HW accelerated Ultra Wide Band MAC protocol
using SDL and SystemC

Malek Haroud, Ljubica Blazevi¢
STMicroelectronics, AST, 39, Ch. du Champ des Filles, 1228 Plan-les-Ouates, Switzerland
{malek.haroud,ljubica.blazevic} @st.com
Armin Biere
Computer Systems Institute, ETH Ziirich, RZ H15 Clausiusstr. 59, 8092 Ziirich, Switzerland, biere @inf.ethz.ch

Abstract— In this paper we present a novel method for design-
ing and validating a HW accelerated MAC controller for Ultra
Wide band systems. Guaranteed response time and low power
consumption are the two main drivers for the proposed HW/SW
partitioning. We propose to use the SDL formalism in a way that
facilitates the refinement verification of the SDL model against
its derived SystemC implementation.

I. OVERVIEW OF STANDARD IEEE 802.15.3

The upcoming ultra-wide-band radio technology holds great
promises in revolutionizing wireless communications. UWB
technology offers very high-bit rates with a very low-power
operation. In the network of UWB devices, medium access
control (MAC) coordinates transmission access to the channel
which is shared among all devices. IEEE 802.15.3 MAC [1]
is adapted as a good candidate of MAC for UWB PHY.

We distinguish two classes of MAC functionalities. Those
with hard real time constraints that should be implemented in
HW, whereas functionalities with soft timing constraints are
implemented in software.

IEEE 802.15.3 MAC protocol is centrally coordinated, with
a PicoNet Coordinator (PNC) which synchronizes the devices
(DEVs) and allocates the communication resources. Even if
the MAC protocol is a centralized one, the topology is ad-
hoc and piconet communications are in peer to peer mode.
Timing within a piconet is based on the superframe, which is
illustrated in Figure 1.

Figure 1: Super frame structure

The superframe is composed of three parts: a beacon, a
Contention Access Period (CAP) and a Contention Free Period
(CFP). The beacon frame is sent by the PNC at the beginning
of every superframe. It is used to time-synchronize all DEVs
to the PNC’s clock, to set the superframe timing allocations,
as well as to communicate management information for the
piconet. The Contention Access Period (CAP) is used to

communicate commands and non-stream asynchronous data.
During CAP, DEVs access the channel using CSMA/CA. PNC
divides the CFP into channel time allocation (CTA) slots.
CFP is used for asynchronous and isochronous data streams.
Channel access in the CFP is based on a TDMA method. Each
CTA has guaranteed start time and duration within the CFP.

II. MAC HW/SW PARTITIONING: RATIONALE

In order to meet the real time requirements of 802.15.3
MAC with UWB PHY, a partition of the MAC into MAC
software and MAC hardware is necessary. Examples of time
critical MAC functions that are to be executed in HW:

e In the case of immediate ACK policy (known at the
receiver at frame reception), the receiver should send
ACK frame back to the source if the frame is correctly
received in a very short time. Frame verification and
creation and transmission of ACK frame is done in HW.

o Beacon frame reception and decoding is another time
critical operation. Since the beacon frame payload sets the
superframe timing information, upon beacon reception,
the device should parse its content, and be ready for frame
transmitting or receiving just after the beacon.

I1II. MAC HW ARCHITECTURE

We introduce the following MAC HW architecture for IEEE
802.15.3 MAC.

Frame
Storage

MAC HW
Main Control Control

Control

MAC SW Interface

™ RX
Coordination

PHY SAP

Figure 2: HW MAC architecture

The main MAC HW building blocks that handle the CFP
period are:

1) MAC HW management module that comprises the fol-
lowing submodules:

o Superframe Control: decodes beacon frames, identi-
fies RX/TX opportunities during a CTA period and
manages the superframe clock timer.

¢ MAC HW Main Control: initiates transmission or
reception process (CTA level).

o TX Coordination: controls the transmission of one
or more MAC frames in CTA (data flow control,
timing, ACK policy).

« RX Coordination: controls reception of one or more
MAC frames in CTA and forwards the beacon to the
Superframe Control block

2) PHY interface block is in charge of transmit-
ting/receiving frames to/from the physical layer.

3) Frame storage is a memory storage of frames that are
under control of MAC HW and that are transferred from
MAC SW.

IV. DESIGN METHODOLOGY
A. Flow

Figure 3 depicts the proposed flow and can be summarized
as follows:

Requirement MSCs

]

SDL model

i

Generated MSCs

|

SystemC model

¢ i

FPGA netlist

SystemC test benches ——=

Trace files

Figure 3: SDL-SystemC equivalence checking

1) specify the main scenarios of execution using MSC

2) develop the SDL model

3) simulate the SDL model and verify that the generated
MSC correspond to what was specified in (1).

4) translate each SDL process into an SC_module

5) instrument the SystemC code so that it generates MSC
compatible textual trace

6) verify that each timeline of an specification MSC can
be reproduced by executing the SystemC model

B. SDL versus SystemC

SDL (i.e.; Specification and Description System) provides
a clear practical way to unambiguously specifying, modelling
and validating telecommunications system. SDL has a formal
semantic and is therefore amenable to formal verification. As

a matter of facts, SDL TAU Suite from Telelogic provides a
validator that can explore the state space of an SDL model
to uncover common problems like deadlocks or the inability
to send and receive signals. Moreover, the validator can
compare a Message Sequence Chart (i.e; MSC) file against
the SDL model. The SDL system behavior is defined as a
network of extended finite state machines that communicate
with each other and with the environment using asynchronous
signals. The later make the use of SDL unsuitable to model
synchronous digital circuits.

On the other hand, SystemC [5], [6] is an embedded
language based on C++ with an additional library allowing
cycle-based simulation of concurrent processes. We limited
ourselves to a sub-set of SystemC that is synthesizable and
used the Synopsis SystemC compiler to derive the netlist from
the 8’000 lines of SystemC source code. Our main objectives
are:

1) to take advantage of the SDL Tau suite to formally

validate the design

2) to use SystemC as an implementation language

3) to ensure correctness of the refinement between SDL

and SystemC using input/output trace equivalence

C. Constraints

The four following constraints have been imposed in order

to use the proposed flow:

o the SDL structure must reflect the actual HW structure
(i.e.; one-to-one mapping between the SDL process in-
stance set and the SystemC (i.e.; SC) module instance
set)

o Each SDL signal type has a unique destination process
instance that can be computed statically.

e SystemC and SDL models should have identical signal
encoding (i.e.; name matching)

e SystemC module instances and the corresponding SDL
process instances should have the same state encoding.

With these constraints the SDL scheduling becomes com-
pletely deterministic and allows us to define safely an in-
put/output trace equivalence relation between SDL processes
and SystemC modules taken pairwise.

Figure 4 depicts the HW MAC architecture described in

SDL.

MAC_Storage_IF

Block MAC_HW_Managafsaverran] 1(2)

Main_Sto_IF

MAC_St]

TxC_Tx_IF

21gTXCToPhy }‘
MAC_PhyC_IF

Figure 4: HW MAC SDL model

TX coordination block is further described in figure 5.

Mem_TxC_IF

Block Tx_Coordination [‘,n-’.\.m,w]- 1(1)

froefe T

main_write_sr

outDataWrite_sr

]

Wri

TimingVerif ic++

[esma

N O T

ain_desc_sr
main_timing_sr [out un!)}m

timing_reg_s:

Tiem_TAC_
%G
_conf]

tx_rx_srTXC_RXC_:

Mey MainFs|

-
3

main_txConjtrol_sr aip_trigger_sr

[oxrd

main_trugger Mxin TxC |

data_s

Ve_TxC_IF

[imsntn s
[sn_on_tsto P

txFifo st main ex_sx

H [

TXC_Tx_IF TXC_Tx_IF TxC_Tx_IF

anmermnsfexccn%ml

trigger_tx_sr

Figure 5: TX coordination structure in SDL.

When simulating the SDL system we obtain a number of mes-
sage sequence charts (see figure 6). Each MSC corresponds to
one test case and can be used as specification that should be
automatically cross validated against the SDL model.

MSC tx_coordination_Seq

I I tx_coordin: =:=:'._n‘-:»'\F r&egiste rI [ReadFrameDescriptipn

Main — -

 read_frame_descs_,

s_read_frame_ddsce_rqt 31

s_dtream_index_Quety

a_stream_index|Reply

8_src_ID_Query

s_sre_ID_Reply

s_dest_ID_Query

8_dest_ID_Reply

s_rfd_ccamand|/’ |;

tem)

execute the
a_rffl_command_requedt,|¥fd command.

Figure 6: MSC used for specifying and equivalence checking

Message Sequence Charts also have a textual representation
(see figure 7) that enable us to further validate the SystemC
code that refines the SDL model just by annotating the code
with the corresponding traces.

msc tx_coordination_Seq;

tx_coordination_control: instance;
Env.: instance;

Register: instance;
ReadFrameDescription: instance;

tx_coordination_control:

out s_cta_start,l to Env.
Env.:
in s_cta_start,1
from tx_coordination_control;
tx_coordination_control:
condition read_frame_descs_rqt;
tx_coordination_control:
out s_read_frame_descs_rqgt,2
to ReadFrameDescription;

endmsc;
Figure 7: Textual representation of an MSC

In code fragment represented in figure 5, the textual form
(i.e.; ITU Z.120) of one message sequence chart is presented.
This MSC starts with the declaration of the instances involved
in the scenario. A message within an MSC is a relation
between an output and an input. The output may come from
either the environment or an instance. A message exchanged
between two instances can be split into two events: the
message input and the message output. The correspondence
between message outputs and message inputs has to be defined
uniquely. This trace can be split to produce one trace file
representing one trajectory in the SDL process instance. When
the instrumented SystemC code is run, the execution should
produce one trace file per SC_module instance that must
correspond to the SDL process trace discussed previously.

D. Translating SDL into SystemC

At the lowest part of the SDL system description hierarchy,
we find SDL processes that implement the actual functionality
of the model. The following code represents part of the
implementation of one SDL process.

Process ReadFrameDescriptors;
start ;
nextstate init;
state init;
input in_request;
nextstate read_first_word;

endprocess ReadFrameDescriptors;

The graphical representation is depicted in figure 8.

Process ReadFrameDescriptors

1(1)

Figure 8: Part of the SDL process for reading the frame
description

An SDL process is basically an extended finite state ma-
chine that can be translated very easily to SystemC since

communication services are already part of the language (See
figure 7).

SC_MODULE (ReadFrameDescriptors) {
enum RFD_States {init,read_first_word, ..};
sc_signal<RFD_States> current_state;
sc_in<bool> in_request;
SC_CTOR (ReadFrameDescriptors) {
SC_METHOD (get_Next_State)
<< current_state
<< in_request;
}
}
ReadFrameDescriptors: :get_Next_State () {
switch (current_state) {
case init:
if (in_request.read()) {
current_state=read_first_word;
}
break;
case read_first_word:
break;
}
}

Figure 7: SystemC synchronous implementation of an SDL
process

If we do not want to break the asynchronous hypothesis
imposed by the semantic of the SDL language, we can still
use the SC_fifo to simulate the input queue associated to the
SDL process. However, the SC_fifo is not synthesizable (See
figure 7).

SC_MODULE (ReadFrameDescriptors) {
enum RFD_States {init,read_first_word, ..};
sc_signal<RFD_States> current_state;
sc_fifo<RFD_signal_t> in_fifo;
SC_CTOR (ReadFrameDescriptors) {
SC_METHOD (get_Next_State)
<< current_state
<< in_fifo;
}
}
ReadFrameDescriptors::
get_Next_State () {
RFD_signal_t recv_sig;
recv_sig = in_fifo.read();
switch (current_state) {
case init:
if (recv_sig.id==in_request) {
if (in_request.read()) {
current_state=read_first_word;
}
}
break;
case read_first_word:

break;
}

Figure 7: SystemC asynchronous implementation of an SDL
process

V. CONCLUSION

In this paper, we presented the development process of
our 802.15.3 MAC HW architecture. Tight timing constraints
and low power consumption requirements guided the HW/SW
partitioning. The use of SDL from the TAU environment
allows rigorous protocol modeling and verification. On the
other hand, the use of SystemC enables FPGA netlist synthesis
while providing an easy target language for the manual trans-
lation from the SDL specification. Finally, input/output trace
equivalence was presented in order to establish the correctness
of the manual translation from SDL to SystemC. Based on our
experience in WLAN technology, we conclude that the use
of SDL and SystemC is a good combination for developing
and validating robust HW implementation of medium access
controllers.

ACKNOWLEDGMENT

The authors would like to thank Renato Villan for producing
SystemC code and also Zehning Peng for developing the
SDL/MSC models.

REFERENCES

[1] IEEE Standard 802: Part 15.3: Wireless Medium Access Control (MAC)
and Physical Layer (PHY) Specifications for High Rate Wireless Personal
Area Networks (WPAN), 2003.

[2] ITU-T: ITU-T Recommendation Z.100 (11/99). SDL: Specification and
Description Language, 1999

[3] Telelogic AB: Telelogic Tau SDL Suite,
http://www.telelogic.com/products/tau/sdl

[4] S. Leue and Ph. Oechslin: From SDL Specifications to Optimized Parallel
Protocol Implementations. In: M. Ito and G. Neufeld (eds.), Workshop
Proceedings of the Fourth International IFIP Workshop on Protocols for
High Speed Networks, pages 308-328, 1994.

[5] Open SystemC Initiative
Synopsys Inc, CoWare Inc, Frontier Inc. SYSTEM C Version 1.0 User s
Guide, 2000.

[6] The Simulation Semantics of SystemC
Wolfgang Mueller C-LAB/Paderborn University Paderborn, Germany
Juergen Ruf, Dirk Hoffmann, Joachim Gerlach, Thomas Kropf, Wolfgang
Rosenstiehl University of Tuebingen Tuebingen, Germany

[7] High-Level Behavioral SDL Model for the IEEE 802.15.3 MAC Protocol
Daniel Dietterle, Irina Babanskaja, Kai Dombrowski, Rolf Kraemer

2003. Available from

