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Abstract. We present a novel symbolic bounded model checking ap-
proach to test reachability properties of model-driven implementations
of software. Given a concrete initial state of a software system, a type
graph and, respectively, a set of graph transformations describing the
system’s structure and, respectively, behavior, the reachability properties
are expressed in terms of graph constraints. Without any user interven-
tion, our approach exploits state-of-the-art model checking technologies
successfully used in hardware industry. The efficiency of our approach is
demonstrated in two case studies.

1 Introduction

The growing demand for more sophisticated functionality considerably increases
the complexity of state-of-the-art software and the complexity of today’s software
development [2[T2[20]. With the rise in complexity, more defects tend to get
introduced into the code [32]. To counter this challenge, graphical and textual
modeling languages, like the Unified Modeling Language (UML) [22], began to
permeate the modern software development process. The motivation of lifting
models to first-class development artifacts is twofold: first, models abstract away
irrelevant details and, second, they express ideas and solutions in the language
of the problem domain offering a focused view to the developers.

In the context of the model-driven engineering (MDE) paradigm, model trans-
formations play a pivotal role [I0/27] when rewriting the models, e.g., to generate
executable code or to perform refactorings, or when specifying the behavior of
models. Unfortunately, software development based on models and model trans-
formations is not immune to defects. In fact, errors introduced at the modeling
layer might propagate to the executable code and might be hard to detect. Baurry
et al. [5] emphasize that model transformations show characteristics that lead to
challenging barriers to systematic testing. One particular problem encountered
when testing is the complexity of the resulting output models whose correctness
cannot be easily validated. A natural solution is a constructive approach where
first the models are constructed by executing the model transformation and then
checking constraints the output model has to satisfy. If the model transformation
contains errors, however, this approach does not provide any debugging support,



because the intermediate models are not considered and hence the defect might
be hard to trace. Also, the testing is usually non-exhaustive and model transfor-
mations are often applied nondeterministically. As a consequence, defects might
be overseen. A solution is the lightweight, i.e., depth-bounded, integration of
verification approaches like model checking into the testing process. In model
checking, a specification is tested against the system and, in case a violation is
found, an error trace is returned. Model checking is successfully used to verify
hardware systems; for software, however, there are still many challenges that have
to be overcome. Models and model transformations miss many of the features that
make software model checking difficult and, thus, model checking is a promising
technique to overcome the barriers of testing model transformations.

In this paper, we propose a lightweight verification approach based on sym-
bolic model checking for testing the correctness of graph transformations. It
is “lightweight” in the sense that it only allows to verify systems up to a user-
defined object count. Among the multitude of available model transformation
languages, we choose graph transformations [13J24], which offer a formal and con-
cise language to describe modifications on graphs and, hence, on models. Graph
transformations can be shown to be Turing complete [19] and, therefore, they
are as expressive as any other conventional programming language. Any software
system may thus formally be described by a graph transformation system (GTS).
In contrast to previous work, we present a symbolic model checking approach
in this paper. For the symbolic encoding of graph transformation systems we
employ relational logic because of (a) the high resemblance between sentences of
relational logic, on the one hand, and graphs and graph transformations on the
other hand, and (b) the tool support available to convert bounded, first-order
relational logic into propositional logic [30]. We thus describe the execution
semantics of graph transformation systems by means of bounded, first-order
relational logic. On this basis we construct a relational transition system (RTS)
which is then automatically checked by state-of-the-art hardware model checkers.

This paper is structured as follows. We start with presenting the running
example in Section 2] Then we introduce the required preliminaries in Section [3]
and review related approaches in Section [4] In Section [5] we show how our
approach works and discuss our symbolic model checking encoding. In Section [f]
we outline the relational semantics of graph transformations in depth. Then we
present the results of two case studies in Section [7]and summarize our results
with an outlook on future work in Section [8l

2 Running Example
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Fig.2: Graph Transformations for the Dining Philosophers in HENSHIN

states: thinking, hungry, and eating. Once they finish eating they go back into
thinking. Each philosopher requires two forks to start eating. These forks, however,
are shared with the philosophers sitting to the philosopher’s left and right.

The static structure of the DP problem’s graph transformation system is
given in terms of the metamodel shown in Figure [I The behavior of each
philosopher is defined by four graph transformations depicted in Figure[2] The Get
Hungry transformation rewrites the philosopher’s state attribute to transition
from state thinking to state hungry. A hungry philosopher needs to eat and
attempts to acquire a left fork first; this is achieved by applying the Get Left Fork
transformation that establishes a hold reference between a hungry philosopher
and her left fork. The negative application conditions (NAC), forbid#1 and
forbid#2, ensure that a holds reference my only be established to those forks not
held by the philosopher herself (forbid#1) or any other philosopher (forbid#2).
Once a philosopher holds the left fork, the Get Right Fork & Fat transformation
picks up the appropriate right fork and changes the philosopher’s state from
hungry to eating. Again, the NACs forbid#1 and forbid#2 prohibit forks from
being picked up if held by a philosopher. If a philosopher is done eating, the
Release Forks transformation puts back the forks on the table and switches the
philosopher’s state to thinking again.

3 Preliminaries

Graph Transformations. Graphs and graph transformations are a popular choice
to formally describe models and model transformations. For this purpose the
theory of graph transformations has been extended to support rewriting of



problem := univ relation* formula P: problem — binding — boolean
R: relation — binding — boolean
M: formula — binding — boolean
E: expr — binding — constant

univ := {obj[, obj]*}
relation := rel.arity [(lower,)? upper]

varDecl := rel : expr binding: rel — constant

lower := constant PlU r1...7m FIb=R[r]b A - A R[ra]b A M[F]b
upper := constant

constant := {tuple*} R[r : [L]]b =R[r : [L,L]]b

tuple := {objl[, obj]*) Rfr : [L,U][b=Lcb(r)cU

arity := N M[p € q]b = E[p]b € E[q]b

obj := ID M[—-F]b = =M[F]b

rel := ID M[F op G]b = M[F]b op M[G]b where op = {A, v}

M[Vv:p|F]b = /\weE[[pIIb M[F](b®[v — z])

expr := rel | unary | binary | comprehension ) B
unary := expr unop MBwv:p|F]b = vweE[[pJ]b MIF](b®[v — =])
unop := T | 7! E[p op q]b = E[p]b op E[q]b where op = {u, n,\}
binary := expr binop expr Elp.q]b={{p1,- -, Pn-1,92, -+, Am) |
binop:=u | n|\]|.] x {p1,.--,pPny € E[p]b A<a1,...,am) € E[q]b
comprehension := {varDecl | formula} APn = d1}
formula := atomic | composite | quantified Elp x b = {1, Pr, 1,5 dn) |
atomic := expr C expr (P1,--- pn) € ElpIb A dat, - -, an) € Efa]b}
composite := —formula | formula logop formula E[[er Ib = {¢p2,p1) | {P1,p2) € E[p]b}
logop = A | v E[p*]b = {z, ) | 3p1,- .-, pnl

N . - E[p]b}
quantified := quantifier varDecl | formula (z,p1), (P1, P2, ,(Pn,y) €

fer 1 E[{v:p|F}]b = {z € E[p]b | M[F](b®[v — z])}
quantifier := V | 3

E[r]b = b(r)
(a) Syntax (b) Semantics

Fig. 3: Syntax and semantics of relational logic [30]

attributed, typed graphs with inheritance and part-of relations [6]. In the following,
we summarize the concepts relevant for this work. For details see [24JT3]. A graph
G = (Vg,Eq) consists of a set Vg of nodes, a set Eg of edges. Further, we
define a source and a target function, src : Eq — Vg and tgt : Eq — Vg, that
map edges to their source and target vertices. A morphism m : G — H is a
structure preserving mapping between graphs G and H. A double pushout graph
transformation p : L «— K — R, with morphisms [ : K — L and r : K — R,
describes how the left-hand side (LHS) graph L is transformed into the right-
hand side (RHS) graph R via an interface graph K. A graph transformation
p: L « K — R is applied to a host graph G if there exists a morphism
m : L — G, called a match, that maps the LHS graph L into the host graph G.
The application of transformation p at match m rewrites graph G to the result
graph H. A transformation p preserves those nodes and edges that are both in
the domain of morphisms [ and r, while it deletes those nodes and edges in L
that are not in the co-domain of [ and creates those nodes and edges in R that
are not in the co-domain of r.

Relational Logic. Bounded, first-order relational logi(ﬂ extends propositional
logic with relational variables of a given arity, a finite universe of objects, and

3 Our presentation of the logic follows the one presented for ALLOY [I5] and Kob-
KOD [30] that in turn are based on Tarski’s exposition of the relational calculus [28].



quantifiers. Fach relational variable is assigned an upper bound and, optionally,
a lower bound, which are sets of tuples over the set of objects in the universe.
Syntax and semantics is provided in Figure[3] A relational problem P in bounded,
first-order relational logic is a tuple (Rel, F', U, ar, m, 1) consisting of

a set Rel of relations,

a relational formula F,

a finite universe of discourse U, i.e., a set of uninterpreted objects,

a map ar : Rel — N that assigns an arity to each relational variable r € Rel,
maps m : Rel - P(U™) and 1 : Rel — P(U™) that define n-ary lower and
upper bounds for relations.

U e

A relational constant is a set of n-ary tuples including the empty set. The set of
relational expressions is recursively defined as the smallest set consisting of the
empty set and the set of all atoms, i.e., the universe U, the relations r € Rel, and
all expressions resulting from applying either (i) a unary operator like transitive
closure (*) or transposition (1) to another expression or (ii) a binary operator,
union (V), intersection (N), join (.), difference (\), or product (x), to the former
and another expression (see Fig. [3). The evaluation of an expression yields a
set of tuples over U. An atomic relational formula is a sentence constructed
over two relational expressions connected by the subset < operator. Formulas
can be quantified and composed into composite formulas using the usual logical
connectives, and (A), or (v), and not (—). A model of a relational problem is
an assignment, i.e., a binding, of tuples to relational variables such that (1) the
assigned tuples lie within the lower and upper bounds of the relational variable
and (2) the formula evaluates to true. Note that our treatment of relational logic
is untyped; admissible bindings to relations are solely defined by their lower and
their upper bounds. Further note, that the logic also supports reasoning over
bit-vectors that represent integer values.

A relational transition system (RTS) extends the a relational problem by a
set Rel' of next state relational variables, an initial binding ¢ for the relational
variables in Rel, and a relational formula g.

Definition 1. A bounded, first-order relational transition system S is a tuple
(Rel,Rel', T, U,ar,m,u,t,g) that consists of

1. a set Rel of unary and binary relational variables,

2. a set Rel'={r'|r € Rel} of next state relational variables,

3. a transition relation T, i.e., a conjunction of first-order relational formulas

over Rel U Rel',

a finite universe of discourse U,

a map ar : Rel U Rel' — N that assigns an arity to each relational variable

r € Rel U Rel',

an initial binding ¢ that represents the initial state of the transition system,

7. a lower and an upper bound map m : (Rel) — P(U™) and U : (Rel U Rel') —
P(U™), and

8. a relational formula g that represents either a desired or an undesired state.

Sila
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A state in an RTS is a binding b of a set of tuples to each relational variable
r € Rel. A trace is a finite sequence of states bgby ...b, with ¢ = by such that

PlUry...rpry...rl true]bo AP[Ury...rpryc..rl, T]boub) A -+ A
PlUry...rpry .., T]bp1ub, AP[Ur...7077 ... 70 g by,

where b},0 < ¢ < n, is equivalent to binding b; but applied to the next state
relational variables in Rel’, is satisfied.

4 Related Work

Model checking [9] on which we base the approach presented in this paper
is technique which has found several applications in the validation of GTSs.
CHECKVML [26]31] verifies the behavior of a system that is defined by UML-like
class diagrams, internally represented as an attributed type graph with inheritance
relations, and a set of graph transformations. Together with a user-defined initial
state, CHECKVML encodes the resulting GT'S and a set of reachability properties
into PROMELA, the input language of the model checker SPIN. A similar approach
is proposed in [3], where the encoding of the GT'S produces code for the model
checker BOCGOR [23]. In [4], the authors also present an encoding that allows to
analyze graph transformations specified in AcG [25] with the ALLOY analyzer [16].
GROOVE [I8] verifies the behavioral correctness of an object-oriented system
represented by an attributed type graph with inheritance relations. It implements
its own model checker that enumerates the entire state space before checking the
user-specified safety or liveness properties. Similar to GROOVE, the model checker
MocOCL [7] enumerates the state space explicitly but in an iterative manner.
It employs the HENSHIN API [I] to construct the state space and is capable of
verifying safety and liveness properties that are expressed in a temporal extension
of OCL. In this paper, we present a symbolic approach, i.e., we represent the
state space by a logical formula.

5 Architecture

Our symbolic model checking approach tests a model-driven implementation of
a software system against a reachability properties, called a goal state, up to a
certain boundE| Here, a model-driven implementation of a system consists of

(a) an EMFﬂ model M that describes the static structure of the system and
(b) a set R of graph transformations that describes the system’s execution
behavior.

4 Formally, a goal state ¢ is a temporal reachability property EF . Note that by
duality, we can also assert a system safe from reaching a bad state s = —p by proving
— unreachable.

® Eclipse Modeling Framework (EMF): leclipse.org/modeling/emf/
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For the verification our tool expects in addition the following components:

(¢) an instance model M, of M that describes the initial state of the system,

(d) a graph constraint g, i.e., the goal states, that represents the reachability
property, and

(e) an object bound map I' : Vr — N that defines the maximal number of objects
per class in instances of M.

Internally, the EMF model M is represented as an attributed type graph Gr =
(Vr, Er) with inheritance and containment edges [6], whose vertices Vi represent
the classes and whose edges Er represent the references and the attributes of
the system. Attribute types and values, however, are restricted to integers Int,
Booleans Bool, and user-defined enumerations Fnum. The initial state M, is
a typed graph Gy = (Viy, Eny) with a type morphism type: Gy — Gr that
maps “objects” v € Vi to their types t € V. A goal state is modeled as a
graph constraint [I3], which describes a desired or an undesired pattern that is
matched against an instance of M. Note that due to the use of double pushout
graph transformations, which are free of side effects, we can straightforwardly
derive all relational frame conditions for the RTS (cf. [21]). Next observe that
the semantics of bounded, first-order relational logic is defined by propositional
logic [29]. By applying these semantic definitions to the previously constructed
RTS we construct a sequential circuit, or more specifically, an and-inverter graph
(AIG), which is, roughly speaking, a Boolean circuit that uses only AND and
NOT gates. We store the resulting AIG together with the reachability properties
that we want to verify in the AIGER file format, which is the standardized input
format of all model checkers that compete in the Hardware Model Checking
Competition. By storing the GTS in an AIGER file, we are not limited to a
specific model checker and we can directly exploit the most recent developments
in hardware model checking like the successfull IC3 algorithm [g].

In the following we give a high-level description of the workflow that generates
in three steps from a model-driven implementation, first, a symbolic, relational
transition system (RTS), second, a propositional formula by instantiating the
first-order quantifiers in the transition relation of the RTS, and third, an and-
inverter graph (AIG) by rewriting the propositional formula (see Fig. [4). In
particular, the emf2fol component first extracts unary and binary relational
variables for each class and reference in M, respectively. It then constructs the
universe U from the object bound map I'. Next, it assigns appropriate upper
bounds, i.e., sets of atoms from U, to each relational variable. Finally, it extracts
the initial state of the RTS from M,. The gt2fol component generates from
the set of graph transformations the transition relation T as a conjunction of
existentially quantified relational logic formulas and from the graph constraint the
goal state g. Next, the fol2bool component uses the KODKOD API to instantiateﬁ
the bounded, first-order relational formulas of the transition relation and the goal
state into Boolean functions, i.e., propositional formulas. The resulting Boolean

5 Note that we do not use KopkoD’s model finding capabilities but only use it to
translate relational logic formulas into propositional formulas.
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Fig. 4: Workflow of our symbolic model checking approach. Grayed components indicate
external tools.

functions are rewritten into an AIG by the bool2aig component and stored in
the AIGER format, which is readable by any model checker participating in the
Hardware Model Checking Competition. Next, a model checker mc is used to
verify the AIG. In case the model checker determines that a desired or undesired
state is reachable it reports the result to the user together with a witness that may
be used to re-construct a trace of the RTS. Otherwise, it returns “unreachable”.

6 Encodings

In the following we detail the workings of emf2fol and gt2fol. Here, we denote
the set of all relational formulas by F and we define the set A of atoms by
A=A{(Ci) | CeVr,ieNtu{(j)|jeZ}

Relational Variables, Universe, Bounds, and Initial State. The emf2fol compo-
nent uses the function relgen : Vr U Ep — Rel to generate for each class C' in
Vr a unary relational variable C and likewise for each enumeration F in Enum a
unary relational variable E. For each attribute attr € Er the translation generates
a binary relational variable C__attr and for each reference ref € Ep from a source
class C to a target class D it creates a binary relational variable C_ ref. Moreover,
relational variables Int and Bool are generated for the primitive types Int and
Bool if necessary.

The universe U consists of a sequence of uninterpreted atoms, which is derived
from the object bound map I" and the initial model M, such that for every object
in M, there exists a corresponding atom in U.

The function u : Rel — P(A) assigns to each relational variable r € Rel
an upper bound. Given a unary relational variable C = relgen(C),C € Vr
the upper bound is defined by L(C) = {(C;) | 0 < ¢ < I'(C)}. The upper
bound of a relational variable for an attribute C__attr is constructed from the



product of the upper bounds of class C' and the domain of the attribute, i.e.,
u(C_attr) = u(C) x u(D), where D € {Int, Bool, Ey, ..., E,}. Likewise, the upper
bound of a relational variable for reference is constructed from the product of
the source and the target class’s upper bounds, i.e., L(C_ref) = 1(C) x u(D)
with source class C' and target class D. Note that the the inheritance hierarchy is
reflected by a relational variable’s bounds. Let S(C') denote the set of all subclasses
of class C. The upper bound of C' is then defined as above plus the union of all
upper bounds of its subclasses, i.e., u(C) = {(C;) | 0 < < I'(C)}uUgeg(cy L(5)-

Finally, the initial state map ¢ : Rel — P(A™) assigns sets of n-ary tuples
to n-ary relational variables and it is derived from the initial model M,. Let
atom : Vyr v Epp — A be a function that maps an object v € Vjy, an object
reference or an attribute e € Fj; to an atom in A, then, ¢ is defined as follows.

{atom(v) | v € Vi, type(v) = C} if ICeVr. relgen(C) =r
{(atom(v), atom(a)) | a € Eyr,
u(r) = type(a) = attr, srcpr(a) = v}
{(atom(v), atom(e)) | e € Epy,
type(e) = ref, srcpr(e) = v}

if 3 attre Ep. relgen(attr) =r

if 3refe Ex. relgen(ref) =r

Ezample. For the Dining Philosophers problem (see Sec. [2)) emf2fol generates
unary relational variables Table, Philosopher, Fork, and PhilState. As enumerations
are mapped onto integers, emf2fol automatically infers the necessary bitwidth
of 2 to represent the three literals thinking, hungry, and eating of enumeration
PhilState, which are mapped to —2, —1, and 0, respectively. Further, binary
relational variables are generated for each attribute and reference, e.g., for
reference forks in class Table the relational variable Table_forks is generated.
Note that we instruct emf2fol to omit relational variables for the id fields
because they solely exist to aid the manual construction of instance models.
Table [I] lists all generated relational variables and their upper bounds for the
Dining Philosophers problem.

Given the object bound map I' = {(Table, 1), (Philosopher,?2), (Fork,2)}
emf2fol derives the universe U = {Table;, Philosopher;, Philosophers, Fork;
Forkg,—2,...,1}. Next, upper bounds are assigned to each of the generated
relational variables. For example, the relation variable Philosopher is assigned
the upper bound L(Philosopher = {(Philosophery), (Philosophers)}. The upper
bound of the Philosopher__right relational variable is defined as

ui(Philosopher_ right) = s (Philosopher) x wi(Fork)
={(Philosopher;, Fork; ), (Philosopher;, Forks)
(Philosophers, Fork;), (Philosophers, Forks)}.



Class Variable Upper Bound
Table Table {(Table;)}

philosophers Table__philosophers {(Table;, Philosopher;),
(Table;, Philosopherz)}
forks Table_ forks {(Table;, Fork;), (Table;, Forks)}
Philosopher  Philosopher {(Philosopher; ), (Philosophers)}
right Philosopher__right {(Philosopher;, Fork;),
(Philosopher;, Forks),
(Philosophers, Forky ),
(Philosophers, Forks)}
left Philosopher__left  {(Philosopher;, Fork:), ...,
(Philosophers, Forks)}
holds Philosopher__holds {(Philosopher;, Fork:), ...,
(Philosophers, FO’/'kg)}
state Philosopher__state {(Philosopher;,—2), ..., (Philosopher;, 0),
(Philosopherg, —2), ..., (Philosophers, 0)}
Fork Fork {(Fork;), (Forkz)}
PhilState PhilState {(=2),(-1),(0)}
Int Int {(=2), (= 1), (0), (1)}

Table 1: Generated variables and bounds for the Dining Philosophers problem.

The initial state map for two dining philosophers is defined by the graph

v = {(Table, {(Table;)}), (Philosopher, {( Philosopher; ), (Philosophers)}),
(Fork, {(Fork; ), (Forks)}), (Table_philosophers, {( Table;, Philosopher; ),
(Tabley, Philosophers)}), (Table_forks, {( Table;, Fork;), (Table;, Forks)}),
(Philosopher__state, {( Philosopher;, —2), (Philosophers, —2)}), ... }.

Graph Transformations. Formally, gt2fol translates a graph transformation into
a first-order, relational formula as follows. Given sets Rel and Rel’ of current and
next state relational variables generated for a (meta-)model M as described above,
from each (double pushout) graph transformation p : Cond < Lhs — Rhs, where
the application condition Cond can consist of positive application conditions
(Pac) and/or negative application conditions (Nac), a formula

F, := Pre(Lhs, Pac, Nac, Rhs) = Post(Lhs, Rhs) (1)

is derived where Pre: G x G x G x G — F is a function that generates from a
quadruple of graphs a conjunction of relational formulas f € F that mimic the
match conditions of the transformation’s LHS. Function Post : G x G — F, on
the other hand, generates a conjunction of relational formulas from a pair of
graphs, i.e., the LHS and RH S, that mimic the effects of the transformation’s
RHS. Here, the set G of graphs is typed by 1" € M.

Function Pre generates the following conjuncts from the transformation’s
LHS. For each node obj~ of class C' in the LHS we allocate a fresh, existentially
quantified node variable ¢ whose domain is bound by relational variable C that
was generated for class C'. This yields the relational formula 3¢ : C. If 0bj~ of class



LHS/RHS element Formula

o Object ce C Jc: C

% Reference ref with (c—d) < C_ref
& sre(ref) = ce C,

E tgt(ref) =de D

% Attribute attr with (c—ezpr(e)) < C_attr
8 sre(attr) = ce C,

A expression e

© Object ce C —dc: C

',g Reference ref same as above
& Attribute attr same as above
2 Object ce C Jc:C'AcEC

§ Reference ref
O Attribute attr —
Table 2: Relational formulas generated by function Pre

C' has a reference ref to a target object objp of D and under the assumption that
(relational) node variables ¢, d have been allocated for obj and obj,, and relation
C_ref., was generated for reference ref, then the condition (c—d) = C_ref is
generated where (c—d) denotes the product of the tuples bound to ¢ and d.

If an attribute attr of obj. is assigned an expression e, then Pre generates
formula (c— expr(e)) € C_attr where function expr : Int U Bool U Enum —
Rexpr converts an integer, Boolean, or enumeration expression into a relational
expression. This expression describes an additional constraint that a matching
subgraph must satisfy. Thus, we generate a condition that requires the attribute
value of the object that is bound to ¢ to evaluate to the same value as exzpr(e).
For an overview of the conditions generated by Pre see Table

If the graph transformation contains PAC patterns, they are translated into
formulas of relational logic like the LHS pattern because they, too, demand the
existence of nodes, edges, or matching attribute expressions. Thus, the translation
of LHS and PAC patterns follow the same procedure as described above.

Negative application conditions, in contrast to LHS and PAC patterns, de-
scribe forbidden patterns that must not be satisfied by any matching subgraph.
As such we generate equivalent relational formulas as for the LHS, but negate
them such that the formula —3n : N is generated assuming that node variable n
was allocated for a NAC object objy. Note that none of the conditions generated
for references and attributes in the NAC graph need to be negated and are thus
equivalent to those generated for the LHS graph.

Finally, the injectivity and the dangling edge conditions, generated by Pre, are
necessary to faithfully translate the graph modifying instructions into relational
logic. The injectivity condition ensures that all elements of the LHS, the NACs,
and the PACs are mapped to exactly one element in a matching host graph and
each variable must be bound to a distinct object of the universe. The generated
injectivity condition performs a pairwise test of inequality on all variables bound
by the same expression. For example, given variables c1,c2, both of which are
bound by C, the condition —(cl = c2) is generated to ensure that cl and c2 are
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Fig. 5: Dangling edge example

assigned to two different objects. The second condition ensures that no dangling
edges are left behind after deleting nodes from the graph. This implies that all
possible references to and from a node that is scheduled for deletion need to be
deleted explicitly. We translate this requirement into a condition that checks
whether the set of all possible references from and to an object that is scheduled
for deletion coincides with the set of actually deleted references. For example, in
Figure @ object objp, an instance of class D, is deleted together with references
coming from two objects, objs; and obje 5, and one reference to object objg.
Class D may have references coming from objects of class C' and references to
object of class E. In the following we assume that the translation generates unary
relational variables C, D, and E for classes C', D, and E, binary relational variables
C_toD and D_ toE, and allocates existentially quantified variables c1, c2, d, and e
(see Fig. 5| for a simplified object diagram). The formula C_toD.d — {cl,c2} = &
resembles the dangling edge condition for reference between objects of class C
and class D. It consists of the following components:

— The relational variable C_toD is bound to the set of all tuples (obj,, 0bj,)
with obj, € L(C) and obj,; € L(D) having a toD reference;

— the expression C_toD.d represents the set of all possible objects of class C'
that have a toD reference to the object bound to d;

— the set {cl, c2} represents the actually deleted objects.

Thus, the formula above checks whether the set of all actually deleted objects
{c1,c2} is equal to the set of all actual objects of class C' that have a reference
to the object bound to d. If, however, a third reference had pointed from c3 to
d, the expression C_toD.d — {c1,c2} would evaluate to {c3} and thus violate
{c3} # . In the latter case the graph transformation must not be applied.
The RHS describes the effects of the graph transformation; once a matching
subgraph of the LHS is found it is rewritten according to the RHS that specifies
which nodes, edges, and attributes are created and/or deleted. The function Post
generates relational formulas over Rel and Rel’ that mimic the modifications of
the transformation’s RHS as follows. If the transformation creates an object obj~
of class C, two conditions are created, one by Pre and one by Post. First, function



LHS/RHS element Formula
Object ce C C=C-c
Reference ref with C_ref’ = C_ref — (c—d)
8 sre(ref) =ce C,
% tgt(ref) =de D
A Attribute attr with C_attr’ = C_attr — (c—expr(e))
sre(attr) = ce C,
expression e
Object ce C C=C+c
Reference ref with C_ref’ = C_ref + (c—d)
% src(ref) = ce C,
o tgt(ref) =de D
O Attribute attr with C_attr’ = C_ attr + (c—expr(e))
sre(attr) = ce C,
expression e
Table 3: Relational formulas generated by function Post

Pre checks for the non-existence of an object bound to relational variable ¢ in the
current state with i.e., dc: C' A ¢ & C, i.e., the formula asserts that the object
bound to c is inactive in the current state relational variable C. Second, function
Post generates a condition that adds the new object (bound to c) to relational
variable C such that the next state relational variable is set to C' = C + c. The
procedure for the deletion of an object bound to c is similar except that (i) Pre
checks for the existence of an object that is scheduled for deletion, i.e. 3c : C
and (ii) Post updates the next state relational variable to reflect the removal
of the object (bound to c), i.e., C' = C — c. Addition and deletion of (multiple)
objects to and from a relational variable can be combined, i.e., the condition
C=C+{c1,.--,cm} —{Cm+1s.-.,Cn} states that C’ is equivalent to C except
that all objects bound to variables ci,...,c,, are added to C’, while objects
bound to variables ¢, +1,...,¢, are removed from C. Note that the addition
and deletion of references and attributes proceeds analogous to the addition and
deletion of objects. For example, Post generates for the deletion of a reference
ref from an object bound to ¢ pointing to an object bound to d the formula
C_ref’ = C_ref — (c—d). The formulas generated by Post are summarized
in Table [3] In addition, the Post function also generates conditions for those
relational variables that do not change, as otherwise arbitrary tuples could be
assigned to these relational variables.

The encodings outlined in Tables [2| and [3| translate a graph transformation
p € R over Rel, which is fixed w.l.o.g to Rel = {A,B,C,D, E} for the following
explanations, into a relational formula following the scheme outlined in Figure [0}
Here, function match returns constraints that mimic the transformation’s LHS
and control the creation of new nodes, while functions inj and dec generate
injectivity constraints over nodes of the transformation’s LHS and PACs/NACs
and dangling edge conditions over LHS nodes, respectively.

Graph Constraints. In contrast to graph transformations, a graph constraint
does not alter a matching host graph; it may thus be used to describe a desired



Jal:A,Ja2: A, 3b:B,3c: C,—3d: D |
—
LHS,RHS, and PAC nodes NAC
match(al,a2,b,c,d) A inj(al,b,c,d) A dec(al,b,c) =

match constraints injectivity dangling edge
constraints constraints

AN=A—-al+a2AB =B-baC'=CAD =DAE=E

modification constraints non-modification constraints

Fig. 6: Scheme of a relational formula produced from a graph transformation

Ja:A,3b:B,3c: C,—3d: D |
<\ J/
LHS and PAC nodes NAC
match(a, b, c,d) A inj(al,b,c,d)

match constraints injectivity
constraints

Fig. 7: Scheme of a relational formula produced from a graph constraint

or an undesired pattern in a graph, i.e., a good or a bad state of the system.
Thus, graph constraints are graph transformations with identical left-hand and
right-hand sides. Formally, a graph constraint ¢ : Cond < Lhs, c € F is translated
into a relational formula

F. := Pre.(Lhs, Pac, Nac), (2)

where function Pre. : G x G x G — F translates the triple LHS, PAC, and NAC
into a conjunction of relational formulas f € F. For this purpose, the encodings
presented in Table 2] are re-used to translate a graph constraint into a relational
formula. The scheme of the relational formula generated from graph constraint
c € F is depicted in Figure[7] It coincides with that of a graph transformation
(see Fig. @ in all but two aspects, the absence of the implication, i.e., there is
no RHS, and the dangling edge condition, which is omitted because a graph
constraint may not delete elements.

7 Case Studies

In two case studies, we compare our tool GRYPHON with the state-of-the-art tool
GROOVE [I§]. First, we consider the Dining Philosophers problem of Section
and second, we showcase the railway interlocking scenario inspired by [I7]. The
experiments were run on an IntelT™Core i5 M580 2.67GHz CPU with 8GB of
RAM running Gentoo 2.2 (Linux kernel 3.14.14). For the benchmarks we use the
Oracle™ Java™SE 7 Runtime Environment (build 1.7.0_71-b14), the Henshin
APT in version 0.0.1, and GROOVE in version 5.5.2 (build: 20150324114640). The
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Fig.8: Runtime comparison (sec) of GROOVE and GRYPHON on the Dining
Philosopher Benchmark.

heap size was set to 6GB and the timeout was set to 720 seconds. The runtimes
of each benchmark were averaged over 10 consecutive runs.

Case Study 1: Dining Philosophers. For this benchmark with our tool, we modeled
the Dining Philosophers problem as described in Section 2] In a similar manner,
we modeled the metamodel, i.e., the type graph, used for the implementation of
the graph transformation in GROOVE (see Appendix). Then we formulated the
following three invariants: (i) No two philosophers hold the same fork (SAME_FORK),
(ii) if a philosopher holds a fork, its either her left or her right fork (LEFT_RIGHT),
and (iii) the philosophers do not deadlock (DEADLOCK).

For the benchmarks we use initial models with five, seven, and nine thinking
philosophers. We consider the test case, where none of them holds a fork at
the beginning. Figure [§| compares the runtimes of our tool with the runtimes of
GROOVE. Interestingly, for GROOVE we observed a deviation of up to one third
of its average runtime. Note that for neither of the tools, we experienced time or
memory timeouts. The latter is especially remarkable for GROOVE as it performs
an explicit search of the state space. GRYPHON could solve all benchmarks of
this case study in less than 10 seconds.

Case Study 2: Interlocking Railway Systems. The second set of benchmarks
targets an interlocking railway systems [I7]. A railway system is described by
a scheme plan that consists of a track plan, a control table, and a set of release
tables. The topology of the railway network is captured by the track plan, which
displays tracks and their lengths, entry and exit tracks, and points. A route
consists of a set of tracks, the first of which may be entered if the guarding signal
shows proceed. Each row in the control table is associated with a route and
specifies the tracks that need to be cleared in order for a train to pass the signal
guarding the route. If the route passes a point, the control table specifies the
required position of the point. A point is locked either in normal position, leading
the train straight ahead, or in reverse position, in which case the train is routed
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Fig.9: Runtime comparison (sec) of GROOVE and GRYPHON for the Interlocking
Railway Benchmark with 4, 6, 8, and 10 trains (T).

to another line. A train must obtain a lock on a point prior to passing it and is
required to release it after traversing the point. The release table associated with
a point specifies the track, where a train must release the acquired lock.

The verification of the railway system then centers around three safety prop-
erties: (i) collision freedom prohibits two trains occupying the same track; (ii)
no-derailment demands that a point does not change position while being occu-
pied by a train; (iii)run-through requires a point to be set in position as specified
by the control table for the specific route when a train is about to enter the point.

For the evaluation, we define four different initial states that instantiate
the implementation with four, six, eight, and ten trains. The results are shown
in Figure [0] On the NO_COLLISION property, GROOVE is faster by a factor of
two to three. For the other two properties, GROOVE is (slightly) faster for the
benchmarks on 4 and 6 trains, but with 8 and 10 trains, the symbolic approach
outperforms the explicit approach on average.

8 Conclusion

We presented a novel model checking approach for the verification of graph
transformations as used in model-driven engineering. Our approach is a completely
automatic approach which allows modelers to benefit from the very efficient
hardware model checkers like implementations of the successful IC3 algorithm.
In this paper, we explained the internal realization of our tool which translates
the modeling artifacts to sequential circuits. In two case studies we showed the
potential of our tool by comparing it with GROOVE, a state-of-the-art model
checker for graph transformations.

In future work, we plan to implement optimizations in the encodings from
which we expect further improvements in the running times. Further, we plan to
implement a visualization component for the witness which are returned in the
case a property violation has been detected by our tool.
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A Artifacts of the Case Study

In following, we describe the artifacts used in the two case studies presented in
Sec. [7] This include input (meta-)models for our tool and for GROOVE as well as
the graph transformations describing the behavior of the system to be verified.
Note that this appendix is for reviewing only. The artifacts will be available on
our tool homepage.

A.1 Case Study 1: Dining Philosophers

In the first case study we considered the Dining Philosophers problem which
served also as our running example in this paper (see Sec. [2). We described the
problem in terms of a metamodel (Fig.[1)) and the behavior in terms of Henshin
graph transformations (Fig . Fig shows the metamodel given to GROOVE.
Fig. [[1] contains the respective transformations for GROOVE.

|
philosophers forks - — 7
0.* 0.* i Philosopher
[ Philosopher left H Fork 2 PhilState hasLeft
= id : EInt 1[ = id: EInt - thinking hasRight
o state : PhilState right - hungry id: int
0.2 - eating !
1
‘ holds state: string
(a) EMF Model (b) GROOVE Model

Fig. 10: Dining Philosophers Model

A.2 Details on Implementation of Case Study 2

In the following, we first give some details of the modeled railway system which
is based on [I7]. A railway system is described by a scheme plan that consists of
a track plan, a control table, and a set of release tables as depicted in Figure
The conditions that change the aspect of a signal from red to green, thus allowing
a train to pass and continue along the route, are provided by the control table.

For the performance evaluation we use the implementation of the station
scheme plan that is depicted in Figure We define four different initial states
that instantiate the implementation with four, six, eight, and ten trains, and
each route is assigned two, three, four, or five trains, respectively. The track plan
of the station with four trains is depicted in Figure [[3] The EMF and GROOVE
metamodels are shown in Fig. [T4]

The behavior of the interlocking and the trains is implemented by the graph
transformations depicted in Figure [15| and in Figure
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Fig.11: Graph Transformations for the Dining Philosophers implemented in
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Control Table
Route Normal Reverse Clear

R10A P101 AA, AB, AC, AD
R10B P10l AA, AB, BC, BD
R12 P102 AD, AE, AF
R112 P102 BD, AE, AF

Release tables
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RI0A AC R12 AF
R10B BC R112 AF

Fig. 12: Station scheme plan [I7]



E‘Ecﬂml Route controls
o " Signal | Al
.E route > _nﬂ = "R10B_R112 id = 151120 [€ signal
A
controls signal
6 _\ clear _ v _ _
SignalContro
anal SignalControl clear—>] . ._..,m.m_n . —IsmxﬂL ) ._._,m_.n_n . < clear reqPos = "REVERSE"
signa reqPos = "REVERSE" id u?mn id = "BD
release M_om_ﬂm
clear
i n_m.m_. next E next E release
>l Signal point
o S0 % release ock fear
A lock | G
signal / e q
q Point
: Point Track Track o . Track
Entry | hoxryl TrACK | hextyl g =pro1t  [next o ..>n___|:mxﬁ|! id = "D+ [Next>  id = "P102
id = "ENTRY" id = "AA" position = "NORMAL" position = "NORMAL" A»
9 n_mmﬂ\ . _ _9
clear point signal clear clear
clear point
r SignalControl leard  clear |
Lsignal reqPos = "NORMAL" N _ SignalControl
A Signal |_ Al regPos = "NORMAL"
controls id = "s12" ™ signal
controls

Elaﬁm »|id = "R10_R12"

Fig. 13: Initial state of the station scheme plan with four trains modeled with GROOVE

Exit _

Fnext> s O Tsmxﬁv‘ id = "EXIT




H Track

B Entry

0.1
signal|

Signal | 1 ZreqPos : Position LONtIols
= id : EString igna) 0.*

SignalControl

0..1) point
Point
pos : Position

enumeration>>|
Position

= NORMAL

- REVERSE 1| 1ock

controls

next g«

TrackElement
id: string

(ESN

occupies

occupies

route
(b) GROOVE

tracks

(a) EMF

Fig. 14: Railway System



= Rule enterTrain = Rule exitTrain = Rule releaseLock

«preserve» «create» |«preserve» «preserve «preserve»
:Train occupies :Entry :Train :TrackElement

«forpid» «delete» ores S

s N presepve» « Serve»
occupies occupies B
P P occupie elease

«forbid» «preserve» «preservey «delete» _|«preserve»
:TrackElemen :Exit :Train holds _l:Lock

(a) EnterTrain

(b) EzitTrain (c) ReleaseLock

= Rule acquireLock(p1, p2) = Rule moveTrainPastSignal
. «forbid#3»
<preserveepreserves sig  [«preserve» Forbid#zy)
:Signal «preserve, __:SignalControl § :Train
_ «preserve» H
controls = reqPos=p1 A
[ «delete»  |:Train

«pregerve» «presprve» regggg d#3» occupies ceserve «forbjid#2»

. . « serve» i
signal point «créate» route loccupies

preserve» occuples
route LML) «preserve»  |«preserve, - «forbid#2»
:Point “TrackEl «preserve» :TrackElemen
Aracktlement  next ~|.1rackElemen
© pos=p2->pl g
«forbfid#2»
coupies «preserve» «Preserve» Prabe «forbfid#1» clear
«fdrbid» lock signall point
«preserve»
«preserve» tracks
Train up}'eserveﬂ
iSignal «preserve» sig

(d) AcquireLock

(e) MoveTrainPastSignal

= Rule moveTrain

= Rule moveTrainPastPointSignal

f]foriid#z | «forbid#2» j‘lf"rﬁid“ «forbid#2»
:Loc holds :LOC holds «preservi
OREEE fordidnz « » __|«preserves—yro s «preservey «forbid#1»|
" « » . “Trai . -Trai
«fopbid#2» «deleter “Train «preserve» Irelease occupies  |:Train :Lock :Train
release | occupies |- e
«crefate» ﬂpresTrvE» «forbjid#1»
«create» occupies rekerv oc occupies
occupies P “pre rf)llltz» P
«preserve» | reserve» “Preserve» «preserve
«preserve» [ iocorvo l«preserver y «pres p DS
TrackElement oot 2| TrackElemen :TrackElement—ax¢—:TrackElemen :Point Forbid# s
«preserve» f «Preqerves . p—
«forbid#1» tracks «preserve» «preserve»
D ‘ oint
signal «preserve» signal «preserveNS oy P gg:? d#1>
«forbid#1 tracks < sRoute e «preserve»
( «preserve) | controls P
:Signal -Signal :SignalControl
* «preserve»
sig

(f) MoveTrain

(g) MoveTrainPastPointSignal

Fig. 15: Behavior of the interlocking and train components modeled with HENSHIN
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