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Abstract

Model checkers and sequential equivalence checkers have become essential tools for
the semiconductor industry in recent years. The Hardware Model Checking Competition
(HWMCC) was founded in 2006 with the purpose of intensifying research interest in these
technologies, and establishing more of a science behind them. For example, the competition
provided a standardized benchmark format, a challenging and diverse set of industrially-
relevant public benchmarks, and, as a consequence, a significant motivation for additional
research to advance the state-of-the-art in model checkers for these verification problems.
This paper provides a historical perspective, and an analysis of the tools and benchmarks
submitted to the competition. It also presents a detailed analysis of the results collected
in the 2014 edition of the contest, showing relations among tools, and among tools and
benchmarks. It finally proposes a list of considerations, lessons learned, and hints for both
future organizers and competitors.
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1. Introduction

Semiconductor devices have proliferated into most aspects of our daily lives. Contemporary
hardware devices often comprise a tremendous amount of complexity and diversity. Expos-
ing all the bugs in such designs, which may number in the hundreds or even thousands,
is an extremely challenging task. An unexposed hardware bug which escapes into silicon
often risks severe penalties, ranging from economic loss and product market failure to safety
concerns, including the risk of loss of human life. For this reason, the use of formal meth-
ods has become an attractive approach to overcome the coverage limitations inherent to
simulation-based validation. Therefore, most semiconductor companies have investigated
their applicability. Companies’ individual choices of methods, tools, and application areas
have varied, as has their level of success. With recent advances in the scalability of auto-
mated model checkers and sequential equivalence checkers, most companies have grown to
rely upon these techniques to some extent. However, the inherent scalability limitations
of these techniques remain a challenge to broader application, and hence they have not
managed to completely displace simulation-based methodologies for the most part.

The Hardware Model Checking Competition (HWMCC) was founded in 2006 with sev-
eral practical goals: Developing a standardized benchmark format reflective of industrially-
relevant model checking problems; establishing a large and diverse set of challenging public
benchmarks; providing a scientific framework to evaluate the effectiveness of research ad-
vances in the field; and overall, creating an increased motivation for continued research in
model checking. First editions of the competition primarily focused on providing an in-
frastructure for comparing model checkers, creating a large set of public benchmarks, and
involving young researchers in the field, riding along the success of previous SAT and SMT
competitions. Since its foundation, the format of the competition has been in continuous
evolution: Additional tracks were introduced, better I/O and OS conformance was imposed
on the tools, resource limitations were increased to leverage the availability of more pow-
erful hardware, etc. However, the main competition setup remains the same, with every
competing tool for each track running on the same set of benchmarks, under the same time
and memory limits.

Although the overall results of the competition have traditionally been presented either
at the Formal Methods in Computer-Aided Design (FMCAD) or Computer-Aided Verifica-
tion (CAV) conferences, an in-depth analysis of the details of the competitions has always
been lacking. The purpose of this paper is to present an accurate analysis of the bench-
marks, the tools, and their mutual relationships. We also present a detailed analysis of the
results collected in the 2014 edition of the competition, providing some considerations on
portfolios, model checking engines, and trends in formal verification. We finally propose a
list of considerations, lessons learned, and hints allegedly useful for both future organizers
and competitors.

1.1 Roadmap

The paper is organized as follows. Section 2 introduces the necessary background, and
the adopted notation. Section 3 describes the evolution of the competition over the years.
Section 4 illustrates all main organizational choices such as the contest system, and the
final ranking criteria. Section 5 concentrates on contestants by briefly describing all tools
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submitted to the 2014 competition (more details can be found in the reported references).
Section 6 is devoted to the benchmark suite, its main characteristics and design subsets, as
well as its evolution over the years. Section 7 presents an evaluation of the results, with a
detailed analysis under various points of view. Section 8 outlines lessons learned from both
the organizers’ and the contestants’ perspective. Finally, Section 9 concludes the paper
giving some summarizing remarks.

2. Background

The hardware model checking competition has focused so far on hardware models described
at the bit-level. A problem instance in the competition consists of a bit-level circuit (de-
scribed in the simple and-inverter format AIGER [2]), combined with a set of properties and
optional constraints. The AIGER format was designed to provide a structurally compact,
and easy to parse, representation for bit-level model checking and sequential equivalence
checking problems. It evolved over the years to match both the needs of the competition
and requests from industrial users, in order to be used as an intermediate format in vari-
ous verification and design flows. The AIGER format only considers bad state and justice
properties. Constraints can be simple combinational invariant constraints as well as fairness
constraints. The main goal in developing AIGER was to provide a common denominator
of all bit-level formats, with clean and simple semantics, which nonetheless allows users to
encode relevant industrial model checking problems.

On the application side, properties may have many different flavors. Classically there
are safety and liveness properties, sequential equivalence as well as coverage goals, test
generation, redundancy checks etc. In theory, checking these properties on bit-level models,
that is to determine whether they hold, is PSPACE-complete. More practically, all of these
properties can be mapped into the problem of symbolic reachability, e.g., whether a certain
state in a sequential circuit can be reached starting from an initial state.

In AIGER this generic sequential reachability property is considered as a “bad state
property” to highlight the connection to its dual problem, which is checking that a simple
safety property holds. Such a reachability or bad state property is satisfiable (SAT ) if a
bad state is reachable. Otherwise it is considered to be unsatisfiable (UNSAT ). In the SAT
case, the model checker is also often expected to generate a witness trace, i.e., a sequence
of states which shows how to reach the bad state from an initial state.

This semantic mirrors other related competitions, including the SAT [6], SMT [1], and
CASC [55] competitions, where the problems considered have exactly the same “refuta-
tional” meaning. Also in these other competitions, satisfiability of a problem/property,
which means existence of a model, requires the solver to produce a witness. This again
matches the semantics of SAT in AIGER.

In the rest of the paper we will refer to SAT safety problems as those for which in
principle a trace, showing that a bad state is reachable, exists. For liveness problems, SAT
means that a trace exists which satisfies the justice properties and all the constraints. For
an UNSAT problem, of either kinds, such a trace does not exist, e.g., the bad state is
unreachable or there is no trace on which the justice properties hold (infinitely often under
all specified constraints).
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Even though in principle model checking can be reduced to reachability checking, en-
coding, and then using a safety/reachability checker might not be the fastest solution. In
order to make use of algorithms specifically targeted towards solving liveness properties, the
organizers introduced justice properties in AIGER. This is a compromise between fixing a
specific high-level temporal logic, and what actual algorithms internally use. This restric-
tion still permits to easily, and compactly, encode the temporal property part of many
liveness property benchmarks, including benchmarks from industrial sources, and allowed
the organizers to establish a liveness track (LIVE ).

Many hardware models have multiple properties, thus it is natural to keep them together,
and not to split them into several benchmarks. It is also believed that, in the context of
multiple properties, model checkers can perform better if all properties are known at once.
However, in a competition context, how to rank performance of model checkers on sets of
benchmarks with multiple properties is still an open problem.

Initially the HWMCC considered only benchmarks with exactly one property, which was
actually restricted to be a bad state property. This was the setting for the first competition,
and it is still how the most important track of the competition, the single safety property
track (SINGLE ), is organized. The organizers continue to use this historical terminology,
even though also for the liveness track a single (liveness) property per benchmark is consid-
ered. With the same abuse of notation the multi property track (MULTI ) only considered
bad state properties (safety properties), but more than just one per benchmark. In future
competitions, the organizers might want to include an open track, where liveness and safety
properties occur mixed in an arbitrary number per benchmark.

Finally, in industrial usage, model checking is often applied in the form of bounded
model checking [10]. This is mostly due to capacity restrictions of complete, i.e., unbounded,
model checkers. However, in certain cases, even verification plans have an explicit notion
of how “deeply” formal verification must be performed, which in essence just specifies the
bound up to which verification is deemed to be sufficient. In this context, on unsatisfiable
benchmarks, the primary metric for assessing the performance of a model checker is most
naturally given by the largest bound up to which the model checker can prove that a bad
state can not be reached from the initial states, under a given time limit.

The deep bound track of the competition (DEEP) tries to determine the best model
checker in this scenario. The benchmarks considered are taken from the single safety prop-
erty track. Model checkers participating in this track are requested to print the bound up
to which they claim a bad state can not be reached, while trying to solve a benchmark.
The DEEP track is actually a virtual track, since the maximum bound for a model checker
on a benchmark is determined during the SINGLE track. Only instances unsolved in the
SINGLE track are considered for the ranking in the DEEP track. A model checker is con-
sidered buggy in the DEEP track if it prints a bound which is larger or equal to the length
of a witness given by another model checker.

3. History

The first Hardware Model Checking Competition was held in Berlin, Germany, with CAV
2007. The AIGER format was introduced by the organizers as the standard benchmark
format for the competition.
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Originally, only the SINGLE track was carried out. Experiments were run on a cluster
of 15 nodes. Each node was running a GNU/Debian Linux 2.6.8 operating system, featured
a single Intel Pentium IV core running at 3 GHz, and included 2 GB of main memory. For
each run, CPU time and memory were respectively limited to 900 seconds and 1.5 GB.

The second competition was held in Princeton, USA, with CAV 2008. The adopted
hardware was the same of the previous year but the operating system was upgraded to
Ubuntu Linux 7.10.

In 2010, the competition was held in Edinburgh, Scotland, with CAV. During this
competition, the highly influential algorithm IC3 [12], sometimes referred to as Property
Directed Reachability (PDR) [25], made its first appearance. The hardware setup was
upgraded to a cluster of 32 Intel Quad Core nodes, running at 2.6 GHz, with 8 GB of main
memory. Each model checker had full access to one node of the cluster, i.e., to 4 cores.
Memory limitation on each run was increased to 7 GB.

In 2011 the competition was held in Austin, USA, with FMCAD. Two new tracks
were introduced that year: The multiple properties track (MULTI ) and the liveness track
(LIVE ). The original AIGER format specification was updated to version 1.9 in order to
support invariant constraints (safety assumptions), liveness (justice) properties, and fairness
constraints. The same hardware setup of the previous year was maintained.

In 2012 the competition was held in Cambridge, England, with FMCAD. The deep
bound track (DEEP) was added during that edition, alongside previously introduced tracks.
The same hardware configuration of 2011 was used, but the operating system on cluster
nodes was upgraded to Ubuntu 12.04.

In 2013 the competition was held in Portland, USA, with FMCAD, keeping the same
format, and hardware setup, of the previous year.

In 2014 the competition was held in Vienna, Austria. The results were presented at
the FLoC Olympic Games. Only the SINGLE, LIVE, and DEEP, tracks were featured in
that edition. For the first time, contestants were required to produce witness traces for the
SINGLE track, in order to support SAT claims. The competition was run on a cluster at
Aalto University composed of 32 nodes. Each node featured 2x Six-Core AMD Opteron
2435 running at 2.6 GHz with at least 16 GB of RAM. Such a configuration granted to
each model checker exclusive access to 12 cores. Memory limitation on each run was also
increased to 15 GB.

Table 1 shows the number of different research groups, and the number of distinct model
checkers submitted to each competition. A dash associated to a given track for a year means
that such a track wasn’t there on that particular occasion.

Table 1. Number of different research groups, and number of submitted model checkers per
year.

SINGLE MULTI LIVE DEEP Total

Year #Groups #Checkers #Groups #Checkers #Groups #Checkers #Groups #Checkers #Groups #Checkers

2007 8 19 − − − − − − 8 19
2008 6 16 − − − − − − 6 16
2010 8 21 − − − − − − 8 21
2011 6 16 4 6 4 7 − − 7 18
2012 7 18 6 9 4 8 5 13 7 25
2013 11 23 4 8 5 9 8 16 11 28
2014 9 16 − − 7 8 7 10 9 19
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4. Organizational Choices

Organizers usually perform a “preliminary phase” before the “official” experiments are run
and the final ranking is computed. During this phase, competitors are allowed to tune and
debug their tools on sample benchmarks from previous competitions. This is a necessary
step in order to help submitters adapt to changes in the input format, and to address issues
that could potentially lead to some contestants being disqualified.

Notice that, if a policy as strict as the one used in the SAT competition, in which resub-
mission is not allowed and incorrect solvers are immediately disqualified, would have been
enforced, some tracks in past editions of HWMCC would barely have had a single competi-
tor. An alternative approach, considered in the SMT competition, would be to penalize
incorrect solutions with negative scores, but otherwise count correctly solved benchmarks
towards the ranking. This way, however, the ranking would also include incorrect solvers,
which the organizers regard as an even inferior solution.

For each track, the top three performing tools are awarded virtual gold, silver, and
bronze medals respectively. As a research group is allowed to submit multiple tools or
tool versions, virtual podium for medals is made by just considering the best result for each
group. The ranking criterion is based on the number of solved instances in the allotted time
limit, which was set to 900 seconds in all editions. Though this limit can be considered
too low for many industrial scale problems, it was selected as a compromise based on the
computing resources and time window (days) available to run the competition.

Using the number of solved instances within the timeout as the primary criterion for
ranking contestants is arguably the most accepted approach. This scheme is also used in
other competitions such as SAT, SMT, and CASC. The number of instances each contestant
is able to solve is independent from one another, which allows to “replay” the competition
independently and simplifies the use of competition results in papers. In the context of the
SAT competition, various other ranking schemes were considered. After some deliberation,
a democratic poll among SAT solver developers on which ranking scheme to use gave very
strong support to only consider the number of solved instances per solver, with ties broken
by CPU or wall-clock time. The organizers of the HWMCC followed the example set by
the SAT competition.

Using wall-clock time1. versus using only process time, both as time limit and for tie-
breaking, has the advantage to encourage parallelization of model checkers. However, a
potential risk is to discourage development of new algorithms or improvements in single
engines. In early incarnations of the SAT competition, process time was used for ranking
solvers in a parallel track. This was the source of an engaging debate between organizers and
solver submitters. In the end, it became clear that, at least for a parallel track, wall-clock
time should be used. In SAT this has now been the standard for a couple of years. The
SMT competition encourages parallel solvers, but, in our view, inconsistently uses process
time to rank them.

Until 2011, time computation in the HWMCC has been based on (single threaded or
process) CPU time. In other words, the score of each tool has been equal to the number of

1. The wall-clock time is the time necessary to a (mono-thread or multi-thread) process to complete the
task, i.e., the difference between the time at which the task finishes and the time at which the task
started. For this reason, the wall-clock time is also known as elapsed time.
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problems solved in 900 seconds. Starting from 2012, a multi-threaded ranking, i.e., based
on wall-clock time, has been used. This was done in order to emphasize multi-core CPU
exploitation, and to encourage portfolio-based multi-threaded solutions. As a matter of
fact, most of the latest participants follow this trend. The concurrency level of each tool
can be guessed from experimental data, that report both CPU and wall-clock run times.
In this sense, all HWMCC tracks are parallel tracks, which is also not ideal. It might be
an interesting option for future incarnations of HWMCC to split the competition into two
parts, a parallel and a sequential part, similar to the SAT competition, and use wall-clock
time (limits) for the parallel tracks, and process-time (limits) for the sequential tracks.

For safety and liveness properties, an instance is considered to be solved by a tool if
such a tool either proves the property to hold or to be violated. An instance is considered
unsolved by a tool if the time or memory limits are exceeded or the tool crashes.

For the MULTI track, the scoring is based on a weighted formula, that takes into
consideration the number of properties for each design, such as:

score =
1

N

N∑
i=1

(
#solvedi

#propertiesi

)

where N is the number of benchmarks, the index i is used to enumerate the benchmark in
the set, and #solved and #properties denote the number of solved and overall properties
for the benchmark, respectively.

For the DEEP track, the scoring is based on the following formula, which emphasizes
robustness in reaching deep bounds:

score =
1

N

N∑
i=1

(
1− 1

2 + maxboundi

)

where, maxboundi = 0 means that the model checker only proved that no initial state is
bad, and accordingly maxboundi = −1 is used to denote that the solver failed to even
prove that. In the first case these benchmarks contribute a score of 0.5 to the average, and
nothing in the latter case.

5. Model Checkers

In 2014 the competition attracted 9 research groups that submitted a total of 19 model
checkers to the three available tracks. Some groups submitted multiple instances of the
same tool, using different settings, while others presented multiple distinct tools, each tar-
geting different types of problems or tracks. Some tools competed in more than one track
simultaneously. A few of the submitted tools are highly specialized for solving SAT prob-
lems and/or for competing in the DEEP track.

The following subsections describe the model checkers participating at the 2014 compe-
tition, with a specific emphasis on the adopted algorithms, and settings. For each model
checker, a brief historical description is provided, along with some notes on the authors,
and the main objectives of the tool. A final comprehensive analysis concludes the section.
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5.1 Contenders

5.1.1 AIGBMC and BLIMC

AIGBMC and BLIMC have both been developed by Armin Biere from Johannes Kepler
University, Linz, Austria.

AIGBMC is part of the AIGER distribution. It was originally developed as reference
implementation for the AIGER 1.9 format introduced at HWMCC 2011. The idea was
to cross-validate competition results, and also to make it available before the competition
to allow competitors to validate their adoption of the AIGER 1.9 format. AIGBMC im-
plements an instance of the bounded model checking encoding presented in [31, 27], but
only focuses on satisfiable instances. The first implementation used PicoSat [7] as SAT
solver, while the new version (the one used in HWMCC 2014) relies upon Lingeling [8].
Lingeling uses sophisticated pre-processing techniques, though less powerful in incremental
settings. For example, Lingeling “freezes” latch variables in the last unrolled time-frame for
bounded model checking [24, 29], and it contains a function for “cloning” the SAT solver
instance [42, 43, 44].

BLIMC is a bounded model checker for safety properties implemented on top of Lin-
geling. Beside serving as a test bed for the incremental usage of Lingeling, firstly it uses the
same cloning idea as AIGBMC (but with a different conflict limit), and then it simplifies
the transition relation using SAT level pre-processing as suggested in [29]. The simplified
transition relation is then copied each time the problem is extended by a new time-frame.

It has to be noticed that BLIMC and AIGBMC partecipated at the competition but
not at the final ranking.

5.1.2 PdTRAV

PdTRAV (Politecnico di Torino Reachability Analysis and Verification) has been developed
by the Formal Methods Group (Gianpiero Cabodi, Sergio Nocco, and Stefano Quer) at
Politecnico di Torino, Italy [17].

It mainly targets safety property verification, and it is developed in C, with some C++
extensions, mainly needed for linking the core tool with external packages. The complete
kit includes AIGER (for handling AIG file format), CUDD (as a low level BDD library),
MiniSat (as a SAT solver), and ABC (exclusively used for combinational rewriting and
sequential redundancy removal such as signal and latch correspondence). The portfolio
includes random simulation (SIM), BMC, BDD-based (forward and backward) reachability,
k-induction (IND), interpolation (ITP [16] and IGR [19]), and IC3.

The tool applies model transformations before running the final verification engines.
Those simplifications are selected by a lightweight expert system (a simplified version
of [18]). The tool is multi-threaded, running up to 8 different engines on a “winner-takes-
it-all” basis. An expert system is in charge of selecting the proper engines for the current
problem, according to a previous classification step and following further heuristics.

Alongside PdTRAV, a second version of the tool, called PdTRAV h, was submitted
to HWMCC 2014. PdTRAV h is a slightly modified version of PdTRAV, with engines
detached and controlled by a two-level thread/engine management scheme: Sub-managers
are dedicated to ITP, IC3, BDD, and SAT-oriented (simulation and BMC) engines, grouped
in sub-portfolios of 2 or 3 engines (or variants of the same engine with different settings).
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5.1.3 ABC

ABC [14, 38] has been developed by the Berkeley Verification and Synthesis Research
Center, namely by Baruch Sterin, Robert Brayton, Niklas Eén, and Alan Mishchenko from
the University of California at Berkeley. It participated in the 2014 competition with four
different versions, namely SUPROVE, SIMPSAT, SUPDEEP, and SIMPLIVE.

The development of ABC started from the re-engineering of MVSIS, a tool for the
synthesis of multi-valued and Boolean circuits, with the objective to place a higher focus
on AIG circuit representation. A fundamental premise of ABC is to leverage the synergy
between synthesis and verification using efficient SAT-based Boolean reasoning on the AIG
for combinational and sequential equivalence checking. The tool is written in C and offers
a wide variety of algorithms for both synthesis and verification:

• Synthesis of combinational circuits: AIG balancing, rewriting and re-factoring, struc-
tural hashing, AIG sweeping, etc.

• Synthesis of sequential circuits: Retiming, redundant latch and signal elimination,
sequential cleanup, etc.

• Equivalence checking of combinational circuits (SAT-sweeping).

• Equivalence checking of sequential circuits (both bounded and unbounded).

ABC includes the C version of MiniSat for handling Boolean reasoning problems and the
package CUDD for BDD manipulation. In order to compete in the HWMCC, the Berkeley
group developed a set of integrated model checkers as Python scripts on top of ABC. The
main model checking engines integrated in those tools are: Property Directed Reachability
(IC3), Bounded Model Checking (BMC), Rarity simulation (RareSim), Craig interpolation
and BDD-based reachability. The IC3 algorithm is implemented as described in [25], with
several different variants. ABC also includes several versions of BMC.

5.1.4 TIP and TIPBMC

TIP (Temporal Induction Prover) is a model checker targeting safety and liveness problems.
It was originally developed by Niklas Eén and Niklas Sörensson during their PhD studies at
Chalmers University, Sweden, with the purpose of showcasing how to efficiently implement
BMC and induction using incremental SAT solving [41]. The version of TIP that has been
competing in HWMCC is a complete rewrite of the original one, implemented by Niklas
Sörensson and Koen Claessen. The source code for TIP is available on github [57].

TIP is implemented in C++ and relies heavily on MiniSat for all SAT-based algorithms.
It contains only two engines for safety properties: BMC and IC3. For liveness, it uses k-
liveness [23] (backed by IC3), and the more standard liveness-to-safety transformation [9]
(backed by BMC). The only circuit transformations used are a simplified implementation
of temporal decomposition [20], and redundant latch merging.

TIP is a single-threaded single-engine tool whose only concurrent feature is to interleave
IC3 and BMC (in a rather ad hoc fashion). All engines are multi-property aware; even mixed
liveness and safety can be handled within a single IC3 or BMC context. In the competition,
different configurations were used for different tracks. For the SINGLE track, two versions
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of TIP were submitted, one with only BMC and one with only IC3. For the LIVE track, a
version with only k-liveness and a version with both k-liveness and BMC were submitted.
For the DEEP track, a version with only BMC was used.

5.1.5 V3 and V3db

V3 has been developed by Cheng-Yin Wu, under the consultation of Chi-An Wu and the
supervision of Professor Chung-Yang (Ric) Huang, from the National University of Tai-
wan [66, 30, 15].

V3 has been written in C++, and it offers Boolean-level and word-level design ma-
nipulation and verification capabilities. The version submitted to the competition exploits
MiniSat as the underlying SAT engine. It can manipulate both single and multiple safety
properties as well as liveness properties.

Like other contestants, it exploits light-weight optimization techniques, but its main
focus is to share information learned from different model checking algorithms rather than
applying heavy synthesis optimization methods. In order to share information among veri-
fication engines, V3 creates a virtual cloud (called “a model checking cloud”) which serves
as a communication channel for model checking algorithms. Information shared among
threads include reached bounds and reachable states information.

V3 is portfolio based, and it exploits six model checking algorithms (sequential redun-
dancy removal, simulation, BMC, induction, interpolation, and IC3) with a total of more
than 30 different configurations. Regarding interpolation, the tool implements McMillan’s
original algorithm as well as a counterexample-guided version (named NewITP in [15]).
There are two different configurations of IC3: One follows the original IC3 formulation that
exploits multiple SAT solvers, while the other uses only one solver to maintain reachability
over time-frames.

The tool implements a strict resource control mechanism for CPU time, memory us-
age and level of concurrency (number of cores that the tool can access). The strategy
dynamically balances memory usage and the number of active threads over time.

Two versions of the tool, V3 and V3db, were submitted to the HWMCC 2014.

5.1.6 ShiftBMC and ShiftBMCpar

The author of the ShiftBMC tool [34] is Norbert Manthey from the Technische Universität
in Dresden, Germany.

The focus of ShiftBMC is to provide an incremental environment for the SAT solver
Riss, developed by the same author, rather than to offer a complete multi-engine model
checking tool. Its purpose is to showcase how recent developments in SAT technology can
improve the performance of existing BMC tools.

Riss [36] includes several SAT related tools, such as the formula simplifier Coprocessor,
and the parallel portfolio SAT solver Priss. Coprocessor [35] includes several recently de-
veloped CNF simplification techniques, and it can also be applied to QBF and MaxSAT
formulas. Priss [33] is able to emit unsatisfiability proofs in the DRAT format [28].

ShiftBMC currently supports only single safety properties. It adopts AIGBMC to read
and encode AIGER files, and it uses the ABC library to perform some initial simplifications.
Once ABC has run, the circuit transition function is translated into CNF by the AIGER
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tools, then Coprocessor performs some CNF simplifications, applying different techniques in
a hand-crafted order. To avoid wasting too much time performing simplification on larger
circuits, some heuristically selected limits are used to keep the CNF simplification time
below a certain threshold. The final BMC problem is generated by writing the simplified
transition formula into CNF by shifting the variables in a proper way.

Two versions of the tool, ShiftBMC and ShiftBMCpar, were submitted to the HWMCC
2014.

5.1.7 IIMC

IIMC (Incremental Inductive Model Checking) has been written by Zyad Hassan, Fabio
Somenzi, Michael Dooley and Aaron Bradley from the University of Colorado, Boulder,
USA [26].

IIMC is a parallel tool targeting safety property verification, language emptiness and
checking of CTL properties. It is written in C++11 and uses CUDD, zChaff and MiniSat
as external tools. MiniSat is used as a SAT solver for everything with the exception of IC3
which uses zChaff instead.

The pre-processing phase of the designs can involve any of the following techniques:
Abstract interpretation of the model, BDD and SAT-based combinational redundancy re-
moval, ternary simulation-based redundancy removal, phase abstraction, and redundancy
removal via extraction of unit-literal invariants. To address a specific family of benchmarks,
namely backward Beem (see Section 6.2.3), IIMC performs transition relation reversal as
well.

IIMC is based on the concept of Incremental, Inductive Verification (IIV). IIV algo-
rithms construct proofs by generating lemmas based on concrete hypothesis states, and
subsequently derive more information from such lemmas through generalization. Incremen-
tality refers to the fact that those lemmas hold relative to previously generated ones. The
main IIV engines are IC3, Fair and IICTL [13]. The portfolio is enriched with the addition
of a few BBD- and BMC-based strategies. The IC3 implementation benefits from some im-
provements such as lifting, counterexamples to generalization (CTG) [67] and localization
reduction. The portfolio used during the competition exploits a thread-based approach and
is composed of four engines running with default setup: IC3, reverse IC3, BMC, and either
BDD-based forward reachability or IC3 with localization reduction. The usage of reverse
IC3 is motivated by its good capabilities at finding counterexamples.

The portfolio setup for the LIVE track has been different in terms of engines, but
maintains the same thread-based characteristics. In this context, the engines of choice are:
Fair Cycle BMC (FCBMC), GHS (BDD-based language-emptiness check), and Fair.

5.1.8 nuXmv

nuXmv is developed by Cavada, Cimatti, Dorigatti, Griggio, Mariotti, Micheli, Mover,
Roveri, and Tonetta from Fondazione Bruno Kessler (FBK), Trento, Italy [22, 21].

nuXmv (eXtended NuSMV) is the evolution of NuSMV, an open source symbolic model
checker for finite-state systems that has been developed as a joint project between Carnegie
Mellon University, University of Trento and Fondazione Bruno Kessler (FBK). At the
HWMCC 2014 was submitted a portion of the entire tool, called nuXmv -bitcore, which
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includes the subset of nuXmv functionalities capable of handling bit-level safety and live-
ness verification.

The tool is written in C/C++, and is designed to be SAT solver independent. It can
be currently interfaced with both PicoSat and a version of MiniSat properly modified to
produce resolution proofs.

nuXmv includes a vast portfolio of SAT-based safety property and liveness verification
algorithms, such as McMillan’s interpolation [37], ITPSEQ [59], DAR [61], k-induction [49],
BMC [10], AVY [64], IC3 [12] alongside BDD-based reachability algorithms guided by
regular expressions [56]. IC3 is implemented in three different variants: The “standard”
IC3 algorithm (combining ideas from several implementations), IC3 with CTGs and IC3
with lazy abstraction-refinement [60]. The latter comes in two versions, depending on the
approach used to handle the refinement step: The original one based on IC3, and a new
variant based on BMC.

For liveness model checking, nuXmv implements BMC-based algorithms [11] as well as
k-liveness [23] integrated within an IC3 framework. Some pre-processing techniques for the
extraction of stabilizing constraints from liveness problems are also implemented.

5.1.9 AVY

AVY [62] was developed by Arie Gurfinkel, from the Software Engineering Institute at
CMU, and Yakir Vizel from Princeton University.

The tool focuses on interpolation and PDR as presented in [64]. Extensions to the
original tool are presented in [63], even though not all those strategies are part of the
submitted version.

The main model checking algorithm it uses, called AVY, can be viewed as a synergy
of both interpolation and IC3, even though it is more interpolation oriented. Like interpo-
lation, it uses unrollings and interpolants to construct an initial candidate invariant and,
like IC3, it uses local inductive generalization to keep the invariants in compact clausal
form. AVY uses a single SAT solver instance globally: It can roam over the entire search
space, and does not break it into local checks as part of a backward search. This addresses
the main weakness of IC3 as it does not use any global knowledge during the search. The
combination of interpolation and inductive reasoning allows AVY to benefit from the ad-
vantages of both methods as it uses the solver without guiding it during the search, but it
does guide its proof construction.

The core algorithm is implemented in C++. MiniSat and Glucose are used as back-
end SAT solvers, while ABC is used for the AIG infrastructure and for other utilities.
No sequential optimization is performed, but a Python interface orchestrates a portfolio
of different verification engines. The portfolio organization is straightforward: A number
of processes, each running different configurations of the main AVY algorithm, are run in
parallel. Whenever a process finishes with a result the others are killed. Additionally, a
process running the ABC version of PDR is executed. It is important to note that the tool
does not include a native BMC engine.
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5.1.10 LS4

LS4 has been developed by Martin Suda from Max-Planck-Institut für Informatik of Saarbrücken,
Germany. The source code of the tool is publicly available [51].

LS4 is a tool for checking liveness properties of hardware designs, originally developed
as a theorem prover for LTL. It internally relies on a single algorithm of the same name,
first proposed in [53]. The algorithm is similar to IC3 on the reachability fragment, but
employs a unique strategy for handling liveness. From a logical perspective, the algorithm is
based on a calculus labeled superposition for PLTL described in [54]. Instead of saturating
the given clause set, it uses partial models to guide the inference process. More details are
available on Suda’s PhD thesis [52].

LS4 is built on top of the SAT solver MiniSat, version 2.2. No circuit-specific transfor-
mations are used.

LS4 was not specifically tuned for performance in HWMCC and would most likely ben-
efit from various circuit-specific pre-processing techniques, such as those described in [23].

5.2 Overall Analysis and Considerations

Table 2 shows which model checking engines and SAT solving tools are used by the con-
testants. The first column reports tools with their versions. For each of them, the table
reports whether it uses Bounded Model Checking (BMC), interpolation (ITP), IC3, BDD,
induction (IND), simulation (SIM), fairness (FAIR), IICTL [13], AVY, and LS4. The last
column indicates the SAT solvers used. Notice that AVY and LS4 appear as both tool
names and engine names.

A detailed analysis on engine coverage, provided in Section 7, shows that IC3 and BMC
are by far the engines yielding the highest number of solved instances. Some tools include
other SAT-based engines such as k-induction and Craig Interpolation, implemented in dif-
ferent flavors. Few tools have BDD-based symbolic model checking. Random simulation
is present in SUPROVE, V3, and PdTRAV. Abstraction-refinement schemes are present
in various forms, following either a counterexample-based or a proof-based scheme, and
including either localization type abstraction [65, 39] or speculative reduction [5]. Many
tools incorporate some degree of simplifying transformations and property-preserving ab-
stractions to reduce subsequent model checking resources. ABC is particularly strong in its
reduction capability, and several other competitors use ABC as a simplifying pre-process.

As far as the SAT solvers are concerned, the majority of the tools adopt Minisat in
different flavors. This seem to show that most tools did not use the latest SAT engines,
often presenting better performance at the latest SAT competitions. A few tools do use
more than one SAT solver, applying them for different purposes.

6. Benchmarks

6.1 Historical Perspective and Statistics

Tables 3, 4, and 5 report the number of proved (SAT or UNSAT ) and unsolved instances
over the years in the main categories (SINGLE, LIVE and MULTI tracks). These tables
also illustrate the trend of benchmark characteristics during the various competitions. As
a reference, during the HWMCC 2014, the benchmark set was composed of 230 different
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Table 2. Comparison of model checking engines and algorithms among contestants.

BMC ITP IC3 BDD IND SIM FAIR IICTL AVY LS4 k-live L2S SAT solver
AIGBMC X Lingeling
BLIMC X Lingeling

PdTRAV
PdTRAV X X X X X X MiniSAT
PdTRAV h X X X X X X MiniSAT

ABC

SIMPSAT X X X X X X MiniSAT
SUPROVE X X X X X X MiniSAT
SUPDEEP X MiniSAT
SIMPLIVE X X X X MiniSAT

TIP
TIP X X X MiniSAT

TIPBMC X MiniSAT
TIPRBMC X X MiniSAT

V3
V3 X X X X X MiniSAT
V3db X X X X X MiniSAT

ShiftBMC
ShiftBMC X Riss

ShiftBMCpar X Riss

IIMC X X X X X
MiniSAT

zChaff

nuXmv X X X X X X X X
MiniSAT
PicoSAT

AVY X X
MiniSAT
Glucose

LS4 X MiniSAT

instances. Table 3 shows a rapid increase in the number of benchmarks in the early editions
until 2010, then a decline in the following editions, where trivial and easy instances have
been removed.

Table 3. Single Safety Track: Number of proved (SAT or UNSAT ) and unsolved properties,
and average benchmark size, over the years.

Year Avg Latches Avg ANDs Solved Unsolved Total
SAT UNSAT Total

2007 582.18 9546.16 194 113 307 37 344

2008 450.09 7420.92 251 346 597 48 645

2010 562.02 8081.17 332 460 792 26 818

2011 940.94 11451.86 95 327 422 43 465

2012 2165.67 34470.90 76 140 216 94 310

2013 13298.50 141988.24 64 119 183 65 248

2014 15097.99 154319.16 54 100 154 76 230

Figure 1 shows a graph-based, more detailed, representation of those changes. Labels of
vertices show the number of benchmarks used during the various competitions that resulted
as solved (by at least one tool) or unsolved (by all tools). Those values coincide with the
ones reported in Table 3. Labels of edges highlight the number of benchmarks introduced
every year (floating incoming edges), discarded (floating outgoing edges), that maintain
their status, and which ones were previously solved but result as unsolved or vice-versa.
For instance, the set of solved instances for the year 2008 is composed of 597 benchmarks,
287 of which newly introduced, 298 solved and 12 unsolved in the previous year. From 2008
to 2010, none of these benchmarks were discarded, 595 were still solvable in the following
competition whilst 2 became unsolved. Apart from the newly introduced or disregarded
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benchmarks, there is a constant flow of circuits from the unsolved to the solved sets in both
directions, with a predominance of the unsolved ones becoming solved.

Solved

Unsolved

2007

307

37

2008

597

48

2010

792

26

2011

422

43

2012

216

94

2013

183

65

2014

154

76

298 595 270 86 73 61

25 15 18 28 34 55

9 2 1 6 2 2

12 33 8 15 14 4

307 287 164 144 115 96 89

37 14 9 24 60 29 19

0 0 521 330 14 4

0 0 0 0 46 6

Figure 1. Evolution of SINGLE benchmark sets over the years.

Table 3 shows that the numbers of latches and gates have been steadily increasing,
thereby making the verification instances allegedly more difficult, from year to year.

As far as the LIVE track is concerned, Table 4 shows that for the first two years the same
set of liveness benchmarks was used. In the last two years, the data shows an impressive
increase in number of instances.

Table 4. Liveness Track: Number of proved (SAT or UNSAT ) and unsolved properties, and
average benchmark size, over the years.

Year Avg Latches Avg ANDs Solved Unsolved Total
SAT UNSAT Total

2011 101.58 1436.68 57 46 103 15 118

2012 101.58 1436.68 52 49 101 17 118

2013 11946.25 93144.05 80 73 153 32 185

2014 19474.58 150762.02 103 83 186 37 223

Figure 2 shows for those benchmarks the same information discussed for Figure 1. It
is easy to notice that there are no outgoing edges as no circuit or property has ever been
removed from the liveness benchmark sets.

The MULTI track was not carried out in 2014, hence Table 5 shows data only for the
previous three years. Notice that in this track, tools showed a large number of discrepancies
(i.e., properties reported as SAT by one or more tools, and as UNSAT by others). As a
consequence, the table reports results (that is, the number of SAT and UNSAT properties)
by explicitly taking into consideration the total number of discrepancies (column Discr.).

The number of benchmarks has increased over the years as well as their average size.
The number of properties per benchmark has considerably increased in 2012 due to the
growth in available industrially-generated benchmarks.
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101
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2013
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2014
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103 0 50 28

15 0 17 10

Figure 2. Evolution of LIVE benchmark sets over the years.

Table 5. Multiple Properties Track: Number of proved (SAT or UNSAT ) and unsolved prop-
erties, and average benchmark size, over the years.

Year Circuit
Avg

Latches
Avg

ANDs
Avg

Prop.
Solved Unsolved Total

SAT UNSAT Discr. Total

2011 24 819.29 6046.58 117.67 1500 1093 11 2604 220 2824

2012 76 9941.95 132736.96 1066.87 28765 20280 541 49586 31496 81082

2013 178 16887.25 202520.30 1208.03 32481 74782 5 107268 107762 215030

6.2 Main Benchmark Suites

During the HWMCC 2014, the benchmark set was composed of 230 different instances,
coming from both academia and industrial settings. Among industrial entries, 145 instances
belong to the SixthSense family (6s*, provided by IBM), 24 are Intel benchmarks (intel*),
and 24 are Oski benchmarks. Among the academic related benchmarks, the set includes 13
instances provided by Robert (Bob) Brayton (bob*), 4 benchmarks coming from Politecnico
di Torino (pdt*) and 15 Beem (beem*). Additionally, 5 more circuits, already present in
previous competitions, complete the set.

6.2.1 6s Suite

The 6s benchmark suite first appeared in the HWMCC 2011, and has grown in scope since.
Only a very small fraction of the 6s benchmarks are contrived. The majority are real indus-
trial hardware verification problems, representing a large diversity of hardware components
and verification obligations. Some of these represent verification problems directly from
front-end language processing into the AIGER format. These types of hardware verifica-
tion problems often significantly benefit from front-end transformations to simplify them
before applying heavier-weight verification and falsification algorithms [40]. In some cases,
transformations may outright solve them. Some of these benchmarks have already been
pushed through an aggressive simplifying sequence of transformations, to enable a focus on
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core verification algorithms. Some represent highly-transformed sub-problems, e.g., aris-
ing during sequential redundancy removal, which help enable the solution of the original
verification objective.

These benchmarks are predominantly safety properties and sequential equivalence check-
ing problems. Relatively few of them contain “constraints” (referred to as “invariant con-
straints” in AIGER terminology). This is largely due to a common industrial verification
methodology of defining “drivers” for a test bench. In contrast to constraints, which specify
illegal scenarios to be suppressed during verification, drivers are sequential state machines
reactive to the design under verification which provide only legal stimuli by construction.
Sequential constraints impose verification overhead not only to various formal verification
algorithms, but also to semi-formal bug-hunting flows, logic simulation, and acceleration
platforms.

Liveness benchmarks are also represented, though in a smaller proportion since only a
relatively narrow subset of hardware verification tasks entail liveness checking. Addition-
ally, “bounded liveness” is commonly used industrially to cope with the traditionally lower
scalability of liveness checking, since bounded liveness is more natural to check in a simula-
tion or acceleration platform, and since the resulting bounds offer useful insight into design
performance.

A total of 421 6s benchmarks have been submitted to date. Figure 3 plots their main
statistics. For the HWMCC 2014, a subset of the 6s suite was chosen. Since all tracks
supported only single properties, if a selected benchmark had multiple properties, one or a
small number of single property benchmarks were derived from randomly-selected properties
thereof. In some cases, this rendered a benchmark with challenging properties to be easily
solvable. Figure 4 depicts the number of model checkers submitted to the SINGLE track
(left-hand side) and to the LIVE track (right-hand side) which solved these. Note that there
is not a significant trend of size versus difficulty to be observed. However, these figures also
do not illustrate “reducibility” of these problems; a study of the size of a transformed
benchmark, at the point that the solving engine solved it, would likely illustrate more of a
trend.

6.2.2 The Oski Suite

The Oski benchmarks encode verification problems on a unit of the publicly available Ora-
cle’s OpenSPARC-T1 processor [32], implementing the 64-bit SPARC V9 architecture.

This processor, codenamed “Niagara”, is representative of a multi-threaded multi-CPU
architecture. The design features a CPU-cache crossbar (CCX) that manages data move-
ment across eight SPARC cores, four L2 cache banks, the I/O bridge (IOB) and the floating-
point unit (FPU) of the processor. The processor includes eleven concurrently working
arbiters, each of which has eight 16-deep FIFOs for scheduling packet requests. The high
level of concurrency makes it hard to exhaustively verify the design with simulation.

The Oski benchmarks are a complete implementation of end-to-end checkers [3] for
the CCX portion that manages the data movement from any of the eight SPARC cores
to any of the four L2 cache banks, IOB or FPU. The end-to-end checkers are written so
that it is possible to get 100% coverage of the functionality of the design. All checkers are
implemented as safety properties, originally written in SVA and later converted to AIGER.

151



G. Cabodi et al.

 1

 10

 100

 1000

 10000

 100000

 1e+06

 1e+07

 0  50  100  150  200  250  300  350  400  450

N
u
m
b
e
r
 
o
f
 
e
l
e
m
e
n
t
s

Number of benchmarks

ANDs
Inputs
Latches
Safety properties
Liveness properties
Invariant constraints
Fairness constraints

Figure 3. Design characteristics by benchmark.
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Figure 4. Number of solves with respect to benchmark characteristics for the SINGLE track
(left-hand side) and LIVE track (right-hand side).
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A manual analysis as well as a coverage analysis [50] has shown that a bounded proof
depth of 24 cycles is enough to get the desired coverage on the design. Unfortunately, for
the hardest checker (the one that verifies correctness of data outputs from data inputs),
this bound is not easily reachable employing existing tools. Without using some manually
crafted abstractions [3], it is not possible to reduce this required bound, so Oski is interested
in how far the fully automated solutions can go.

6.2.3 The Beem Suite

The Beem suite [46], which stands for “BEnchmarks for Explicit Model checkers”, originally
included 300 instances deriving from more than 50 parametrized models. The suite was born
in the domain of explicit model checking, where pure brute force is used by tools (such as
Spin or Murphi) to exhaustively explore the search space. The models were originally
specified in a low-level modeling language (called DVE) based on communicating extended
finite state machines. This language is natively supported by the DiVinE [4] (Distributed
Verification Environment) model checking tool, which acts as both a model checker and
a library. As the language is easy to understand and parse, models have been translated
in several other formats, such as AIGER, and a few of them have been selected for the
HWMCC. Most of the circuits represent well-known examples and case-studies, such as
mutual-exclusion algorithms, protocols, controllers, planning and scheduling algorithms.
Models include safety properties, expressed as reachability of a predicate, and liveness
properties, described in temporal logic.

6.2.4 The Other Suites

The remaining set of benchmarks includes instances selected among the hard-to-solve ones
from previous competitions:

• bob* (13 instances) are benchmarks provided by Robert (Bob) Brayton [48]. Most of
them are sequential equivalence checking problems.

• intel* (24 instances) were submitted by Zurab Khasidashvili for the first edition.

• pdt* (4 benchmarks) problems include two synchronous problems coming from mod-
eling the k-king problem [47] (pdtsw*), and two sequential equivalence checking prob-
lems (pdtfifo1to0 and pdtpmsudc16).

• cmudme2 and nusmv* are benchmarks generated from existing SMV designs.

• All eijk* benchmarks are sequential equivalence checking problems generated by Van
Eijk [58], based on original ISCAS’93 circuits.

7. Results

This section provides an analysis of results obtained by the competing tools at the HWMCC
2014, with the main purpose of characterizing strengths and weaknesses of various engines
and techniques, evaluating affinities among the tools, and between tools and solved prob-
lems. We first discuss the results of ABC, selected as the winner of the SINGLE track
according to the official 2014 rankings, then we present various statistics on all tools.
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7.1 ABC results

ABC -based tools competed in the HWMCC 2014 in the following tracks:

• SUPROVE and SIMPSAT both competed in the SINGLE track, achieving respec-
tively the first and second position in the overall ranking. More in detail, SUPROVE
was the tool able to solve the largest number of problems: 124 in total (46 SAT and
78 UNSAT ). SIMPSAT followed closely with 116 solved instances (50 SAT and 66
UNSAT ).

• SIMPLIVE won the LIVE track with 177 solved problems in total (97 SATand 80
UNSAT ).

• SUPDEEP competed in the DEEP track, placing in eighth position with a score of
87.82. It also competed in the SINGLE track.

Looking at SINGLE track results, SUPROVE solved about 56% of 6s, 71% of Oski, 25%
of pdt, 29% of Intel, 70% of bob, and 40% of beem benchmarks. Furthermore it solved
cmudme2, the two eijkbs, but no nusmv benchmarks. Both SUPROVE and SIMPSAT
were the only tools able to solve the following benchmarks: oski3ub0i, 6s269r, bobsmvhd3,
6s349rb06, 6s7, oski4ui, 6s320rb1, and bobsmhdlc1. Both SUPROVE and SIMPSAT were
among the few tools able to solve the following instances: bobsmmem, obsmmips, bobmiter-
synbm, bobsmfpu. Both SIMPSAT and SUPROVE resulted in a non-negligible number
of memory overflows: 9 for SIMPSAT and 7 for SUPROVE. In particular, three instances
(6s274r, 6s358r and 6s359) caused a memory overflow only for SIMPSAT, SUPROVE and
SUPDEEP. This suggests that some of the engines or simplification techniques applied by
these tools do not scale well on those instances, or that the degree of concurrency (and
subsequent number of activated processes) was too high.

Figure 5(a) shows the numbers of solved benchmarks by individual ABC engines and
the number of times a specific engine was activated. Data was obtained by additional
experimentation done (offline) with SUPROVE. For each engine, the vertical bar on the
left-hand side represents the number of benchmarks solved, whereas the vertical bar on the
right-hand side indicates the number of times a specific engine was activated. Figure 5(b)
represents, for each engine, the number of solved benchmarks classified by family. Overall
data show that 34 problems were solved (after reductions) by combinational verification
engines (dsat, iprove, splitprove), 24 problems by BMC (in different configurations), 16 by
rarity simulation, 40 by PDR, 6 by interpolation, and 4 by BDD-based methods.

Figure 6 shows the simplification power of initial ABC optimization techniques in terms
of number of latches and AIG gates, with axes labeled by thousands of latches and AND
gates. Overall, while some simplification and abstraction can be hidden inside some engine,
these plots show a significant impact of transformational techniques.

7.2 Single Safety Track

Figure 7 illustrates the distribution of time and memory usage for the SINGLE track. The
former takes into account only solved instances, thus omitting time-outs and generically
failed runs to improve readability. The latter includes the entire benchmark set.
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Figure 5. ABC Engine Statistics: Number of benchmarks solved and number of runs per engine
(a), and number of benchmarks solved per family (b).
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Figure 6. Design size reduction in terms of thousands of latches (a) and AIG gates (b).
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Figure 7. CPU times for all solved instances (a) and memory usage for the entire competition
(b).
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Figure 8. Total wall-clock time and total CPU time for all solved instances in the SINGLE track.

Portfolio tools, using multiple threads and processes, are by far the most widespread
approach. Portfolio strategies range from simple schemes, basically launching a predefined
and independent set of concurrent processes, to more complex strategies, where simplifying
transformations are intertwined with model checking engines, under dynamic activation,
control and tuning strategies. The degree of concurrency can be measured by the ratio
of wall-clock time versus CPU time, ranging from 3 to about 8, for most tools, with the
exception of TIP (and its variants), BLIMC /AIGBMC, ShiftBMC, and LS4 for which
wall-clock and CPU times do coincide. Figure 8 provides a more accurate view on this
measure, and they clearly show the dominance of tools exploiting concurrency. This is
obviously motivated by the rules of the competition, that encourage multi-core exploitation
by establishing time limits in terms of wall-clock time.
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Figure 9. Solved instances represented as bars (a) and number of successful model checkers for
each benchmark (b).

Obviously, memory limits, and thread (process) slow-down due to shared memory access,
are key factors to be considered while developing a multi-engine tool. This is why none of
the tools exploited the full availability of 12 cores.

Figure 9 illustrates the distribution of solved instances by model checker and the number
of solves by benchmark. Figure 9 (a) shows that the top three model checkers, by number
of solved instance, are SUPROVE, SIMPSAT and PdTRAV. In the final ranking of the
SINGLE track, SUPROVE and SIMPSAT, tracks being part of the ABC suite, occupy
conjointly the first position. Since PdTRAV presented a discrepancy on a newly introduced
Oski benchmark, it was disqualified and therefore it does not appear in the final ranking.
In its stead V3 ranked second, followed by IIMC. A subsequent inquiry found that the
problem affecting PdTRAV was due to a bug in the reduction routine invoked while applying
hidden constraints. It can be noticed that SUPDEEP was not able to solve any instance,
nevertheless we kept its entry in all the results provided in this paper for the sake of
completeness.

It can be can clearly seen that some model checkers are just covering SAT instances,
as they only use BMC engines, whereas other model checkers solve both SAT and UNSAT
problems. Bounded model checkers cover a range of about 30 to 40 SAT problems, with
ABC (SUPROVE and SIMPSAT ) getting extra coverage by rarity simulation. Concerning
UNSAT problems, a large majority of tools cover from 60 to 70 problems, with ABC and
PdTRAV getting 78 and 76, respectively. AVY, being the only tool not to include a BMC
engine, is clearly aimed at solving UNSAT problems. Nevertheless, it was still able to solve
30 SAT instances. This suggests that several SAT instances in the benchmarks set are
not beyond the reach of UMC techniques. The plot in Figure 9 (b) evaluates the degree
of hardness of problems, showing that 79 instances remain unsolved, whereas the degree of
coverage of other problems follows an almost linear pattern, from hard to easy problems.
In any case, a large number of designs were solved only by few model checkers.
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Figure 10. Number of unique solves (SAT, first bar, and UNSAT, second bar) and memory
overflows (third bar) per contestant.

From a more in depth analysis of the full set of results, it is possible to identify the best
performing tool for each benchmark family, considering the number of solved instances, and
the average solving time as a tie-breaker. SUPROVE is the best tool with respect to the 6s,
bob and Oski families while IIMC performs particularly well on the beem and pdt families.
nuXmv and PdTRAV both solve the highest number of Intel benchmarks, but the former
requires less time on average. In the case of the beem family, we can ascribe the good
performance of IIMC to a particular pre-processing technique as described in 5.1.7. In the
other cases we have no knowledge of ad hoc techniques targeting specific families.

In order to further characterize the competitors, Figure 10 shows the number of unique
solves, i.e., instances on which only one model checker is successful, divided between SAT
and UNSAT instances, and the number of memory overflows for each contestant. We
analyzed the number on unique solves hoping to identify model checkers with orthogonal
behavior, i.e., model checkers able to solve subsets of benchmarks otherwise unsolved. The
results show that the degree of orthogonality among the tools is rather low, as the number of
unique solves is small with respect to the whole benchmarks set. Most of the model checkers
tend to cover about the same subsets of instances, with few exceptions. This is probably
due to the high popularity of portfolio approaches. Unsolved instances may either be too
complex to be tackled with state-of-the-art techniques and currently available hardware
resources, or may require completely new approaches to be solved.

We also analyzed the tool results from the perspective of memory consumption, in order
to assess scalability limits of each tool and the model checking techniques they employ. With
the exception of SUPDEEP, most of the tools encounter on average ten memory overflows,
with IIMC and TIP scoring as low as zero. This suggests that not a single instance is
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completely intractable, memory-wise, but there are a few that require careful management
of the available resources.

A special consideration in this regard can be made taking into account nuXmv. Such a
model checker, on the high end spectrum in terms of overall results, surprisingly encountered
the most memory overflows, disregarding SUPDEEP, over a set of benchmarks that did not
cause problems to any other competitor. Upon further inquiry, its authors discovered an
underlying bug with the way resolution proofs were stored and proof-logging was managed.

Figure 11 illustrates the correlation among tools using Pearson’s index [45]. In statistics,
the Pearson product-moment correlation coefficient is a measure of the linear correlation
(dependence) between two variables X and Y . It gives a value between +1 and −1 inclusive,
where 1 is total positive correlation, 0 is no correlation, and −1 is total negative correlation.
It is widely used in the sciences as a measure of the degree of linear dependence between two
variables. Pearson’s correlation coefficient when applied to a sample is commonly computed
as follows:

r =

∑n
i=1(xi − x) · (yi − y)√∑n

i=1(xi − x)2 ·
√∑n

i=1(yi − y)2

In our framework, given a set of benchmarks B with cardinality n, the i index is used
to enumerate benchmarks in B. Variables x and y represent model checkers, xi and yi
take discrete value 0 (or 1), to denote failure (or success) of tools x and y with the i-th
benchmark instance. x represents the ratio of solved instances for x (x = |solvedx|/n),
dually for y.

In Figure 11, the correlation is computed taking into account all solved verification
instances (a), only SAT designs (b), and only UNSAT benchmarks (c).

Theoretically, depending on the (negative or positive) index value, the correlation may
be considered very strong when in the range [0.70, 1.00], strong [0.40, 0.69], moderate
[0.30, 0.39], weak [0.20, 0.29], or negligible [0.00, 0.19]. Practically, in our cases, small coeffi-
cient variations may be considered as meaningless, and we use a coloring mapping strategy,
to indicate weak/moderate/strong correlations. Darker gray is used to indicate higher
affinity. Diagonals trivially represent self-affinity equal to 1.00. High values usually indi-
cate that the tools share a large number of commonly solved benchmarks and that only a
few designs were solved by just one of the tools. For example, the high correlation (0.80)
between TIPBMC and ShiftBMC is motivated by the fact that 4 designs are solved only
by TIPBMC, 1 only by ShiftBMC, and 30 by both tools. Conversely, small values often in-
dicate a small number of commonly solved designs. For example, the low correlation (0.11)
between TIPBMC and AVY is obtained because 7 designs are solved only by TIPBMC, 73
only by AVY, and 27 by both tools.

Figure 11(a) generally shows low affinity values, with the exception of pure BMC tools,
that are mutually more related than other tools. SUPDEEP is completely unrelated with
all other tools as it does not solve any design. Figure 11(b) (analysis of SAT problems)
shows high affinity levels among all tools, which can be explained by the observation that
SAT problems are mostly solved by BMC engines. SUPROVE and SIMPSAT show lower
correlation with other tools, as they get a 10+ extra coverage by rarity simulation. Fig-
ure 11(c) (analysis of UNSAT problems) shows lower affinities on average, due to the fact
that proof oriented portfolios are typically more diversified, and sensitive to model trans-
formations/reductions/abstractions. Though in both Figure 11(b) and 11(c) tools from the
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Figure 11. Correlation among tools: Pearson’s Index over solved instances as heat-map for all
SAT and UNSAT design (a), only SAT (b) and only UNSAT (c).

same group are characterized by a certain affinity, Figure 11(c) basically witnesses a certain
diversification in the set of competing tools. A similar consideration could be derived by
observing that the winner tool solved 124 problems, out of 151 globally solved. In Fig-
ure 11(c), most affinities are below the 0.60 threshold, with very few exceptions (excluding
same group tools), such as TIP -V3db (0.74), AVY -nuXmv (0.65), nuXmv -TIP (0.65), and
SUPROVE -V3 (0.60).
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Figure 12. CPU times for all solved instances, and memory usage for all benchmarks.

As a final remark, notice that those results may be considered somehow disappointing. In
fact, very high negative correlation values would have indicated complementary strength of
the tools, i.e., complementary set of benchmark solved. That would have implied that a very
simple portfolio scheme, somehow running both tools in a proper way, would have drastically
increased the number of solved benchmarks, giving some new ground for improvements.
Conversely, we have to argue that most of the tools, being per se already multi-engine,
actually exploit most of the current (publicly available) technology.

7.3 Liveness Track

This experimental section closely follows Section 7.2 by presenting statistics on the LIVE
track.

Figure 12 plots time and memory usage for all tools competing in the LIVE track.

Figure 13 provides a more accurate view on this measure, and it clearly shows the
dominance of tools exploiting concurrency. This is obviously motivated by the rules of the
competition, that encourage multi-core exploitation by establishing time limits on wall-clock
time.

Figure 14 shows that the top three model checkers, by number of solved instance, are
SIMPLIVE, nuXmv and IIMC, representing the final ranking for the LIVE track. As for
the SINGLE track, it can be seen that some model checkers are just covering SAT instances,
as they only use BMC engines, whereas other model checkers solve both SAT and UNSAT
problems. The range of solved SAT instances is a bit more varied, with respect to the
SINGLE track, ranging from 15 to 97, although most of the competitors score closer to
60 in the worst cases. Concerning UNSAT problems, a large majority of tools cover from
60 to 70 problems, with only SIMPLIVE reaching 80. Disregarding BMC-only model
checkers, the results of UNSAT problems are rather uniform as well as the SAT ones. With
the exception of LS4, whose author already acknowledged its shortcoming in the specific
context of the competition, and V3, all the others contestants tend to cover the same subset
on instances.
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Figure 15 shows the number of unique solves, divided between SAT and UNSAT in-
stances, and the number of memory overflows for each contestant. As it can be seen from
such a figure, data distribution follows a pattern similar to the one encountered whilst an-
alyzing the SINGLE track, with a limited amount of unique SAT or UNSAT solves, thus
it is possible to draw the same conclusions as before.

Figure 16 (a), (b), and (c) show tool correlation. As for the SINGLE track, SAT and
UNSAT statistics (Figure 16 (a) and (b)) give better insights, confirming that SAT oriented
techniques show higher correlation (e.g., 0.89 for nuXmv -IIMC, 0.82 for TIPBMC -V3 ).
Much lower correlation ratios are found with UNSAT problems, where richer and more
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overflows (third bar) per contestant.

diversified portfolios cover non fully overlapping sets of benchmarks. It is also interesting
to notice that Figure 16(b) shows some negative affinity scores.

7.4 Deep Bound Track

The DEEP track was introduced in HWMCC 2012, and has been present ever since, as
deep bound capabilities are deemed rather important in several industrial settings. In a
context in which unbounded model checking cannot provide a conclusive answer, being able
to assess the progress achieved may be crucial. In order to do so, the depth at which a
model checker could prove unsatisfiability is often the most relevant metric.

For the purposes of the track, the targeted benchmark set consists of all the unsolved
instances for the SINGLE track, thus for the HWMCC 2014 edition resulting in 79 circuits.

Figure 17 illustrates the bound reached for each verification instance by each tool. The
horizontal line set at bound 100 marks the cap point used for scoring purposes. The figure
shows a certain uniformity of behavior for most of the tools, based on a BMC engine, with
the exception of IIMC and TIP.

8. Lessons Learned

Some of the lessons learned have already been discussed in previous sections. We collect here
some observations on the competition, pointing out pros and cons, and we propose some
ideas for future editions. We first discuss some of the lessons learned from an organizational
standpoint, then for the general user and/or competition participant.
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Figure 16. Correlation among tools: Pearson’s Index over solved instances as heat-map for all
SAT and UNSAT benchmarks (a), only SAT (b) and only UNSAT (c).

8.1 Lessons for Organizers

A major problem in organizing the competition is benchmark selection. This is an issue
common to other competitions as well, as a certain renewal of an initial benchmark set is
needed in order to avoid tool biasing and over-fitting. While in the beginning HWMCC
editions always experienced a growth of the benchmark set, with various contributions from
both participant groups and industrial partners, selection can now be done on a wide set
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Figure 17. Reached bounds distribution by instance.

of available problems: Elimination of easy instances and randomization of choices, when
possible, have been the driving criteria.

Overall, the set of benchmarks used for the 2014 edition includes many challenging
problems, as witnessed by the large set of unsolved problems. Some unbalancing can be
observed in the ratio of UNSAT versus SAT instances, with a certain dominance of the
UNSAT ones. The set of industrial problems is undoubtedly relevant, mainly due to the
recent contributions of IBM and Osky, added to the original Intel set. Nonetheless, the
industrial set probably suffers from a certain polarization, and future contributions from
other companies could greatly increase the value of the benchmark collection. As a last
consideration, most of the industrial contributions are in the SINGLE track, whereas the
number of industrial LIVE problems is still low.

The benchmark format, AIGER, was developed with a main goal of providing a common
denominator of all bit-level formats, with clean and simple semantics, which still allows to
encode relevant industrial model checking problems. We are aware of several aspects where
AIGER fails short to reach this goal. First, word-level information available in some appli-
cations might help to speed-up model checking, but AIGER is a plain bit-level format, and
thus such information is lost during the encoding process. Second, since functional mod-
els have much cleaner semantics than relational ones, particularly in a synthesis context,
AIGER needs an additional encoding step to handle relational problems, such as latch based
designs used in some companies. Third, application level properties might be mapped to
multiple AIGER properties during the encoding process. Grouping or prioritizing AIGER
properties to partially encode such relations is not supported. Beside these hard to over-
come shortcomings there are several additional syntactic issues, including binary headers,
arbitrary annotations and a user extensible section format, which will be addressed in future
versions.
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Concerning competition rules, the preliminary phase, oriented to tool congruency checks,
could be significantly improved. Though not present in other competitions, it is an impor-
tant practice in order to tackle problems related to formats (of AIGER files, counterexamples
and log files) as well as tool configuration/installation on the target platforms. Discrepancy
checking is another organizational issue, that is basically handled by detecting conflicting
verdicts (by different tools) and by simulating counterexamples/witnesses. This potentially
misses unsound/wrong UNSAT verdicts, as no proof of unsatisfiability (e.g., an invariant)
is currently required to model checkers.

Time limits are another relevant issue, with impact on rankings and value of the overall
competition itself. As already pointed out, the 900 second choice is a compromise, mainly
motivated by computing resource limits. Though it is clear that higher limits would go in
the direction of industry scale problems, its still difficult to envisage big changes in the near
future.

Ranking criteria are a final topic deserving consideration. Although counting completed
instances is a widely accepted measure for single (safety as well as liveness) tracks, ranking
criteria for MULTI and DEEP tracks are more critical, and potentially subject to further
discussion on how to weight the success (or partial success) on each problem in the given
set.

8.2 Lessons for Developers and Users

Developers and tool users are mostly interested to competition results for their ability to
show strengths and weaknesses of different tools/techniques, as well as the relevance of
(subsets of) the used benchmarks. Though part of this paper has gone in this direction,
it is extremely difficult (if not scientifically impossible) to drive conclusions from only the
competition results.

Competition results (including log files) just provide little more than time and memory
statistics. More detailed data would be needed for a thorough scientific analysis/evaluation.
For end users, it would be convenient if all tools, alongside their specific settings, were made
available after each year competition, for the sake of reproducibility. As a matter of fact,
industries have never participated to the competition. Though there are obvious reasons
for that, it is well known that many industrial groups test their tools on the competition
benchmarks.

Industrial and academic toolmakers often exploit competition data as a starting point for
more detailed comparisons, whenever competing tools (or their variants) are freely available.

Given the above limitations, the following concluding remarks could be drawn:

• Portfolio tools seem to be the current standard, and they seem to have an edge over
single-engine tools.

• IC3 seems to be the most performing engine on all portfolio based model checkers.

• Minisat seems to be the preferred SAT solver by model checker developers. Authors
probably chose to focus on other issues rather than integrating the newest, and pos-
sibly more powerful, SAT solvers in their tools. It could be interesting to assess the
impact of such a choice on the competition results.
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• BMC tools are the most natural competitors for the DEEP tack as they generally reach
deeper bounds faster than other unbounded model checking engines. The top four
model checkers in the DEEP track (including hors concours tools BLIMC /AIGBMC )
are in fact BMC tools.

• All tools are now evaluated in terms of solved instances in the slotted time. Only wall-
clock times, CPU times, memory usage and the final decision of tools over instances
are known. Competitors should be encouraged to output more detailed information
in order to allow the organizers, other competitors and other researchers in general,
to better analyze the results and potentially learn more from competition data.

9. Conclusions

In this paper, after providing a historical overview of the Hardware Model Checking Com-
petition, we have primarily focused on the 2014 edition. We have described the competing
tools and the set of benchmarks. An experimental evaluation of the competition results is
proposed, with the aim of characterizing the tools, their strengths and weaknesses as well as
measuring their mutual affinities. We have also provided some data on benchmark families,
and on the breakdown of individual engine contribution in a portfolio.

Tool descriptions have been directly obtained by their authors. Most of the experimental
data have been derived from the HWMCC 2014 results. Data on ABC have been partially
generated by new runs.

Though we are aware that more could be done in view of a more accurate observation
and characterization of tool versus tool affinity and tool/engine versus problem coverage,
this work sheds some light on HWMCC ranking and results. We deem the analysis we
provide can be very interesting both for an industrial and an academic reader.
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[4] J. Barnat, L. Brim, I. C̆erná, P. Moravec, P. Roc̆kai, and P. S̆imec̆ek. DiVinE A Tool
for Distributed Verification. In Computer Aided Verification, 4144 of Lecture Notes
in Computer Science, pages 278–281. Springer Berlin Heidelberg, 2006.

[5] J. Baumgartner, H. Mony, A. Mishchenko, and R. K. Brayton. Speculative reduction-
based scalable redundancy identification. In Proc. Design Automation & Test in Europe
Conf., pages 1674–1679. IEEE Computer Society, April 2009.

[6] D. Le Berre, O. Roussesl, and L. Simon. The International SAT Competitions Web
Page. http://www.satcompetition.org/. Accessed: 2007-06-01.

[7] A. Biere. Picosat essentials. JSAT, 4(2-4):75–97, 2008.

[8] A. Biere. Yet another local search solver and Lingeling and friends entering the SAT
Competition 2014. In A. Belov, M. J. H. Heule, and M. Järvisalo, editors, SAT Com-
petition 2014, B-2014-2 of Department of Computer Science Series of Publications
B, pages 39–40. University of Helsinki, 2014.

[9] A. Biere, C. Artho, and V. Schuppan. Liveness Checking as Safety Checking. In
FMICS, 2002.

[10] A. Biere, A. Cimatti, E. M. Clarke, and Y. Zhu. Symbolic Model Checking without
BDDs. In TACAS ’99: Proceedings of the 5th International Conference on Tools and
Algorithms for Construction and Analysis of Systems, pages 193–207, London, UK,
1999. Springer.

[11] A. Biere, K. Heljanko, T. Junttila, T. Latvala, and V. Schuppan. Linear encodings of
bounded LTL model checking. In Logical Methods in Computer Science, 2(5), pages
1–64, 2006.

[12] A. R. Bradley. Sat-based model checking without unrolling. In J. Ranjit and D. A.
Schmidt, editors, Verification, Model Checking, and Abstract Interpretation - 12th In-
ternational Conference, VMCAI, 6538 of Lecture Notes in Computer Science, pages
70–87. Springer, January 2011.

[13] A. R. Bradley, F. Somenzi, Z. Hassan, and Y. Zhang. An Incremental Approach to
Model Checking Progress Properties. In Proc. of the Int. Conf. on Formal Methods in
Computer-Aided Design, November 2011.

[14] R. Brayton and A. Mishchenko. ABC: An academic industrial-strength verification
tool. In Proc. Computer Aided Verification, 6174 of Lecture Notes in Computer
Science, pages 24–40. Springer-Verlag, 2010.

[15] C. Wu and C. Wu and C.Lai and C. Huang. A counterexample-guided interpolant
generation algorithm for SAT-based model checking. In Proc. Design Automation
Conference, pages 1–6, Austin, Texas, USA, June 2013. IEEE Computer Society.

[16] G. Cabodi, P. Camurati, and M. Murciano. Automated Abstraction by Incremental
Refinement in Interpolant-based Model Checking. In Proc. Int’l Conf. on Computer-
Aided Design, pages 129–136, San Jose, California, November 2008. ACM Press.

168

http://www.satcompetition.org/


Hardware Model Checking Competition 2014

[17] G. Cabodi, S. Nocco, and S. Quer. The PdTRAV tool.
http://fmgroup.polito.it/index.php/download/viewcategory/

3-pdtrav-package. Accessed: 2014-12-01.

[18] G. Cabodi, S. Nocco, and S. Quer. Thread-based multi-engine model-checking for
multicore platforms. ACM Transactions on Design Automation of Electronic Systems,
18(3):36:1–36:28, 2013.

[19] G. Cabodi, M. Palena, and P. Pasini. Interpolation with Guided Refinement: revisiting
incremetality in SAT-based Unbounded Model Checking. In K. Claessen and V. Kun-
cak, editors, Proc. of the Int. Conf. on Formal Methods in Computer-Aided Design,
pages 43–48, Lausanne, Switzerland, November 2014.

[20] M. L. Case, H. Mony, J. Baumgartner, and R. Kanzelman. Transformation-Based
Verification Using Generalized Retiming. In FMCAD, November 2009.

[21] R. Cavada, A. Cimatti, M. Dorigatti, A. Griggio, A. Mariotti, A. Micheli, S. Mover,
M. Roveri, and S. Tonetta. The NuXmv Tool.
https://nuXmv.fbk.eu/. Accessed: 2014-06-01.

[22] R. Cavada, A. Cimatti, M. Dorigatti, A. Griggio, A. Mariotti, A. Micheli, S. Mover,
M. Roveri, and S. Tonetta. The nuxmv symbolic model checker. In A. Biere and
R. Bloem, editors, Proc. Computer Aided Verification, 8559 of Lecture Notes in Com-
puter Science, pages 334–342. Springer International Publishing, 2014.

[23] K. Claessen and N. Sorensson. A liveness checking algorithm that counts. In G. Cabodi
and S. Singh, editors, Proc. of the Int. Conf. on Formal Methods in Computer-Aided
Design, pages 52–59, Oct 2012.

[24] N. Eén and A. Biere. Effective preprocessing in SAT through variable and clause elim-
ination. In F. Bacchus and T. Walsh, editors, Theory and Applications of Satisfiability
Testing, 8th International Conference, SAT 2005, St. Andrews, UK, June 19-23, 2005,
Proceedings, 3569 of Lecture Notes in Computer Science, pages 61–75. Springer, 2005.

[25] N. Een, A. Mishchenko, and R. K. Brayton. Efficient Implementation of Property
Directed Reachability. In P. Bjesse and A. Slobodova, editors, Proc. of the Int. Conf.
on Formal Methods in Computer-Aided Design, FMCAD ’11, pages 125–134, Austin,
Texas, 2011.

[26] Z. Hassan, F. Somenzi, M. Dooley, and A. Bradley. The IIMC tool.
http://iimc.colorado.edu/. Accessed: 2014-12-01.

[27] K. Heljanko, T. A. Junttila, and T. Latvala. Incremental and complete bounded model
checking for full PLTL. In K. Etessami and S. K. Rajamani, editors, Computer Aided
Verification, 17th International Conference, CAV 2005, Edinburgh, Scotland, UK, July
6-10, 2005, Proceedings, 3576 of Lecture Notes in Computer Science, pages 98–111.
Springer, 2005.

169

http://fmgroup.polito.it/index.php/download/viewcategory/3-pdtrav-package
http://fmgroup.polito.it/index.php/download/viewcategory/3-pdtrav-package
https://nuXmv.fbk.eu/
http://iimc.colorado.edu/


G. Cabodi et al.

[28] M. J. H. Heule, W. A. Hunt, and N. Wetzler. Verifying refutations with extended
resolution. In M. P. Bonacina, editor, Automated Deduction CADE-24, 7898 of
Lecture Notes in Computer Science, pages 345–359. Springer Berlin Heidelberg, 2013.

[29] S. Kupferschmid, M. D. T. Lewis, T. Schubert, and B. Becker. Incremental prepro-
cessing methods for use in BMC. Formal Methods in System Design, 39(2):185–204,
2011.

[30] C. Lai, C. Wu, and C. Huang. Adaptive Interpolation-Based Model Checking. In
Asia and South Pacific Design Automation Conference (ASP-DAC). IEEE Computer
Society, 2014.

[31] T. Latvala, A. Biere, K. Heljanko, and T. A. Junttila. Simple bounded LTL model
checking. In A. J. Hu and A. K. Martin, editors, Formal Methods in Computer-Aided
Design, 5th International Conference, FMCAD 2004, Austin, Texas, USA, November
15-17, 2004, Proceedings, 3312 of Lecture Notes in Computer Science, pages 186–200.
Springer, 2004.

[32] D. Lee. Opensparc - a scalable chip multi-threading design. In VLSI Design, 2008.
VLSID 2008. 21st International Conference on, pages 16–16. IEEE, 2008.

[33] M. J. H. Heule and N. Manthey and T. Philipp. Validating Unsatisfiability Results
of Clause Sharing Parallel SAT Solvers. In D. Le Berre, editor, POS-14, 27 of EPiC
Series, pages 12–25. EasyChair, 2014.

[34] N. Manthey. The Shift BMC tool. http://tools.computationallogic.org/

content/riss427.php. Accessed: 2014-12-01.

[35] N. Manthey. Coprocessor 2.0 – A flexible CNF simplifier. In A. Cimatti and R. Sebas-
tiani, editors, Theory and Applications of Satisfiability Testing SAT 2012, 7317 of
Lecture Notes in Computer Science, pages 436–441. Springer Berlin Heidelberg, 2012.

[36] N. Manthey. Riss 4.27. B-2014-2 of Department of Computer Science Series of
Publications B, pages 65–67. University of Helsinki, Helsinki, Finland, 2014.

[37] K. L. McMillan. Interpolation and SAT-based Model Checking. In Warren A. Hunt
Jr. and Fabio Somenzi, editors, Proc. Computer Aided Verification, 2725 of Lecture
Notes in Computer Science, pages 1–13, Boulder, CO, USA, 2003. Springer.

[38] A. Mishchenko. ABC: A System for Sequential Synthesis and Verification.
http://www.eecs.berkeley.edu/^alanmi/abc/. Accessed: 2014-12-01.

[39] A. Mishchenko, N. Eén, R. Brayton, J. Baumgartner, H. Mony, and P. Nalla. GLA:
Gate-Level Abstraction Revisited. In DATE, 2013.

[40] H. Mony, J. Baumgartner, V. Paruthi, R. Kanzelman, and A. Kuehlmann. Scalable
Automated Verification via Expert-System Guided Transformations. In Proc. of the
Int. Conf. on Formal Methods in Computer-Aided Design, November 2004.

170

http://tools.computationallogic.org/content/riss427.php
http://tools.computationallogic.org/content/riss427.php
http://www.eecs.berkeley.edu/^alanmi/abc/


Hardware Model Checking Competition 2014
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