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Abstract—We describe our two SAT solvers that enter the
EDA Challenge 2021. While Kissat is virtually identitical to
the version submitted to the SAT Competition 2021, our fully
verified solver IsaSAT never entered any competition so far and
has changed significantly since it was described.

Index Terms—Kissat, IsaSAT, verified SAT solver, SAT
solver

I. IsaSAT
IsaSAT [1] is a fully verified SAT solver using the

proof assistant Isabelle. Compared to the last described
version [1], [2], we generate LLVM code instead of Stan-
dard ML (Sect. I-A). To accomodate this change, the
solver can also generate unknown (Sect. I-B), although the
correctness does not really change. The refinement goes
from an nondeterministic abstract CDCL presentation
down to deterministic code with heuristic. We added rules
to our CDCL formalization to represent simplification with
unit clauses (Sect. I-C). We also added new heuristics
(Sect. I-D).

A. Code Generation to LLVM
The last step of the refinement in Isabelle to generate

IsaSAT is the automatic synthesis of imperative code by
the Isabelle Refinement Framework; i.e., lists are replaced
by (modifiable) arrays. After the imperative code has
be generated, we use the standard code generator to
export the imperative code to Haskell, OCaml, Scala,
and Standard ML. However, the compiler MLton [3] offers
significantly better performance than any other compiler
we tried. The code generator that translate the concrete
code to executable code is simple enough to be trusted.
We have now changed the synthesis and the code

generator to use Lammich’s new refinement framework
targetting Isabelle/LLVM [4]. The concrete code is now
in language very similar to the intermediate representation
used by the LLVM compiler [5] (used by, e.g., clang) and
the code generation is now trivial pretty-printing. While
we did not maintain compatibility with the other code
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generator,1 the generated was twice as fast and we could
remove some of the memory tricks we had to use to keep
the memory representation compact enough: the structure
used to watch clauses {uint32_t blit; clause*; bool binary}
has size 64 bit and not 128 bit like in Standard ML (where
we merged the blit and binary into a single 64-bit integer
to reduce the size down to 64 bit, requiring more Isabelle
theorems).
Around the verified code, we have a C wrapper that

parses the input file and options to simplify experiment-
ing with the solver. One limitation is that the calling
convention of pointer is not the same in C code and
the verified code itself. It is problematic to pass pointers
(like the full model) from the verified code back to the
wrapper for printing. We solve this by replacing a verified
function doing nothing by a printing function (written in
the wrapper). A similar trick is used to print information
during the search – the output is optional and deactivated
in the wrapper for the competition, however.

B. Correctness
We verify the following theorem on our SAT solver:
Theorem 1 (IsaSAT Correctness): The solver termi-

nates. If the answer is not unknown, then the returned
answer (SAT with a model or UNSAT) is correct.
Unlike our previous version, IsaSAT is not complete

anymore. Although no proof is provided, incompleteness
happens if: (i) more than 264 clauses (the maximum of
the type uint64) are learned (including the reasons on
the trail); or (ii) the length of the memory region (arena)
used to represent clauses is larger than 263−(216+4) (the
maximum of the type int64 minus the maximum size of
the next clause to learn). The latter condition corresponds
to keeping more than 247 clauses and is unlikely to trigger
on any practical system in any reasonnable time frame.
Even if our previous version was complete from the point
of view of Isabelle, the code generator assumes that an
arbitrary large array can be allocated and accessed using
GMP integers. This does do not hold on any compiler we
are aware of and hence, the practical correctness of the

1For technical (Isabelle related) reasons, this would have been very
time consumming.
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executed code is the same, even if the Isabelle theorem is
weaker.
We made two major changes to our refinement ap-

proach, but the main difference is that instead of trusting
the code translation to Standard ML, now only pretty-
printing is trusted.

C. Pragmatic CDCL
Our old version implements a basic version of CDCL

with restart and forget. One strong limitation is that we
cannot remove clauses that contain a literals know to be
unconditionnaly true or remove literals that are uncondi-
tionnaly false. This is important for various problems that
generate many true literals.
To alleviate we introduced a new calculus called prag-

matic CDCL. This calculus extends CDCL with abstract
inprocessing transformations. Introducing this new cal-
culus required changing our refinement approach: the
calculus reuses our results on CDCL (like termination and
completeness) but extended by expressing transformations
that cannot be expressed otherwise.
Before any of these transformation is applied, they have

to be refined down to concrete executable code. So far only
simplification of literals set on level 0 has been refined
down to executable code, but more inprocessing can be
implemented (in particular subsumption and subsumption
are a special case of the rules defined in our pragmatic
CDCL).

D. Heuristics
We have implemented several new heuristics that are

part of many SAT solvers including target phases and
rephasing [6] (excluding random walk to improve models)
and the alternation between focus and search mode.

II. Kissat
We basically submitted the exact same version of

Kissat [7] also submitted to the SAT Competition 2021
with the new sweeping technique that does not include the

(rare) incorrect proofs generated by the default version.
For a more detailed list of novelties, please read the system
description from the SAT Competition [8].
While our solver IsaSAT offers the highest level of

trust that is possible (without checking the proof), the
performance is significantly worse than Kissat because no
inprocessing is included. Unless you require the extra trust
(or cannot afford proof checking), we recommend using
another SAT solver, like Kissat.
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