
Blocked Clause Decomposition

Marijn J. H. Heule? and Armin Biere??

The University of Texas at Austin and Johannes Kepler University Linz

Abstract. We demonstrate that it is fairly easy to decompose any
propositional formula into two subsets such that both can be solved by
blocked clause elimination. Such a blocked clause decomposition is use-
ful to cheaply detect backbone variables and equivalent literals. Blocked
clause decompositions are especially useful when they are unbalanced,
i.e., one subset is much larger in size than the other one. We present al-
gorithms and heuristics to obtain unbalanced decompositions efficiently.
Our techniques have been implemented in the state-of-the-art solver Lin-
geling. Experiments show that the performance of Lingeling is clearly
improved due to these techniques on application benchmarks of the SAT
Competition 2013.

1 Introduction

Random simulation is a useful technique to find patterns in Boolean circuits,
such as equivalent gates and gates that are always true or false [1]. It works as
follows: random values are assigned to the input gates and propagated through
a given Boolean circuit. In case two gates always have the same value in many
simulations, they are potentially equivalent. SAT sweeping [2] can be used to
determine whether a potentially equivalent pair is indeed equivalent.

We want to lift random simulation to the domain of Boolean formulas. Yet
even computing a single solution is hard for most interesting Boolean formulas.
Therefore we focus on computing solutions for a satisfiable subset of a Boolean
formula. The main question that arises is: which subset? If the subset is too
large, then solving the formula is still hard. Hence, computing many solutions
to observe patterns is too costly. On the other hand, if the subset is too small,
the patterns get obscured and therefore hard to detect.

We propose to obtain a useful subset by blocked clause decomposition. A set
of clauses is called blocked if and only if blocked clause elimination (BCE) [3]
is able to remove it completely. We show that any Boolean formula can be
decomposed in polynomial time into two blocked sets such that one subset is
maximal. On average, the maximal subset contains about 90% of the clauses of
a given formula. A major advantage of our approach is that multiple solutions
for blocked sets can be computed using a linear number of steps in the size of
the set. We conjecture that all solutions of a blocked set can be computed in a
time polynomial in the number of solutions.

? Supported by DARPA contract number N66001-10-2-4087.
?? Supported by Austrian Science Foundation (FWF) NFN Grant S11408-N23 (RiSE).

2

We want to find backbone variables [4] and implied binary equivalences. To
detect these patterns, we decompose a formula into two blocked sets of which
one is maximal. Afterwards, many solutions for the large subset are obtained
by applying a linear time algorithm. These solutions partition the literals of
the formula into equivalence classes. Literals in the same class are potentially
equivalent. SAT sweeping is used to compute the backbone and equivalences of
the large subset which are used to simplify the original formula. Experimental
results show that this approach helps to solve hard application benchmarks.

Detection of these patterns has been studied in earlier work as well. Instead
of using a subset of a formula to detect backbone variables, [5] proposes to use
local minima computed by a local search solver. However, local search solvers
perform poorly on most hard real-world SAT problems. For random formulas,
the backbone of a formula is fragile [6]: i.e., removal of a few clauses reduces
the size of the backbone. Hyper binary resolution (HBR) can be used to detect
binary equivalences [7]. Yet HBR can only find “easy” equivalences, i.e., those
that can be detected by unit propagation.

The remainder of this paper is structured as follows: first we briefly discuss
the preliminaries in Section 2 and some definitions is Section 3. Section 4 deals
with the theoretical results regarding blocked clause decompositions. We present
in Section 5 heuristics and optimizations for decomposition algorithms. Section 6
explains how decompositions can be used to find backbone variables and binary
equivalences. Experimental results are shown in Section 7 and we draw some
conclusions in Section 8.

2 Preliminaries

In this section we review necessary background concepts: conjunctive normal
form level Boolean satisfiability, resolution and blocked clause elimination.

CNF For a Boolean variable x, there are two literals, the positive literal, denoted
by x, and the negative literal, denoted by x̄. A clause is a disjunction of literals
and a conjunctive normal form (CNF) formula a conjunction of clauses. A clause
can be seen as a finite set of literals and a CNF formula as a finite set of clauses.
A unit clause contains exactly one literal. A clause is a tautology if it contains
both x and x̄ for some x. The sets of variables and literals occurring in a formula
F are denoted by vars(F) and lits(F), respectively. A literal l is pure within a
formula F if and only if l̄ /∈ lits(F).

A truth assignment for a CNF formula F is a function τ that maps variables
in F to {1, 0}. If τ(x) = v, then τ(x̄) = ¬v, where ¬1 = 0 and ¬0 = 1. A clause
C is satisfied by τ if τ(l) = 1 for some l ∈ C. An assignment satisfies F if it
satisfies every clause in F . An assignment falsifies a clause C if it assigns all
literals that occur in C to 0. Formulas are logically equivalent if they have the
same set of satisfying assignments over the common variables.

A variable is said to be in the backbone of a formula if it is assigned to the
same truth value in all satisfying assignments.

3

Resolution and Blocked Clauses The resolution rule states that, given two
clauses C1 = (l ∨ a1 ∨ . . . ∨ an) and C2 = (l̄ ∨ b1 ∨ . . . ∨ bm), the clause C =
(a1 ∨ . . .∨ an ∨ b1 ∨ . . .∨ bm), called the resolvent of C1 and C2, can be inferred
by resolving on the literal l. This is denoted by C = C1 ⊗l C2.

Given a CNF formula F , a clause C, and a literal l ∈ C, l blocks C w.r.t. F
if (i) for each clause C ′ ∈ F with l̄ ∈ C ′, C ⊗l C

′ is a tautology, or (ii) l̄ ∈ C,
i.e., C is itself a tautology1. A pure literal blocks the clauses in which it occurs.
Pure literal elimination removes clauses with pure literals until fixpoint.

A clause C is blocked w.r.t. a given formula F if there is a literal that blocks
C w.r.t. F . Removal of blocked clauses preserves satisfiability [8]. For a CNF
formula F , blocked clause elimination (BCE) repeats the following until fixpoint:

If there is a blocked clause C ∈ F w.r.t. F , let F := F \ {C}.

BCE is confluent and does not preserve logical equivalence [9]. The CNF formula
resulting from applying BCE on F is denoted by BCE(F). We say that BCE
can solve a formula F if and only if BCE(F) = ∅. Also note the following
monotonicity property, which immediately follows from the definitions (also see
Lemma 1 in [3]). It is a crucial observation for the rest of the paper.

Proposition 1. If G ⊆ F and C is blocked w.r.t. F , then C is blocked w.r.t. G.

3 Definitions

Let F be a formula in CNF represented as a set of clauses. A subset G ⊆ F is
called a satisfiable subset (SS) of F , if it satisfiable. If in addition G is maximal,
i.e., there is no other SS H with G ⊂ H ⊆ F , then G is called a maximal
satisfiable subset (MSS) of F .

Note that maximality of G does not require that G is an SS of F with the
largest cardinality (a solution to the MaxSAT problem). Actually if G is an MSS
then the complement F \ G is a minimal correcting subset (MCS). See [10] for
more details on the relation between the notions of MSS, MCS, as well as the
minimal unsatisfiable subset (MUS), and the MaxSAT problem. Similar to these
standard definitions we propose the following new characterizations.

Definition 1. Let G ⊆ F be a subset of F for which BCE(G) = ∅. Then G is
called a Blocked Subset (BS) of F .

Definition 2. Let BS be the set of all formulas that can be solved by BCE.

Hence all blocked subsets of any formula occur in BS. Lemma 1 in [3] can be
reformulated as follows.

1 Here l̄ ∈ C is included in order to handle the special case that for any tautological
binary clause (l ∨ l̄), both l and l̄ block the clause. Notice that, even without this
addition, every non-binary tautological clause contains at least one literal that blocks
the clause.

4

Proposition 2 (BS monotonicity). If F ∈ BS and G ⊆ F then G ∈ BS.

If G ∈ BS, G ⊆ F , and maximal then G is called a maximal blocked subset
(MBS) of F . Obviously an MBS is also an MSS, but there are of course MSSs,
which are not an MBS, since all satisfiable formulas have itself as MSS, but
in general can not be solved by BCE. For example, consider the CNF formula
F = (a∨ b̄)∧ (b∨ c̄)∧ (c∨ ā). F is satisfiable, but cannot be solved by BCE. We
define MaxBS of a given CNF formula F to be the problem of finding an MBS
of F with the largest cardinality.

4 Decompositions

One key observation in this paper is that every CNF formula can be decomposed
into two subsets that both can be solved by BCE. Throughout the paper we
will present procedures how to compute such decompositions. We will use the
symbols L and R to denote the two subsets. Set L refers to the left or large
subset as some algorithms aim to make one subset as large as possible. Set R
refers to the right or remainder subset.

4.1 Symmetric Decompositions

A blocked clause decomposition of a CNF formula F is called symmetric if both
subsets can be solved by BCE. A decomposition is asymmetric if only one of the
subsets can be solved by BCE. It is easy to compute a symmetric decomposition
for a given formula.

Consider the PureDecompose algorithm shown in Fig. 1. When this algo-
rithm terminates, L and R := F \ L can be solved by pure literal elimination
and hence both L and R are blocked subsets of F . Note, that BCE simulates
pure literal elimination [3]. Following the construction method, |L| ≥ |R|. The
runtime of PureDecompose can be made linear in the size of F using a standard
implementation of occurrence lists.

PureDecompose (formula F)
PD1 let L := ∅
PD2 while F not empty do
PD3 select a variable x ∈ vars(F)
PD4 if |Fx| ≥ |Fx̄| then L := L ∪ Fx

PD5 else L := L ∪ Fx̄

PD6 F := F \ (Fx ∪ Fx̄)
PD7 return L

Fig. 1. Pseudo-code of PureDecompose algorithm, with Fl the set of clauses with l.

5

Lemma 1. The PureDecompose algorithm will produce a symmetric blocked
clause decomposition for any CNF formula.

Proof. Follows from the observation that L and F \ L are blocked sets of F . �

Theorem 1. Any CNF formula F can be decomposed into two subsets L,R ⊆ F
such that F = L ∪R and L,R ∈ BS, in a time linear in the size of F .

Proof. Follows from the observation that the PureDecompose algorithm produces
a symmetric blocked clause decomposition in linear time. �

The PureDecompose algorithm can be made more unbalanced (i.e., produce
a larger L) by applying BCE on F in between lines PD2 and PD3 and move
eliminated clauses to L. We decided against this “optimization” in the remainder
of this paper, after observing that it is too costly for some huge formulas. As post-
processing, after PureDecompose terminates, one can increase unbalancedness by
looping over the clauses C ∈ F \ L and add C to L if C is blocked with respect
to L. Notice that blockedness of C has to be checked with the latest L.

4.2 Maximal Blocked Sets

This subsection discusses two favorable properties of maximal blocked sets. First,
given an MBS M of a formula F , both F and M contain the same set of variables.
Second, given a formula F one can compute an MBS of F in polynomial time.

Lemma 2. Given a CNF formula F and an MBS M of F , vars(F) = vars(M).

Proof. Assume that vars(F) 6= vars(M). There must be a clause C ∈ F \ M
containing a literal l corresponding to a variable x ∈ vars(F) \ vars(M). Because
l̄ does not occur in lits(M), C is blocked on l w.r.t. M . Hence, M ∪C is a blocked
subset of F . However this contradicts that M is a maximal blocked subset. �

Consider the ConstructiveDecompose algorithm shown in Fig. 2 which moves
clauses from F to L using BCE. The number of BCE calls is at most |F | and
each of those calls has a polynomial runtime in the size of F .

ConstructiveDecompose (formula F)
CD1 let L := ∅
CD2 forall C ∈ F do
CD3 if BCE(L ∪ {C}) = ∅ then L := L ∪ {C}
CD4 return L

Fig. 2. Pseudo-code of the ConstructiveDecompose algorithm.

Lemma 3. ConstructiveDecompose returns an MBS for a CNF formula F .

6

Proof. Given a CNF formula F and the blocked subset M returned by the al-
gorithm ConstructiveDecompose. Assume that M is not an MBS of M . In other
words, there exists a clause C ∈ F \M such that BCE(M ∪ C) = ∅. This is
not possible because when C was evaluated in the algorithm, the current L of
ConstructiveDecompose must have been a subset of M . If BCE(M ∪C) = ∅, then
due to monotonicity of BCE for all L ⊆M it holds that BCE(L∪C) = ∅. Hence,
C should have been in M . �

Theorem 2. Computing a maximal blocked subset of a given CNF formula F
can be realized in a time polynomial in the size of F .

Proof. Follows from the observations that ConstructiveDecompose produces an
MBS for a given formula F and requires polynomial time in the size of F . �

Lemma 4. There exists a CNF formula for which the ConstructiveDecompose
algorithm produces an asymmetric decomposition.

Proof. Consider the following formula:

A := (a ∨ b̄) ∧ (ā ∨ b) ∧ (b ∨ c̄) ∧ (b̄ ∨ c) ∧ (c ∨ d̄) ∧ (c̄ ∨ d) ∧ (d ∨ ē) ∧ (d̄ ∨ e) ∧
(ā ∨ c) ∧ (a ∨ ē) ∧ (c̄ ∨ e)

Assume that the ConstructiveDecompose algorithm adds the clauses to L in the
order in which they occur in A. This means the first eight clauses, lets call them
A′, are added to L because A′ is a blocked set. However, BCE cannot solve
any A′ ∪ C with C ∈ A \ A′. Additionally, A \ A′ is not a blocked set. Hence,
ConstructiveDecompose produces an asymmetric decomposition of A. �

We can obtain an algorithm that produces a symmetric maximal blocked clause
decomposition by combining the PureDecompose and ConstructiveDecompose al-
gorithms. Instead of L := ∅ in ConstructiveDecompose, change the initialization
to L := PureDecompose (F).

An alternative approach is a destructive algorithm. Initially all clauses are
in the large set and one by one a clause is eliminated. Algorithm 3 shows this
approach for BS extraction. On the notion of “destructive” and “constructive”
minimization algorithms, particularly in the context of minimal unsatisfiable
subset (MUS) extraction, see [11].

DestructiveDecompose (formula F)
DD1 let L := F
DD2 while BCE(L) is not empty do
DD3 remove a clause C ∈ BCE(L) from L
DD4 return L

Fig. 3. Pseudo-code of the DestructiveDecompose algorithm.

In contrast to the ConstructiveDecompose algorithm, the DestructiveDecompose
algorithm might not produce an MBS.

7

Lemma 5. There is a CNF formula for which the DestructiveDecompose algo-
rithm produces an asymmetric decomposition and a non-maximal blocked set.

Proof. Consider the following formula:

D := (a ∨ b) ∧ (a ∨ b̄) ∧ (ā ∨ b) ∧ (ā ∨ b̄) ∧ (a ∨ c) ∧ (ā ∨ c) ∧ (b ∨ c̄) ∧ (b̄ ∨ c̄)

Let’s assume that the DestructiveDecompose algorithm removes clauses based on
their order in D. This means that first the clauses (a ∨ b), (a ∨ b̄), (ā ∨ b), and
(ā∨ b̄) will be removed, because BCE cannot eliminate any clause from D before
that point. Now F \ L is unsatisfiable and hence cannot be solved by BCE. In
contrast, PureDecompose will produce a symmetric decomposition of D resulting
in L = (a∨b), (a∨ b̄), (a∨c), (b∨c) and R := F \L = (ā∨b), (ā∨ b̄), (ā∨c), (b̄∨ c̄).

DestructiveDecompose produces L = (ā ∨ c), (b ∨ c̄), (b̄ ∨ c̄) which is not an
MBS of F , because (ā ∨ b), (ā ∨ b̄) ∈ D are blocked w.r.t. L. �

Theorem 3. The MaxBS problem is NP-hard.

Proof. We show that the theorem holds by converting the NP-complete problem
of Maximum Independent Set into MaxBS. The conversion works as follows.
Given a graph G = (V,E), we construct a CNF formula that contains Boolean
variables v for each vertex v ∈ V . For each vertex v ∈ V , the formula contains
the unit clause (v), while for each edge uv ∈ E the formula contains the binary
clause (ū ∨ v̄).

FMIS :=
∧
v∈V

(v) ∧
∧

uv∈E

(ū ∨ v̄)

Now we will show that a graph G = (V,E) has an independent set of size k
if and only if the corresponding FMIS contains a blocking set of size k + |E|.

(⇒) Let S ⊆ V be an independent set of size k of G. The formula F ′

containing all binary clauses of FMIS and unit clauses (v) for v ∈ S is a blocking
set of size k + |E|. To see that BCE can solve F ′, notice that all binary clauses
are blocked on the literals ū for u ∈ V \ S. After eliminating all these binary
clauses, the unit clauses (v) for v ∈ S have become blocked (pure literals).

(⇐) Given a blocked subset B of FMIS of size k + |E|. If B contains all
the binary clauses in FMIS, then the independent set is represented by the unit
clauses in B: since B contains all binary clauses, it cannot contain both vertices
of an edge because the clauses (u), (v), (ū ∨ v̄) together are unsatisfiable and
hence not solvable by BCE.

If B does not contain all binary clauses, we will make another blocked subset
B′ of FMIS that contains all binary clauses of FMIS by exchanging unit clauses
in B with the missing binary clauses. Let (ū ∨ v̄) be a missing binary clause in
FMIS \B. In case (ū∨ v̄) is blocked w.r.t. B, simply add (ū∨ v̄) to B and remove
an arbitrary unit clause from B. In case (ū ∨ v̄) is not blocked w.r.t. B, then
both (u), (v) ∈ B. Now, add (ū ∨ v̄) and remove either (u) or (v) from B. By
removing (u) or (v) from B, (ū ∨ v̄) becomes blocked on ū or v̄, respectively. �

8

4.3 Computing solutions in polynomial time

Given a blocked set B, one can compute a solution for B in polynomial time [3].
A procedure to obtain a solution uses the reconstruction stack. This stack is a
sorted list of the clauses in B based on the order in which BCE can eliminate
them. Given a reconstruction stack S of B, one can compute a solution as follows.
Generate a random truth assignment τ of the variables in B. Pop the clauses
from S one by one. If τ falsifies a clause C with blocking literal l, flip the truth
value of l in τ to 1. Fig. 4 shows how to compute a reconstruction stack and
demonstrates how to use the stack to obtain satisfying assignments.

ReconstructionStack (blocked set B)
RS1 let S be an empty stack
RS2 while B not empty do
RS3 let C ∈ B be a clause that is blocked w.r.t. B
RS4 B := B \ C
RS5 S.push(C)
RS6 return S

GetSolution (blocked set B)
GS1 let τ be a random truth assignment of the variables in B
GS2 S := ReconstructionStack (B)
GS3 while S not empty do
GS4 C := S.pop() and let l ∈ C be the blocking literal
GS5 if τ falsifies C then τ(l) = 1
GS6 return τ

GetMultipleSolutions (blocked set B, bit-width w)
GMS1 let T be a set of assignments of random bit-vectors with width w for x ∈ vars(B)
GMS2 S := ReconstructionStack (B)
GMS3 while S not empty do
GMS4 C := S.pop()
GMS5 let b be an all zero bit-vector of width w
GMS6 forall l ∈ C do b := b OR T (l)
GMS7 let l′ ∈ C be the blocking literal w.r.t. B
GMS8 T (l′) := T (l′) XOR NOT(b)
GMS9 return T // set of w satisfying assignments

Fig. 4. Pseudo-code ReconstructionStack, GetSolution, GetMultipleSolutions algorithms.

One can use the reconstruction set to compute multiple solutions in linear
time of the size of the blocked set using bit-vectors. The bottom part of Fig. 4
shows the algorithm. Each variable is assigned a random bit-vector of width w.
Positive literals have the bit-vector assignment of the corresponding variable,
while negative literals have a bit-vector assignment which complements the one
of the corresponding variable. For each clause C that is popped from the stack,

9

a bit-vector b is obtained by computing the logical OR of all the bit-vectors of
the literals l ∈ C. If b contains zeros, then those bits are flipped in the bit-vector
assignment of the literal that blocks C. The result of the algorithm is a set of w
satisfying assignments — some of them might be equivalent.

The complexity of computing all solutions of a blocked set is unknown, but we
conjecture below that they can be computed in polynomial time in the number
of solutions. It is not clear whether one can use the reconstruction stack to
enumerate the solutions of blocked sets.

Conjecture 1. Given a blocked set B with k satisfying assignments. Computing
all satisfying assignments of B requires at most k polynomial-time computations.

Below some intuition why we believe that the conjecture might hold. Consider
a Boolean circuit BC with unrestricted output gates and a CNF formula FBC

being the Tseitin translation of BC. Let n be the number of input gates of BC.
The number of solutions of FBC is 2n – exactly one solution for each assignment
to the input gates. We showed that BCE can eliminate all clauses from a Boolean
circuit for which the output gates are not restricted [3]. Hence FBC is a blocked
set. The variables in FBC corresponding to the input gates occur in the last
clauses that BCE will eliminate. Assigning variables in the reverse order that
BCE eliminates them, will enumerate the solutions of FBC . We observed this for
other blocked sets as well, although we also found some counter-examples. We
expect that a more sophisticated procedure could work for any blocked set.

In case the conjecture holds, blocked sets are useful when they have few and
many solutions. Given a maximal blocked set M of a CNF formula F , F is
satisfiable if and only if a solution of M exists which satisfies F — because M
is a subset of F and vars(F) = vars(M). So in case M has few solutions we can
compute them all in polynomial time to solve F . If M has many solutions, then
we can generate a lot of them in linear time to search for patterns.

5 Heuristics and Efficiency

For the applications of blocked clause decomposition that we have in mind, one
wants to have the decomposition as unbalanced as possible. Ideally, one subset
contains only one clause while the large subset contains all the other clauses. In
this section we discuss heuristics to obtain unbalanced decompositions.

In order to make a decomposition useful, one must be able to compute it
efficiently. This section offers several ideas we came up with to improve the
performance. A fast implementation of BCE is crucial for all the algorithms. An
important optimization is a literal-based priority queue. Details about this and
other BCE optimizations are presented in Section 10 of [3].

The QuickDecompose Algorithm If a formula is partitioned arbitrarily it is
not unlikely that one of its part can be solved by BCE. In this case we can add
all its clauses to the MBS, which we want to construct. Otherwise, the partition

10

should be refined. This idea leads to the QuickDecompose algorithm shown in
Fig. 5, which is similar in spirit to the QuickXplain algorithm [12].

QuickDecompose is a more efficient variant of ConstructiveDecompose. Hence,
it will always produce a maximal blocked set (Lemma 3), but decompositions
can be asymmetric (for example on the CNF formula A in Lemma 4). In order
to make all decompositions symmetric, the initialization at line QD1 should be
changed to L := PureDecompose (F).

The advantage of this algorithm is that it only needs O(log|F |) calls to BCE
to zero in on an MBS, if the formula F has exactly one MSB, which in addition
also is assumed to contain a single clause. We conjecture that O(m + log|F |)
calls are needed in general, where m is the maximum size of an MBS of F . Thus
this algorithm is particularly useful if m is small. However, for practically all
benchmarks from the SAT competitions, we observed that m is close to |F |.

QuickDecomposeRecursive (formula F)
QDR1 if BCE(L ∪ F) = ∅ then L := L ∪ F
QDR2 else if |F | 6= 1 then // partition F in non-empty sets G and H
QDR3 let F = G ∪H with G,H 6= ∅ and G ∩H = ∅
QDR4 QuickDecomposeRecursive (G)
QDR5 QuickDecomposeRecursive (H)

QuickDecompose (formula F)
QD1 let L := ∅ // visible in QuickDecomposeRecursive
QD2 QuickDecomposeRecursive (F)
QD3 return L

Fig. 5. Pseudo-code of the QuickDecompose algorithm.

Optimizations The most important optimization is to replace the recursive
simple depth-first search by a prioritized search, where larger subsets are tried
first. Further, many instances are encodings from circuit SAT problems [3], where
the circuit is encoded via Tseitin encoding and zero/one constraints on circuit
nodes and outputs are added as additional unit clauses. In this situation, re-
moving the units from the CNF results in a blocked set. Thus we added a
pre-processing algorithm, which removes N from F , where N ⊆ F is the set
of non-unit clauses of F , and then initializes L to N , if BCE(N) = ∅.

We also observed that it can be useful to check whether removing at most
50% of the longest clauses would result in a blocked set. If this is the case we
proceed with the shorter clauses and initialize L accordingly.

Finally, redundant BCE calls might occur, for which it has already determined
previously that the formula is not solvable through BCE. Thus we maintain a
cache of formulas F for which BCE(F) was not successful and produced a non-
empty set as result. Thus the call to the BCE procedure at line QDR1 would first
check whether its argument is not already in the cache.

11

Results We developed two decomposition tools. The first tool, called Bcdd,
implements PureDecompose. Bcdd comes in two variants: the one shown in
Fig. 1 (default) and one with the optimization discussed in the last sentences
of Section 4.1 (post-processing). The second tool, called Sblitter, implements
QuickDecompose and includes the optimizations described above. The results
are shown in Table 1. Observe that the tools can help each other by providing
the symmetric decomposition of Bcdd to Sblitter. Although the runtime of
Sblitter is polynomial in the size of its input, it was not able to finish (obtain
a maximal blocked set) on most benchmarks within 100 seconds.

tool mode A B R O T TO M

Bcdd|Sblitter post-processing 85% 371 69 55 25 218 71

Bcdd|Sblitter default 84% 367 73 55 25 218 71

Bcdd post-processing 82% 358 82 0 2 44 41

Bcdd default 80% 349 91 0 2 21 39

Sblitter default 33% 143 298 55 24 218 72

Table 1. Comparing the decomposition tools on 299 benchmarks from the SAT Com-
petition 2013 application track. We removed a huge instance (esawn uw3.debugged)
with 54 million clauses which caused a memory out. Column ’A’ shows the average
fraction of the large subset. The sum of the sizes of the blocked subset L is shown in
column ’B’, the sum of the remaining clauses in ’R’, both in millions of clauses. The
number of benchmarks with exactly one remaining clause is listed in column ’O’. Then
the sum of the time taken follows in column ’T’. The number of times the time-out of
100 seconds was hit for Sblitter and 10 seconds for Bcdd is shown in column ’TO’.
In those 81 = 299 − 218 cases where Sblitter (actually all versions) finished before
the time-out an MBS was found. The last column ’M’ lists the sum of the maximum
memory used in all the runs in GB.

6 SAT Sweeping, Equivalence Checking and Extraction

SAT sweeping is a well-known and very effective preprocessing technique for
satisfiability problems represented as circuits. It is based on techniques used in
formal equivalence checking of circuits. See [2,13] for a complete list of references,
and further the independently derived results in [14,15]. Similar techniques have
been used in the context of computing backbones, see for instance [16]. Related
approaches for sequential equivalence checking [17] are used for preprocessing
model checking problems and resemble refinement techniques in fast algorithms
for minimizing automata [18].

One variant of SAT sweeping starts by assigning random bit-vectors to the
input gates of a given circuit. Afterwards, these values are propagated. Gates
with the same bit-vector value are potentially equivalent. Next, a pair of poten-
tially equivalent gates is selected and a SAT formula is generated stating that

12

these gates are not equivalent. In case the formula is satisfiable, the set of po-
tentially equivalent gates is refined. Otherwise, the two gates are merged. This
process continues until there are no potentially equivalent gates left.

SAT sweeping might also be a useful preprocessing technique for SAT solving.
However, porting this technique to SAT solving is not trivial. Unlike a circuit,
a SAT formula has no input gates. Consequently, assigning variables to random
values followed by propagation will typically result in a conflict. Hence, it is
much harder to obtain a list of potentially backbone or equivalent variables.

In order to use SAT sweeping as preprocessing technique for a CNF formula
F , we need to compute a large satisfiable subset L of F , which is easy to satisfy.
This is exactly what blocked clause decomposition gives us. Further, it is easy to
find a solution for a blocked set, i.e., linear in the size of the subset. This gives
a fast way to initialize the partition of potentially equivalent literals. We used
the GetMultipleSolutions algorithm in Fig. 4 to efficiently generate many random
solutions in linear time. Variables with the same bit-vector value are potentially
equivalent, while potential backbone variables have either all true or all false
bit-vectors.

EquivalenceExtraction (satisfiable set L)
EE1 let τ be a solution for L, hence τ(L) = 1
EE2 let P = {{l ∈ lits(L) | τ(l) = 1}} // partition of potentially equivalent literals
EE3 let E = ∅ // set of determined equivalences
EE4 while exists a class C ∈ P with l, k ∈ C and l 6= k do
EE5 if SAT(L ∪ {(l)} ∪ {(k̄)}) then refine P by returned solution τ
EE6 else if SAT(L ∪ {(l̄)} ∪ {(k)}) then refine P by returned solution τ
EE7 else add equivalence l = k to E and remove k from C
EE8 return E

Fig. 6. Pseudo-code of the EquivalenceExtraction algorithm.

Given a satisfiable formula L, SAT sweeping can be implemented as shown
in the algorithm in Fig. 6. As result it produces the strongest set of equivalences
E, modulo transitivity and equivalent literal substitution, with L |= E. If one of
the SAT calls in line EE5 or EE6 returns a solution τ then τ(l) 6= τ(k) and thus
the partition P is refined by splitting class C into C0 = {l ∈ C | τ(l) = 0} and
C1 = {l ∈ C | τ(l) = 1}. The result of the refinement is (P\{C}) ∪ {C0, C1}.

In practice, several important optimizations are required (see also [13]). First,
incremental SAT solving [19] should be used, adding L as fixed formula perma-
nently, but treating the two unit clauses added in line EE5 and EE6 as assump-
tions [19]. This allows to reuse learned facts from one SAT call to the next,
which is particularly important for learned equivalences: If both queries to the
SAT solver in line EE5 and EE6 are unsatisfiable, the SAT solver will in essence
learn the two clauses (l̄ ∨ k) and (l ∨ k̄), which implicitly record equivalence of l
and k in the SAT solver as well.

13

The second most important optimization is to bound the time spent in each
SAT solver call, by for instance posing a limit on the number of conflicts. Third,
it is useful to simplify L by SAT based preprocessing. Note, however, that un-
restricted satisfiability preserving preprocessing, such as unrestricted BCE, will
just turn L into an empty CNF, which then will not have any equivalences. We
propose to restrict preprocessing to those cases, where solutions to L projected
on the common variables between L and R = F \ L do not change. More con-
cretely blocked clause addition is disabled, and common variables are “frozen”,
which means they can not be eliminated nor used as blocking literal etc. This
technique will of course not preserve internal equivalences within L, but still
proved to be useful in practice.

Regarding heuristics for choosing the pair of literals l and k in line EE4, which
are tried to be merged next, we suggest to alternate between randomly picking
literals, favoring large equivalence classes, and then for every second candidate
pair pick two random literals from the next equivalence class in a round-robin
fashion, smallest classes first.

The extraction algorithm will implicitly also produce many learned unit
clauses of the backbone of the blocked set. In our current implementation we
remove them immediately from the partition P . If at least one unit is kept in P
our algorithm will actually produce the backbone of the blocked set. It can then
be seen as an extension of the iterative backbone extraction algorithm in [16].

7 Results

The algorithms presented above have been implemented. Source code and the
log files of the experiments are available at http://fmv.jku.at/bcd.

We evaluated the effectiveness of SAT sweeping on CNF formulas on some
instances from the application track of the SAT Competition 2013 using an
improved version of the SAT solver Lingeling [20], the winner of this track.

We observed that our equivalence extraction tool was only useful for those
benchmarks for which our decompose tools were able to compute a maximal
blocked subset. Therefore, we selected all 81 instances of the application track
for which Bcdd | Sblitter (with post-processing) was able to compute an MBS
in 100 seconds (see Table 1 for details). Our equivalence extraction tool outputs
the backbone variables and equivalences or a subset in case the time limit of
2000 seconds was hit. The simplified CNF is finally given to Lingeling. The total
running time is limited to 5000 seconds, both for the sequence of blocked clause
decomposition, equivalence extraction and then Lingeling, as well as for plain
SAT solving by Lingeling. This is the same time limit as used in the competition
but on Intel Q9550 2.83GHz instead of Intel E5440 2.83 GHz processors.

For 16 out of 81 instances with an MBS, the extract part runs into the time
limit of 2000 seconds. For the other 65 instances, extract was able to reduce all
equivalence classes of the partition P to singletons. Altogether, the MBSs of
all 81 instances consist of 10 355 344 clauses, from which 3 313 948 (32%) were
still active (non-singletons) after SAT based preprocessing. From those active

http://fmv.jku.at/bcd

14

variables the tool removed 66 267 backbone variables (2%) and found 343 716
equivalences (10%), due to succeeding implication checks at lines EE5 and EE6

in EquivalenceExtraction. Out of 397 228 SAT solver calls, 48 912 produced a
solution (12%), while 241 790 were unsatisfiable (61%), and 106 526 calls (27%)
used up the budget of 100 conflicts. The GetMultipleSolutions algorithm was
called 52 834 times in an interleaved fashion with the main equivalence extraction
loop, right after the SAT calls in line EE5 and EE6, scheduled with a frequency of
approximately every 4th SAT solver call. Each time it used bit-vectors of width
512 and produced altogether 27 051 008 solutions. These solutions were used to
split 2 164 294 classes (90%), while the single solutions from the SAT solver calls
in lines EE5 or EE6 returning a solution only split 237 943 classes (10%).

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 4000

 4500

 5000

 0 10 20 30 40 50 60 70

ru
n
n
in

g
 t
im

e
 i
n
 s

e
c
o
n
d
s

solved benchmarks sorted individually by process time

original
decompose|extract|solve

solve
extract

decompose

Fig. 7. Running plain SAT solving (original) and our new approach (decompose | extract
| solve) on the 81 application track instances from the SAT Competition 2013 for which
our decompose tools can compute a maximal blocked subset within 100 seconds. The
total time limit is 5000 seconds (also used during the competition). For the anytime
algorithms decompose and extract a fixed time budget was allowed of at most 100 and
2000 seconds, respectively. The rest of the time is used for solving (solve).

Fig. 7 shows the results of our experiments. Notice that Lingeling contains
many advanced equivalence reasoning engines which were enabled during all
runs. Our new approach is able to solve ten instances more than plain SAT
solving. It requires at most 100 seconds to determine whether a formula would
benefit from our approach, i.e., whether decompose can compute an MBS. If we
take this time into account on the other 218 instances, Lingeling solves one in-

15

stance less. So the total gain on the whole suite is nine benchmarks. Although the
new approach is faster, quite some time is spent on equivalence extraction. We
expect that a faster implementation of extract can further improve the results by
bringing the decompose | extract | solve line closer to the solve line. Furthermore,
by speeding up decompose, we can compute MBSs for more formulas thereby
enlarging the number of benchmarks for which our approach is expected to be
useful.

8 Conclusions

We introduced the concept of blocked clause decompositions and showed that
any CNF formula can be decomposed into two blocked sets in polynomial time.
Additionally, we showed how to obtain a maximal blocked set in polynomial
time. The problem of finding a maximal blocked set with the largest cardinality
is NP-hard. We presented several algorithms to obtain decompositions as well
as heuristics and optimizations to make the procedures effective and efficient.

We implemented blocked clause decomposition and SAT sweeping for CNF
formulas in Lingeling, winner of the application track of the SAT Competition
2013. We evaluated the proposed techniques on the benchmarks of this track.
Lingeling with the new techniques was able to solve ten more instances for which
our tools were able to compute a maximal blocked set within 100 seconds.

Future work will focus on improving the efficiency of our tools. In case we can
obtain maximal blocked sets faster, SAT sweeping is expected to be useful for
more benchmarks. Additionally, by reducing the costs of SAT sweeping, we can
increase the benefit of this preprocessing technique. Finally, SAT sweeping can be
implemented more effectively via inprocessing [21] — by interleaving detection
of backbone variables and binary equivalences with conflict-driven search.

References

1. Krohm, F., Kuchlmann, A., Mets, A.: The use of random simulation in formal
verification. In: Computer Design: VLSI in Computers and Processors, 1996. ICCD
’96. Proceedings., 1996 IEEE International Conference on. (1996) 371–376

2. Kuehlmann, A.: Dynamic transition relation simplification for bounded property
checking. In: ICCAD. (2004) 50–57

3. Järvisalo, M., Biere, A., Heule, M.J.H.: Simulating circuit-level simplifications on
cnf. Journal of Automated Reasoning 49(4) (2012) 583–619

4. Parkes, A.J.: Clustering at the phase transition. In: Proceedings of AAAI’97,
AAAI Press (1997) 340–345

5. Zhang, W., Rangan, A., Looks, M.: Backbone guided local search for maximum
satisfiability. In: Proceedings of IJCAI’03, San Francisco, CA, USA, Morgan Kauf-
mann Publishers Inc. (2003) 1179–1184

6. Singer, J., Gent, I.P., Smaill, A.: Backbone fragility and the local search cost peak.
Journal of Artificial Intelligence Research 12 (2000) 235–270

7. Heule, M.J.H., Järvisalo, M., Biere, A.: Revisiting hyper binary resolution. In
Gomes, C., Sellmann, M., eds.: Proceedings of CPAIOR 2013. Volume 7874 of
LNCS. Springer Berlin Heidelberg (2013) 77–93

16

8. Kullmann, O.: On a generalization of extended resolution. Discrete Applied Math-
ematics 96–97 (1999) 149–176

9. Järvisalo, M., Biere, A., Heule, M.J.H.: Blocked clause elimination. In Esparza, J.,
Majumdar, R., eds.: Proceedings TACAS 2010. Volume 6015 of LNCS., Springer
(2010) 129–144

10. Liffiton, M., Sakallah, K.: Algorithms for computing minimal unsatisfiable subsets
of constraints. Journal of Automated Reasoning 40(1) (2008) 1–33

11. Belov, A., Lynce, I., Marques-Silva, J.: Towards efficient MUS extraction. AI
Commun. 25(2) (2012) 97–116

12. Junker, U.: Quickxplain: Preferred explanations and relaxations for over-
constrained problems. In: AAAI. (2004) 167–172

13. Khasidashvili, Z., Nadel, A.: Implicative simultaneous satisfiability and applica-
tions. In: HVC. Volume 7261 of LNCS. (2011) 66–79

14. Codish, M., Fekete, Y., Metodi, A.: Compiling finite domain constraints to SAT
with BEE. In: POS. (2013)

15. Metodi, A., Codish, M., Stuckey, P.J.: Boolean equi-propagation for concise and
efficient SAT encodings of combinatorial problems. JAIR 46 (2013) 303–341

16. Janota, M., Lynce, I., Marques-Silva, J.: Experimental analysis of backbone com-
putation algorithms. In: International Workshop on Experimental Evaluation of
Algorithms for solving problems with combinatorial explosion (RCRA). (2012)

17. van Eijk, C.A.J.: Sequential equivalence checking based on structural similarities.
IEEE Trans. on CAD of Integrated Circuits and Systems 19(7) (2000) 814–819

18. Hopcroft, J.E.: An n log n algorithm for minimizing states in a finite automaton.
Technical report, Stanford, CA, USA (1971)

19. Eén, N., Sörensson, N.: An extensible sat-solver. In Giunchiglia, E., Tacchella,
A., eds.: Theory and Applications of Satisfiability Testing. Volume 2919 of LNCS.
Springer Berlin Heidelberg (2004) 502–518

20. Biere, A.: Lingeling, Plingeling and Treengeling entering the SAT competition
2013. In: Proceedings of SAT Competition 2013. (2013)

21. Järvisalo, M., Heule, M.J.H., Biere, A.: Inprocessing rules. In: Proceedings of
IJCAR 2012. Volume 7364 of LNCS., Springer (2012) 355–370

