ≤ 1) ∧ (x5 ≤ 1) ∧ (x2 + x3 + x4 ≤ 0 ∨ x5 ≤ 0) ∧

(x3 + x4 ≤ 1) ∧ (x5 + x6 ≤ 1) ∧ ((x3 + x4 ≤ 0) ∨ (x5 + x6 ≤ 0)) ∧
(x4 ≤ 1) ∧ (x5 + x6 + x7 ≤ 1) ∧ ((x4 ≤ 0) ∨ (x5 + x6 + x7 ≤ 0)),

that translates to the clauses b4 ∧ b5 ∧ > ∧ (b2 ∨ ¬x5) ∧ b6 ∧ b12 ∧ (b3 ∨ b9) ∧
>∧ b11 ∧ (¬x4 ∨ b8). Notice that with this set of clauses, together with the BDD
clauses, we encoded the first four AMO constraints of our SCAMO problem.

4.4 Arc Consistency of Duplex Encoding

Notice that AMO, AMZ and SCAMO constraints are all monotonic decreasing
Boolean functions, i.e. setting any of the variables to false does not restrict
any other variables. Thus setting a variable to true affects only those variables
that share at least one AMO constraint with it. Note that decomposing each
AMO constraint of a SCAMO set based on Prop. 1 results in an equivalent
problem. Although our constructed BDDs for this decomposition share most of
their nodes with each other (due to the chosen variable orders), our method is
still a BDD-based translation of each AMO and AMZ constraint into clauses.
Thus, applying an arc consistent encoding [48, 49] on each BDD node (e.g. the
one in Minisat+ [41]) makes our encoding arc consistent as well.

In fact, notice that our bonding clauses contain a unit clause for each AMO
constraint in order to enforce the output of the corresponding (sub-)BDD to be
true. Beyond that, it is not hard to see that setting an input variable to true
falsifies the output variable of each AMZ-BDD containing it. Thus the binary
clauses of the bonding clauses enforce the root-node of each respective AMZ
constraint to be true, and in turn unit propagation, the main inference rule of
SAT solvers, falsifies all the variables in them.

5 Comparing Encodings of Staircase Constraints

In this section we discuss commonly used existing SAT encodings of AMO con-
straints and possible SEQUENCE encodings of SCAMO constraints. We com-
pare them to our proposed duplex encoding in the context of SCAMOs.

Let N = (n−w)+1 be the number of AMO constraints in a staircase problem
set over n variables and width w. A naive (also called pair-wise or binomial)

encoding of a w-long AMO constraint is
∧(w−1)
i=1

∧(w)
j=i+1 (¬xi ∨ ¬xj). Although

this approach does not require any additional Boolean variable, the number
of clauses constructed with that encoding over N w-long AMO constraints is

N · ((w − 1) + (w − 2) + . . .+ (w − (w − 1)) = N · (w−1)·w2 .

Using the naive encoding on the SCAMO constraint set would produce more
than once many of the binary clauses. Eliminating duplicated clauses yields the

reduced naive encoding with (w−1)·w
2 + (N − 1) · (w − 1) unique clauses.

Sinz introduced in [37] a sequential counter encoding for Boolean cardinality
constraints. Applying it to an AMO constraint over w variables produces 3·w−5
binary clauses and introduces w−2 auxiliary variables. With N AMO constraints
this gives N · (3 · w − 5) clauses and N · (w − 2) new variables.

The BDD-based encoding for Pseudo-Boolean constraints [41, 42] applied to
AMO constraints is comparable to the sequential counter encoding. However,
for a fixed variable order, the BDD built for each w-long AMO constraint of a
SCAMO set, will always either contain a variable that does not occur in any
other constraint or will miss a variable needed in other constraints. Thus for
this approach using a fixed single variable order the amount of sharing of BDD
nodes among constraints is rather restricted. On the other hand the approach
does not require bonding clauses. With a simplified clausal representation of the
BDD nodes, the naive BDD encoding uses at most N ·(3 ·(w−2)+2 ·(w−1)−1)
clauses and introduces N · (2 · w − 3) new variables to encode a SCAMO set.

The so-called 2-product encoding [32] relies on the same decomposition rule as
Prop. 1. This approach breaks an AMO constraint over w variables into a product
of two AMO constraints over p and q variables, where p ∗ q ≥ w. To simplify
the calculation we use p = d

√
we and q = dw/pe as recommended in [32] and

assume recursive 2-product encoding of the resulting smaller constraints. Even
though this approach can efficiently encode a single AMO constraint, making use
of shared sub-expressions is not straightforward. Thus, based on the estimations
given in [32], the number of clauses is N · (2 ·w+ 4 ·

√
w+O(4

√
w)). Further, the

number of newly introduced variables is N ·(2·
√
w+O(4

√
w)) again following [32].

Instead of focusing on specialized AMO encodings, it is also possible to encode
a complete SCAMO set with more generic approaches, like the ones in [6]. For
example, encoding SCAMO as a REGULAR constraint yields similar results as
a naive BDD-based approach with a single variable order (i.e. O(n · w) size).

Another encoding (also from [6]) based on cumulative sums or difference
constraints requires an internal representation which is at least quadratic size
in the worst case. Similarly, partial sums (again see [6]) would consider every
possible sub-sums which also yields O(n · w2) constraints.

Table 1: Comparison of size of SAT encodings of w-long SCAMO sets over n vari-
ables. Columns #NewVars and #Clauses show the number of additional vari-
ables and clauses of each approach, where N = (n− w) + 1 and M = d nw e.

Encoding #NewVars #Clauses WorstCase

Naive 0 N · (w−1)·w
2

O(n3)

Reduced 0 (w−1)·w
2

+ (N − 1) · (w − 1) O(n2)
Sequential N · (w − 2) N · (3 · (w − 2) + 1) O(n2)
BDD N · (2 · w − 3) N · (3 · (w − 2) + 2 · (w − 1)− 1) O(n2)
2-Product N · (2 ·

√
w + O(4

√
w)) N · (2 · w + 4 ·

√
w + O(4

√
w)) O(n2)

Duplex 4 ·M · (w − 1) 13 ·M · w − 14 ·M − 3 · w + 2 O(n)

The size-wise most competitive sequence encoding from [6] is the log-based
approach where a SCAMO set could be represented as O(n · log w) constraints.

5.1 Duplex Encoding

For a given constraint set over n variables of width w we construct two BDDs of
the same size (each having 2 · (w+ 1) nodes) for M = d nw e windows. To simplify
the calculation, we will assume that each BDD has the same size (even though
the last window is most of the time way smaller) and that we encode the first
and last windows in both directions. Thus, we provide here just an upper bound
on the actual values. With these assumptions we have 2 ·M BDDs. For each
BDD we construct three clauses for the non-unit non-leaf AMZ nodes and at
most two clauses for the non-unit non-leaf AMO nodes. Beyond these clauses,
we need to bond together each layer of the neighbouring forward and backward
BDDs, resulting in M − 1 bond-clause sets, each consisting of two unit and a
binary clause. All in all, the final number of clauses in the encoding is as follows:

#BDD-clauses ≤ 2 ·M · (3 · (w − 1) + 2 · (w − 1)− 1) = 10 ·M · w − 12 ·M
#BOND-clauses ≤ (M − 1) · (3 · (w − 1) + 1) = 3 ·M · w − 2 ·M − 3 · w + 2

#BDD + #BOND-clauses ≤ 13 ·M · w − 14 ·M − 3 · w + 2

The number of new variables at the very end of the encoding is at most 4 ·M ·
(w − 1) introducing one for each non-leaf non-unit node of our BDDs.

5.2 Comparison Summary

Table 1 summarizes the sizes of different SAT encodings expressed as functions
over the number n of all variables in a SCAMO constraint set and the width
w of the individual AMO constraints, combined into N = (n − w) + 1 (the
number of AMO constraints) and M = d nw e (the number of windows in duplex
encoding). The columns capture the number of auxiliary variables and number
of clauses of the encodings. Notice that M is significantly smaller than N . The
last column gives the worst case of each approach, assuming w = n/2, where N
is approximately n/2 too. In this scenario existing encodings are quadratic or

0 100 200 300 400 500

w

0

50,000

100,000

150,000

200,000

250,000

300,000

#
C

l
a
u
se

s

n = 500
Naive

Reduced

SEQ

BDD

2-Product

Duplex

Fig. 6: Comparison of number of clauses for different encodings of a single
SCAMO constraint set on n = 500 variables and width w between 2 and 500.

even cubic. However, in our duplex encoding we have M = 2 in that case and
thus it remains linear.

Figure 6 visualizes the difference between SAT encodings for the fixed number
of variables n = 500. The horizontal axis ranges over all possible widths w. Note
that the naive encoding is only partially shown here, and further, that in our
application n/2 is an upper bound on the width w, and thus only the left part
of Fig. 6 is interesting up to the middle w = n/2 = 250.

The asymptotic behavior of the last column of Table 1 can be observed
in Fig. 6 too. Again, the largest difference between the encodings occurs for
w = n/2. According to Fig. 6 the reduced naive encoding turns out to be the best
SAT-based alternative to our approach in terms of number of clauses. Though
Fig. 6 focuses only on SAT encodings, note that the smallest sequence-based
alternative (in [6]) would have size O(n · log n) when w = n/2, that is smaller
than most SAT encodings but larger than our proposed linear encoding.

6 Experimental Evaluation

Formulating the antibandwidth problem iteratively, as it was proposed in [8]
(see Sect. 2), asks whether there exists a labelling for a graph G = (V,E)
s.t. AB(G) ≥ k + 1. The question has 2 · |V | pieces of |V |-long exactly-one con-
straints (as (Labels) and (Vertices)) and for each edge of the graph (i.e. |E|
times) a (|V |−k) big set of AMO constraints, each over 2·k variables (as (Objk)).

An off-the-shelf SAT solution could encode each of the AMO and exactly-one
constraints one-by-one (e.g. as in Sect. 5). However, for a given edge between

nodes i, i′ (i.e. {i, i′} ∈ E) constraint (Objk) can be reformulated as

(|V |−k)∧
λ=1

(λ+k)∑
`=λ

x`i + x`i′ ≤ 1

 Prop. 1
≡

(|V |−k)∧
λ=1

(λ+k)∑
`=λ

x`i ≤ 1 ∧
(λ+k)∑
`=λ

x`i′ ≤ 1 ∧

(λ+k)∑
`=λ

x`i ≤ 0 ∨
(λ+k)∑
`=λ

x`i′ ≤ 0

 .

In that form we have exactly two SCAMO sets of width k + 1, one over the
variables of node i and another over variables of i′. The third component of the
decomposition takes the disjunction of AMZ constraints that can be constructed
easily by combining our smaller AMZ nodes corresponding to the SCAMO sets.

The staircase structure in (Objk) allows to apply our new duplex encoding
by simply encoding a SCAMO set of width k + 1 for each node of the graph
(i.e. |V | times) and combining the corresponding AMZ constraints (with less than
4·(|V |−k) binary clauses for each edge). This encodes all AMO constraints of the
problem. Also note that we can reuse the Boolean variables representing the root
nodes of the constructed AMO BDDs to encode the (Vertices) constraints.

Experimental Results

We implemented a framework to compare off-the-shelf SAT encodings in practice
to our proposed SCAMO based duplex encoding on the antibandwidth problem
(as formulated in Sect. 2). Beyond SAT encodings, we also compared our ap-
proach against alternative exact methods to solve the problem, like Constraint
Programming or the iterative method presented in [8] based on feasibility-MIPs.

The experiments considered 24 matrices of the Harwell-Boeing Sparse Ma-
trix Collection [50], containing 12 relatively small and 12 rather large graphs
(as in [8]). For each graph lower bounds (by a construction heuristic) and the-
oretical upper bounds of the antibandwidth were provided in [8]. These values
were reused in our experiment as starting and ending points for the iterative
methods and as lower bounds in the CP approaches. All reported results were
experimented on our cluster with Intel Xeon E5-2620 v4 @ 2.10GHz CPUs.

Table 2 summarizes our results.3 For each graph it shows the number of
nodes and edges, the starting width or lower bound and last width to check
of the solving methods (columns |V |, |E| and LB,UB). Then for each solving
technique we report the best found solution together with the time (in seconds)
and memory consumption (in MB). Each approach was limited to 1800 seconds
and 120 GB memory. This rather high main memory limit is due to trying to
solve the alternative SAT encodings with a large number of clauses as well, while
the other methods never exceeded 4 GB.

We compare the 2-product [32] and reduced naive AMO encodings to our
proposed duplex SCAMO encoding as the first three techniques in Table 2.

3 Source code, data and benchmarks are available at http://fmv.jku.at/duplex/.

http://fmv.jku.at/duplex/

All three techniques are implemented in the same framework and follow the
same method: encode (considering LB as width of SCAMO or as k of the AMO
constraints) and solve the SAT representation of the problem with a SAT solver
(we used CaDiCaL 1.2.1 [51]). If it is satisfiable, increase the width and start
again to encode and solve the new problem. If it is unsatisfiable or the width is
UB, it means that the optimal solution of ABP was found and the process ends.
At the moment when the 1800 seconds or 120 GB is exceeded, the method stops
(with TO or MO respectively). The reported solutions are the highest widths
with what the formula was still successfully constructed and solved. In case even
the first formula was too hard to solve, it is marked with “-”.

While the 2-product encoding of the largest instance had a memory out
during solving the first formula (after a successful encoding), the reduced naive
approach required less memory and even solved a few of the larger problems with
more than one width in 1800 seconds. The duplex encoding required significantly
less memory and was faster in encoding and solving the problems compared to
the other SAT approaches. It performed well also compared to further techniques.

The next two approaches, Fe(k) and CP-CPLEX, are taken from [8] as is,
and were executed on our cluster for comparison. Note that while CP-CPLEX
knows LB, Fe(k) constructs it internally. The last reported approach is based on
Chuffed [44, 52] via the MiniZinc language [53]. This hybrid solver employs lazy
clause generation and combines the strengths of SAT and finite domain solving
techniques. Note that both CP approaches encode the ABP naively as a labeling
problem to maximize smallest neighbour-distances, using state-of-the-art solvers
off-the-shelf. All in all we can see that the SCAMO based duplex encoding of
the ABP is comparable and most of the time even better than other approaches.

7 Conclusion and Outlook

In this paper we have proposed a new SAT encoding for at-most-one constraints
with a staircase structure, i.e. where consecutive constraints share sequences of
sub-expressions in a structured way. This structure is exploited in an encoding
which relies on binary decision diagrams using two variable orderings. Compared
to alternative encodings for the ABP, our encoding outperforms the existing ones.

In the future we plan to integrate and interleave the MIP based approach
of [8] and the SAT approach proposed here. Further, we want to apply the
proposed method to other problems featuring at-most-one constraints with a
staircase structure. Another intriguing direction for future work is to explore
how symbolic optimization techniques using decision diagrams [54] can take ad-
vantage of multiple variable orders simultaneously, which is essential to keep our
encoding compact.

Acknowledgments. This research has been supported by the Austrian Science
Fund (FWF) under projects W1255-N23, S11408-N23 and by the LIT AI Lab
funded by the State of Upper Austria. The authors would like to thank the
reviewers for their useful suggestions and helpful comments.

Table 2: Results of different approaches to solve the antibandwidth problem (TO = 1800 seconds and MO = 120 GB).

Instance |V | |E| LB UB
2-Product Reduced Naive Duplex Fe(k) [8] CP-CPLEX [8] CP-MZ-Chuffed

Obj. Time MB Obj. Time MB Obj. Time MB Obj. Time MB Obj. Time MB Obj. Time MB

A-pores 1 30 103 6 8 6 206.85 80 6 166.48 68 6 185.52 52 6 23.71 29 6-8 TO 57 6 5.97 11
B-ibm32 32 90 9 9 9 14.06 51 9 46.03 47 9 1.30 11 9 28.57 29 9 7.35 20 9 17.4 11
C-bcspwr01 39 46 16 17 17 83.12 69 17 56.02 59 17 3.85 13 17 6.64 28 17 18.78 21 17 TO 11
D-bcsstk01 48 176 8 9 9 14.41 139 9 8.59 47 9 0.25 14 9 62.28 36 9 20.15 21 9 6.35 12
E-bcspwr02 49 59 21 22 21 36.17 76 21 53.01 80 21 3.37 13 21 774.02 205 21 22.84 19 21 673.44 11
F-curtis54 54 124 12 13 13 20.89 139 13 1.02 41 13 1.33 18 13 12.56 32 13 34.66 21 13 2.14 11
G-will57 57 127 12 14 13 108.79 164 13 26.8 79 13 0.57 19 13 15.4 33 13 44.75 21 13 2.69 11
H-impcol b 59 281 8 8 8 5.51 173 8 0.47 52 8 0.54 22 8 0.47 24 8-22 TO 63 8 23.3 12
I-ash85 85 219 19 27 21 TO 794 21 TO 658 23 TO 331 20 TO 133 22-31 TO 37 21 TO 12
J-nos4 100 247 32 40 32 TO 1037 32 TO 911 35 585.33 190 - TO 106 34-47 TO 31 - TO 12
K-dwt 234 117 162 46 58 47 TO 924 47 TO 957 49 TO 477 48 TO 264 51-57 TO 33 - TO 11
L-bcspwr03 118 179 39 39 39 22.82 662 39 6.92 436 39 0.99 58 39 0.52 21 39 110.92 22 39 26.42 12

M-bcsstk06 420 3720 28 72 - TO 53392 29 TO 22076 34 TO 1621 33 TO 625 - TO 20 - TO 35
N-bcsstk07 420 3720 28 72 - TO 53392 29 TO 22097 34 TO 1621 33 TO 634 - TO 20 - TO 35
O-impcol d 425 1267 91 173 - TO 30306 92 TO 22285 99 TO 1043 95 TO 691 - TO 18 - TO 24
P-can 445 445 1682 78 120 - TO 41572 - TO 27030 - TO 1581 - TO 644 - TO 18 - TO 24
Q-494 bus 494 586 219 246 - TO 25944 - TO 29640 - TO 1167 220 TO 905 - TO 18 - TO 21
R-dwt 503 503 2762 46 71 - TO 56611 47 TO 35227 62 TO 1680 52 TO 911 - TO 19 - TO 31
S-sherman4 546 1341 256 272 - TO 73031 - TO 59860 - TO 1129 - TO 1033 - TO 19 - TO 24
T-dwt 592 592 2256 103 150 - TO 85816 - TO 62936 - TO 2253 - TO 1068 - TO 20 - TO 37
U-662 bus 662 906 219 220 - TO 63844 - TO 68402 220 319.73 1564 - TO 1320 - TO 19 - TO 28
V-nos6 675 1290 326 337 - TO 101724 - TO 90129 - TO 1571 - TO 1434 - TO 20 - TO 28
W-685 bus 685 1282 136 136 - TO 76110 - TO 72839 136 14.33 1428 136 9.24 37 - TO 20 - TO 29
X-can 715 715 2975 112 142 - 686.23 MO - TO 106462 - TO 3312 - TO 1468 - TO 21 - TO 39

References

1. Achterberg, T.: SCIP: solving constraint integer programs. Mathematical Pro-
gramming Computation 1(1) (2009) 1–41

2. Vielma, J.P.: Mixed integer linear programming formulation techniques. Siam
Review 57(1) (2015) 3–57

3. Bofill, M., Coll, J., Suy, J., Villaret, M.: SAT encodings of pseudo-boolean con-
straints with at-most-one relations. In Rousseau, L., Stergiou, K., eds.: Integra-
tion of Constraint Programming, Artificial Intelligence, and Operations Research
- 16th International Conference, CPAIOR 2019, Thessaloniki, Greece, June 4-7,
2019, Proceedings. Volume 11494 of LNCS., Springer (2019) 112–128

4. Beldiceanu, N., Contejean, E.: Introducing global constraints in CHIP. Mathe-
matical and Computer Modelling 20 (03 1996) 97–123

5. Bessiere, C., Hebrard, E., Hnich, B., Kiziltan, Z., Walsh, T.: SLIDE: A useful
special case of the CARDPATH constraint. In Ghallab, M., Spyropoulos, C.D.,
Fakotakis, N., Avouris, N.M., eds.: ECAI 2008 - 18th European Conference on
Artificial Intelligence, Patras, Greece, July 21-25, 2008, Proceedings. Volume 178
of Frontiers in Artificial Intelligence and Applications., IOS Press (2008) 475–479

6. Brand, S., Narodytska, N., Quimper, C., Stuckey, P.J., Walsh, T.: Encodings of the
SEQUENCE constraint. In Bessiere, C., ed.: Principles and Practice of Constraint
Programming - CP 2007, 13th International Conference, CP 2007, Providence, RI,
USA, September 23-27, 2007, Proceedings. Volume 4741 of LNCS., Springer (2007)
210–224

7. van Hoeve, W.J., Pesant, G., Rousseau, L., Sabharwal, A.: Revisiting the se-
quence constraint. In Benhamou, F., ed.: Principles and Practice of Constraint
Programming - CP 2006, 12th International Conference, CP 2006, Nantes, France,
September 25-29, 2006, Proceedings. Volume 4204 of LNCS., Springer (2006) 620–
634

8. Sinnl, M.: A note on computational approaches for the antibandwidth problem.
CoRR abs/1910.03367 (2019)

9. Gallian, J.A.: A dynamic survey of graph labeling. The Electronic Journal of
Combinatorics 16(6) (2009) 1–219

10. Leung, J.Y., Vornberger, O., Witthoff, J.D.: On some variants of the bandwidth
minimization problem. SIAM Journal on Computing 13(3) (1984) 650–667

11. Cappanera, P.: A survey on obnoxious facility location problems (1999)
12. Hale, W.K.: Frequency assignment: Theory and applications. Proceedings of the

IEEE 68(12) (1980) 1497–1514
13. Gansner, E.R., Hu, Y., Kobourov, S.: Gmap: Visualizing graphs and clusters as

maps. In: Visualization Symposium (PacificVis), 2010 IEEE Pacific, IEEE (2010)
201–208

14. Miller, Z., Pritikin, D.: On the separation number of a graph. Networks 19(6)
(1989) 651–666

15. Yixun, L., JinJiang, Y.: The dual bandwidth problem for graphs. Journal of
Zhengzhou University 35(1) (2003)

16. Raspaud, A., Schröder, H., Sỳkora, O., Torok, L., Vrto, I.: Antibandwidth and
cyclic antibandwidth of meshes and hypercubes. Discrete Mathematics 309(11)
(2009) 3541–3552

17. Wang, X., Wu, X., Dumitrescu, S.: On explicit formulas for bandwidth and an-
tibandwidth of hypercubes. Discrete Applied Mathematics 157(8) (2009) 1947–
1952

18. Dobrev, S., Královič, R., Pardubská, D., Török, L., Vrto, I.: Antibandwidth and
cyclic antibandwidth of hamming graphs. Discrete Applied Mathematics 161(10-
11) (2013) 1402–1408

19. Bekos, M.A., Kaufmann, M., Kobourov, S., Veeramoni, S.: A note on maximum
differential coloring of planar graphs. Journal of Discrete Algorithms 29 (2014)
1–7

20. Bansal, R., Srivastava, K.: Memetic algorithm for the antibandwidth maximization
problem. Journal of Heuristics 17(1) (2011) 39–60

21. Duarte, A., Mart́ı, R., Resende, M.G., Silva, R.M.: GRASP with path relinking
heuristics for the antibandwidth problem. Networks 58(3) (2011) 171–189

22. Lozano, M., Duarte, A., Gortázar, F., Mart́ı, R.: Variable neighborhood search
with ejection chains for the antibandwidth problem. Journal of Heuristics 18(6)
(2012) 919–938

23. Scott, J., Hu, Y.: Level-based heuristics and hill climbing for the antibandwidth
maximization problem. Numerical Linear Algebra with Applications 21(1) (2014)
51–67

24. Akker, van den, J.: LP-based solution methods for single-machine scheduling prob-
lems. PhD thesis, Technische Universiteit Eindhoven - Department of Mathematics
and Computer Science (1994)

25. Boland, N., Kalinowski, T., Waterer, H., Zheng, L.: Mixed integer programming
based maintenance scheduling for the hunter valley coal chain. Journal of Schedul-
ing 16(6) (2013) 649–659

26. Maravelias, C.T.: On the combinatorial structure of discrete-time MIP formula-
tions for chemical production scheduling. Computers & Chemical Engineering 38
(2012) 204–212

27. Burke, E.K., Causmaecker, P.D., Berghe, G.V., Landeghem, H.V.: The state of
the art of nurse rostering. J. Scheduling 7(6) (2004) 441–499

28. Ernst, A.T., Jiang, H., Krishnamoorthy, M., Sier, D.: Staff scheduling and roster-
ing: A review of applications, methods and models. European Journal of Opera-
tional Research 153(1) (2004) 3–27

29. Dincbas, M., Simonis, H., Hentenryck, P.V.: Solving the car-sequencing problem
in constraint logic programming. In Kodratoff, Y., ed.: 8th European Conference
on Artificial Intelligence, ECAI 1988, Munich, Germany, August 1-5, 1988, Pro-
ceedings, Pitmann Publishing, London (1988) 290–295

30. Solnon, C., Cung, V., Nguyen, A., Artigues, C.: The car sequencing prob-
lem: Overview of state-of-the-art methods and industrial case-study of the
ROADEF’2005 challenge problem. European Journal of Operational Research
191(3) (2008) 912–927

31. Prestwich, S.D.: CNF encodings. In Biere, A., Heule, M., van Maaren, H., Walsh,
T., eds.: Handbook of Satisfiability. Volume 185 of Frontiers in Artificial Intelli-
gence and Applications. IOS Press (2009) 75–97

32. Chen, J.: A new sat encoding of the at-most-one constraint. Proc. Constraint
Modelling and Reformulation (2010)

33. Manthey, N., Heule, M., Biere, A.: Automated reencoding of boolean formulas. In
Biere, A., Nahir, A., Vos, T.E.J., eds.: Hardware and Software: Verification and
Testing - 8th International Haifa Verification Conference, HVC 2012, Haifa, Israel,
November 6-8, 2012. Revised Selected Papers. Volume 7857 of LNCS., Springer
(2012) 102–117

34. Hölldobler, S., Nguyen, V.H.: On SAT-Encodings of the at-most-one constraint.
In Katsirelos, G., Quimper, C.G., eds.: Proc. The Twelfth International Workshop

on Constraint Modelling and Reformulation, Uppsala, Sweden, September 16-20.
(2013) 1–17

35. Knuth, D.E.: The Art of Computer Programming, Volume 4B, Fascicle 6: Satisfi-
ability. Addison-Wesley (2015)

36. Nguyen, V.: SAT encodings of finite-csp domains: A survey. In: Proceedings of the
Eighth International Symposium on Information and Communication Technology,
Nha Trang City, Viet Nam, December 7-8, 2017, ACM (2017) 84–91

37. Sinz, C.: Towards an optimal CNF encoding of boolean cardinality constraints.
In van Beek, P., ed.: Principles and Practice of Constraint Programming - CP
2005, 11th International Conference, CP 2005, Sitges, Spain, October 1-5, 2005,
Proceedings. Volume 3709 of LNCS., Springer (2005) 827–831

38. Liffiton, M.H., Maglalang, J.C.: A cardinality solver: More expressive constraints
for free - (poster presentation). In Cimatti, A., Sebastiani, R., eds.: Theory and
Applications of Satisfiability Testing - SAT 2012 - 15th International Conference,
Trento, Italy, June 17-20, 2012. Proceedings. Volume 7317 of LNCS., Springer
(2012) 485–486

39. Biere, A., Berre, D.L., Lonca, E., Manthey, N.: Detecting cardinality constraints in
CNF. In Sinz, C., Egly, U., eds.: Theory and Applications of Satisfiability Testing
- SAT 2014 - 17th International Conference, Held as Part of the Vienna Summer
of Logic, VSL 2014, Vienna, Austria, July 14-17, 2014. Proceedings. Volume 8561
of LNCS., Springer (2014) 285–301

40. Roussel, O., Manquinho, V.M.: Pseudo-boolean and cardinality constraints. In
Biere, A., Heule, M., van Maaren, H., Walsh, T., eds.: Handbook of Satisfiability.
Volume 185 of Frontiers in Artificial Intelligence and Applications. IOS Press
(2009) 695–733

41. Eén, N., Sörensson, N.: Translating pseudo-boolean constraints into SAT. JSAT
2(1-4) (2006) 1–26

42. Ab́ıo, I., Nieuwenhuis, R., Oliveras, A., Rodŕıguez-Carbonell, E., Mayer-
Eichberger, V.: A new look at BDDs for pseudo-boolean constraints. J. Artif.
Intell. Res. 45 (2012) 443–480

43. Philipp, T., Steinke, P.: PBLib - A library for encoding pseudo-boolean constraints
into CNF. In Heule, M., Weaver, S.A., eds.: Theory and Applications of Satisfi-
ability Testing - SAT 2015 - 18th International Conference, Austin, TX, USA,
September 24-27, 2015, Proceedings. Volume 9340 of LNCS., Springer (2015) 9–16

44. Feydy, T., Stuckey, P.J.: Lazy clause generation reengineered. In Gent, I.P., ed.:
Principles and Practice of Constraint Programming - CP 2009, 15th International
Conference, CP 2009, Lisbon, Portugal, September 20-24, 2009, Proceedings. Vol-
ume 5732 of LNCS., Springer (2009) 352–366

45. Ab́ıo, I., Gange, G., Mayer-Eichberger, V., Stuckey, P.J.: On CNF encodings of
decision diagrams. In Quimper, C., ed.: Integration of AI and OR Techniques in
Constraint Programming - 13th International Conference, CPAIOR 2016, Banff,
AB, Canada, May 29 - June 1, 2016, Proceedings. Volume 9676 of LNCS., Springer
(2016) 1–17

46. Bryant, R.E.: Graph-based algorithms for boolean function manipulation. IEEE
Trans. Computers 35(8) (1986) 677–691

47. Bryant, R.E.: Binary decision diagrams. In Clarke, E.M., Henzinger, T.A., Veith,
H., Bloem, R., eds.: Handbook of Model Checking. Springer (2018) 191–217

48. Gent, I.P.: Arc consistency in SAT. In van Harmelen, F., ed.: Proceedings of the
15th Eureopean Conference on Artificial Intelligence, ECAI’2002, Lyon, France,
July 2002, IOS Press (2002) 121–125

49. Bacchus, F.: GAC via unit propagation. In Bessiere, C., ed.: Principles and Practice
of Constraint Programming - CP 2007, 13th International Conference, CP 2007,
Providence, RI, USA, September 23-27, 2007, Proceedings. Volume 4741 of LNCS.,
Springer (2007) 133–147

50. Rodriguez-Tello, E., Romero-Monsivais, H., Ramrez-Torres, J., Lardeux, F.:
Harwell-Boeing graphs for the CB problem. https://www.researchgate.net/
publication/272022702 Harwell-Boeing graphs for the CB problem (2015)

51. Biere, A.: CaDiCaL at the SAT Race 2019. In Heule, M., Järvisalo, M., Suda,
M., eds.: Proc. of SAT Race 2019 – Solver and Benchmark Descriptions. Volume
B-2019-1 of Department of Computer Science Series of Publications B., University
of Helsinki (2019) 8–9

52. Stuckey, P.J.: Lazy clause generation: Combining the power of SAT and CP (and
MIP?) solving. In Lodi, A., Milano, M., Toth, P., eds.: Integration of AI and OR
Techniques in Constraint Programming for Combinatorial Optimization Problems,
7th International Conference, CPAIOR 2010, Bologna, Italy, June 14-18, 2010.
Proceedings. Volume 6140 of LNCS., Springer (2010) 5–9

53. Nethercote, N., Stuckey, P.J., Becket, R., Brand, S., Duck, G.J., Tack, G.: MiniZ-
inc: Towards a standard CP modelling language. In Bessiere, C., ed.: Principles
and Practice of Constraint Programming - CP 2007, 13th International Confer-
ence, CP 2007, Providence, RI, USA, September 23-27, 2007, Proceedings. Volume
4741 of LNCS., Springer (2007) 529–543

54. Bergman, D., Ciré, A.A., van Hoeve, W., Hooker, J.N.: Decision Diagrams for Op-
timization. Artificial Intelligence: Foundations, Theory, and Algorithms. Springer
(2016)

	Duplex Encoding of Staircase At-Most-One Constraints for the Antibandwidth Problem

