
Revisiting Hyper Binary Resolution⋆

Marijn J. H. Heule1,3, Matti Järvisalo2, and Armin Biere3

1 Department of Computer Science, The University of Texas at Austin, United States
2 HIIT & Department of Computer Science, University of Helsinki, Finland

3 Institute for Formal Models and Verification, Johannes Kepler University Linz, Austria

Abstract. This paper focuses on developing efficient inference techniques for
improving conjunctive normal form (CNF) Boolean satisfiability (SAT) solvers.
We analyze a variant of hyper binary resolution from variousperspectives: We
show that it can simulate the circuit-level technique of structural hashing and how
it can be realized efficiently using so called tree-based lookahead. Experiments
show that our implementation improves the performance of state-of-the-art CNF-
level SAT techniques on combinational equivalent checkinginstances.

1 Introduction

Boolean satisfiability (SAT) solvers provide the crucial core search engines for solv-
ing problem instances arising from various real-world problem domains. This paper
focuses on developing efficient inference techniques to improve the robustness of con-
junctive normal form (CNF) SAT solving techniques. Especially, our goal is to improve
CNF-level techniques on instances ofmiter-based combinational equivalence checking
which is an important industrially-relevant problem domain. The main motivation be-
hind this work is to take notable steps towards the ambitiousgoal of making CNF-level
approaches competitive with circuit-level techniques forequivalence checking. This
goal is important as it would notably simplify the current state-of-the-art techniques
applied in the industry which require alternating between circuit-level techniques and
CNF-level SAT solving. To this end, we identify how known CNF-level SAT solving
techniques can simulate the circuit-level technique ofstructural hashing—which plays
an integral role in solving miter instances—purely on the level of a standard CNF en-
coding of Boolean circuits. As the main CNF-level approach,we study a variant of
hyper binary resolution (HBR), which can be used to learn non-transitive hyper binary
resolvents, and analyze this technique from various perspectives. While this variant or
HBR has already been studied and implemented previously withinthe HYPRE [1] and
HYPERBINFAST [2] CNF simplifiers, we extend this previous work both from the the-
oretical and practical perspectives.

Our main theoretical observations include: (i) explanations for how and to what
extent the CNF techniquesHBR, clause learning, and ternary resolution can simulate
structural hashing; (ii) thatHBR can be focused in a beneficial way to produce only

⋆ The first author is supported by DARPA contract number N66001-10-2-4087. The first and
third authors are supported by Austrian Science Foundation(FWF) NFN Grant S11408-N23
(RiSE), and the second author by Academy of Finland (grants 132812 and 251170).



non-transitiveresolvents that increase transitive reachability of the underlying binary
implications; and (iii) providing an explicit quadratic worst-case example on the num-
ber of binary clauses added, which applies to all known implementations ofHBR, and
that has not been explicitly provided before. As the main practical contribution, we
show how this variant ofHBR can be realized efficiently using so called tree-based
lookahead [3]. In fact, the tree-based lookahead algorithmdescribed in this work is a
substantially simplified version of the original idea, and is also of independent inter-
est due to its much more general applicability for instance within CDCL SAT solvers.
We show experimentally that ourTreeLook implementation ofHBR using tree-based
lookahead clearly outperforms state-of-the-art CNF-level SAT techniques on instances
encoding on miter-based equivalence checking CNF instances.

The rest of this paper is organized as follows. After preliminaries (Sect. 2), we dis-
cuss possibilities of simulating structural hashing on theCNF-level (Sect. 3). Then the
considered variant of hyper binary resolution is defined andanalyzed (Sect. 4), followed
by an in-depth description of tree-based lookahead (Sect. 6) that enables implementing
hyper binary resolution efficiently. Before conclusions, experimental results are pre-
sented (Sect. 7) and related work is discussed (Sect. 8).

2 Preliminaries

For a Boolean variablex, there are twoliterals, the positive literalx and the negative
literal ¬x. A clauseis a disjunction of literals and a CNF formula a conjunction of
clauses. A clause can be seen as a finite set of literals and a CNF formula as a finite set
of clauses. A (partial) truth assignment for a CNF formulaF is a functionτ that maps
(a subset of) the literals inF to {0, 1}. If τ(x) = v, thenτ(¬x) = 1− v. A clauseC is
satisfied byτ if τ(l) = 1 for some literall ∈ C. A clauseC is falsified byτ if τ(l) = 0
for every literall ∈ C. An assignmentτ satisfiesF if it satisfies every clause inF . We
denote byτ(F ) the reduced formula for which all satisfied clauses byτ and all falsified
literals byτ are removed.

Two formulas arelogically equivalentif they are satisfied by exactly the same set
of assignments. A clause of length one is aunit clause, and a clause of length two is
a binary clause. For a CNF formulaF , F2 denotes the set of binary clauses, andF≥3

denotes the set of clauses of length three and larger.

Binary Implication Graphs Given a CNF formulaF , the uniquebinary implication
graphBIG(F ) of F has for each variablex occurring inF2 two vertices,x and¬x, and
has the edge relation{〈¬l, l′〉, 〈¬l′, l〉 | (l ∨ l′) ∈ F2}. In other words, for each binary
clause(l∨ l′) in F , the two implications¬l → l′ and¬l′ → l, represented by the binary
clause, occur as edges inBIG(F ). A node inBIG(F ) with no incoming arcs is aroot
of BIG(F ) (or, simply, ofF2). In other words, literall is a root inBIG(F ) if there is no
clause of the form(l ∨ l′) in F2. The set of roots ofBIG(F ) is denoted byRTS(F ).

BCP, Failed Literal Elimination (FLE), and Lookahead For a CNF formulaF ,
Boolean constraint propagation(BCP) (orunit propagation) propagates all unit clauses,
i.e., repeats the following until fixpoint: if there is a unitclause(l) ∈ F , remove from
F \ {(l)} all clauses that contain the literall, and remove the literal¬l from all clauses

2



in F , resulting in the formulaBCP(F ). A literal l is a failed literal if BCP(F ∪ {(l)})
contains the empty clause, implying thatF is logically equivalent toBCP(F ∪{(¬l)}).
FLE removes failed literals from a formula, or, equivalently, adds the complements of
failed literals as unit clauses to the formula, until a fixpoint is reached. Failed literal
elimination is sometimes also referred to aslookahead, and is often applied in non-
CDCL DPLL solvers (lookahead solvers[4]).

Equivalent Literal Substitution (ELS) The strongly connected components (SCCs) of
BIG(F ) represent equivalent classes of literals (or simplyequivalent literals) in F2 [5].
Equivalent literal substitutionrefers to substituting inF , for each SCCG of BIG(F ),
all occurrences of the literals occurring inG with the representative literal ofG. ELS is
confluent, i.e., has a unique fixpoint, modulo variable renaming.

Transitive Reduction (TRD) A directed acyclic graphG′ is a transitive reduction[6]
of the directed graphG provided that (i)G′ has a directed path from nodeu to nodev if
and only ifG has a directed path from nodeu to nodev, and (ii) there is no graph with
fewer edges thanG′ satisfying the condition (i). For a CNF formulaF , a binary clause
C = (l ∨ l′) is transitive in F if l′ is reachable from¬l (equivalently,l is reachable
from ¬l′) in BIG(F \ C). Applying TRD on BIG(F ) amounts to removing fromF
all transitive binary clauses inF . TRD is confluent for the class of CNF formulasF
for whichBIG(F ) is acyclic. This is due to the fact that the transitive reduction of any
directed acyclic graph is unique [6]. For directed graphs with cycles, TRD is unique
modulo node (literal) equivalence classes.

The main inference rule of interest in this work is thehyper binary resolution rule.

Hyper Binary Resolution (HBR) The resolution rule states that, given two clauses
C1 = {l, a1, . . . , an} andC2 = {¬l, b1, . . . , bm}, the clauseC = C1 ⊲⊳ C2 =
{a1, . . . , an, b1, . . . , bm}, called theresolventC1 ⊲⊳ C2 of C1 andC2, can be inferred
by resolvingon the literall. Many different simplification techniques are based on the
resolution rule. In this paper of interest ishyper binary resolution[7]. Given a clause of
the form(l ∨ l1 · · · ∨ lk) andk binary clauses of the form(l′ ∨ ¬li), where1 ≤ i ≤ k,
the hyper binary resolution rule allows to infer thehyper binary resolvent(l∨ l′) in one
step.HBR is confluent since it only adds clauses to CNF formulas.

3 Simulating Structural Hashing on CNF

In this section we show that hyper binary resolution is surprisingly powerful in that
it implicitly—purely on the CNF-level—achievesstructural hashing, i.e., sharing of
equivalent subformula structures, over disjunctive and conjunctive subformulas. This is
surprising, as structural hashing is often considered one of the benefits of representing
propositional formulas on the higher level ofBoolean circuitsrather than working on
the flat CNF form. This result implies that structural hashing can be achieved also during
the actual CNF-level solving process by applyingHBR on the current CNF formula.

Boolean Circuits are a natural representation form for propositional formulas, offering
subformula sharingvia structural hashing. A Boolean circuit over a finite setG of gates
is a setC of equations of formg := f(g1, . . . , gn), whereg, g1, . . . , gn ∈ G andf :

3



{1, 0}n → {1, 0} is a Boolean function, with the additional requirements that (i) each
g ∈ G appears at most once as the left hand side in the equations inC, and (ii) the
underlying directed graph

〈G, E(C) = {〈g′, g〉 ∈ G × G | g := f(. . . , g′, . . .) ∈ C}〉

is acyclic. Each gate represents a specific subformula in thepropositional formula ex-
pressed by the set of Boolean equations. Ifg := f(g1, . . . , gn) is in C, theng is an
f -gate (or of typef ), otherwise it is aninput gate. The following Boolean functions are
some which often occur as gate types:NOT(v) (1 if and only if v is 0), OR(v1, . . . , vn)
(1 if and only if at least one ofv1, . . . , vn is 1), AND(v1, . . . , vn) (1 if and only if
all v1, . . . , vn are1), XOR(v1, v2) (1 if and only if exactly one ofv1, v2, is 1), and
ITE(v1, v2, v3) (1 if and only if (i) v1 andv2 are1, or (ii) v1 is 0 andv3 is 1). The
standard “Tseitin” encoding of a Boolean circuitC into a CNF formulaTST(C) works
by introducing a Boolean variable for each gate inC, and representing for each gate
g := f(g1, . . . gn) in C the logical equivalenceg ↔ f(g1, . . . gn) with clauses.

3.1 Structural Hashing on the CNF-Level via HBR

Structural hashing is a well-known technique for factoringout common sub-expression.
It is an integral part of many algorithms for manipulating different data structures rep-
resenting circuits [8,9,10,11,12].

Given a circuitC with g := f(g1, . . . , gn), g
′ := f(g1, . . . , gn) ∈ C, structural

hashingremovesg′ := f(g1, . . . , gn) from C, i.e., detects thatg andg′ label the same
functionf(g1, . . . , gn) in C. A Boolean circuitC is structurally hashed ifg andg′ are
the same gate wheneverg := f(g1, . . . , gn), g

′ := f(g1, . . . , gn) ∈ C.

Proposition 1. LetC be an arbitrary Boolean circuit. Assume that there are two distinct
gatesg := f(g1, . . . , gn) andg′ := f(g1, . . . , gn) in C, wheref ∈ {NOT, AND, OR}.
ThenHBR applied toTST(C) will produce the clauses(¬g ∨ g′) and(g ∨ ¬g′) repre-
senting the fact thatg andg′ label the same functionf(g1, . . . , gn) in C.

Basically the binary clauses inTST(C) associated withg := f(g1, . . . , gn) together
with a clause of arity(n + 1) associated withg′ := f(g1, . . . , gn) always produce
the binary clause equivalent to one of the directions of the bi-implication g ↔ g′.
The binary clauses inTST(C) associated withg := f(g1, . . . , gn) together with a
clause associated withg′ := f(g1, . . . , gn) will produce the other direction of the bi-
implication.

Proof (Proof of Proposition 1).Assume that we haveg := AND(g1, . . . , gn) andg′ :=
AND(g1, . . . , gn). On the CNF-level we have the clauses(¬g∨gi), (g∨¬g1∨· · ·∨¬gn)
and(¬g′∨gi), (g

′∨¬g1∨· · ·∨¬gn), wherei = 1..n. Now the hyper binary resolution
rule allows to derive(¬g ∨ g′) in one step from(¬g ∨ g1), . . . , (¬g ∨ gn), (g

′ ∨ ¬g1 ∨
· · · ∨ ¬gn), and similarly(¬g′ ∨ g) in one step from(¬g′ ∨ g1), . . . , (¬g ∨ gn), (g ∨
¬g1 ∨ · · · ∨ ¬gn). The casesf ∈ {NOT, OR} are similar. ⊓⊔

4



Especially, by Proposition 1 hyper binary resolution can achieve the same effect
purely on the CNF-level as circuit-level structural hashing on And-Inverter Graphs
(AIGs) [9] which are often used for representing circuit-level SAT instances. We say
thatHBR can hencesimulatestructural hashing of AIGs.

However,HBR is not strong enough to simulate structural hashing forXOR andITE

gates on the standard CNF encoding, simply because the CNF clauses produced by the
standard CNF encoding forXOR andITE gates do not include any binary clauses.

Observation 1 Given a Boolean circuitC with two gatesg := f(g1, . . . , gn) and
g′ := f(g1, . . . , gn). Assumeg and g′ label the same functionf(g1, . . . , gn). If f ∈
{XOR, ITE} thenHBR cannot in general deriveg ↔ g′ (i.e., establish thatg and g′

label the same function) fromTST(C).

3.2 Other Approaches to Structural Hashing on the CNF-Level

Structural Hashing and CDCL Interestingly, CNF-levelconflict-driven clause learn-
ing (CDCL) SAT solvers canin principle simulate structural hashing by learning the
bi-implicationg ↔ g′. By “in principle” we mean that this requires a CDCL solver to
assign the “right” values to the “right” variables in the “right” order, and to restart after
each conflict (and possibly to postpone unnecessary unit propagations).

Observation 2 CDCL can in principle simulate structural hashing of any Boolean cir-
cuit C onTST(C), assuming that the solver assigns variables optimally, restarts after
every conflict, and can postpone unit propagation at will.

The intuition behind this observation is the following. Given any Boolean circuit
C containing two gatesg andg′, whereg := f(g1, . . . , gn) andg′ := f(g1, . . . , gn).
For simplicity, let us assumeg := AND(g1, . . . , gn) andg′ := AND(g1, . . . , gn). Now
apply CDCL as follows onTST(C). First, assigng = 0. Notice that unit propagation
does not assign values to anygi based ong := AND(g1, . . . , gn). Then assigng′ = 1.
Now unit propagation assignsgi = 1 for all i = 1..n, resulting in a conflict with
g = 0. The key observation is that the standard 1-UIP clause learning scheme will now
learn the clause(g ∨ ¬g′), since this is the only 1-UIP conflict clause derivable from
the conflict graph restricted to the clauses associated withg := AND(g1, . . . , gn) and
g′ := AND(g1, . . . , gn). Then let the solver restart, and afterward assign similarly first
g′ = 0 and theng = 1 in order to learn the clause(g′ ∨ ¬g).

A similar argument goes through also forXOR andITE but needs one more decision
to learn one auxiliary clause for each of the two implications. Consider for instance
g := XOR(g1, g2) andg′ := XOR(g1, g2). Assigningg = 0, g′ = 1 and theng2 = 0
allows learning the clause(g ∨ ¬g′ ∨ g2). After backtracking, unit propagation on this
clause assignsg2 = 1 which results in another conflict, from which one of the two
implications(g∨¬g′) is learned. The other implication can be derived in a similarway.

From the practical point of view, however, it is unlikely that CDCL solver imple-
mentations would behave in the way just described.

Structural Hashing using Ternary Resolution Further we claim that another way of
achieving structural hashing ofXOR andITE on the CNF-level is to applyternary reso-
lution, originally suggested in [13] and subsequently applied as an inference technique

5



in the contexts of both complete [14] and local search methods [15] for CNF SAT.
Ternary resolution refers to restricting the resolution rule between two ternary clauses
so that only a ternary or binary resolvent are inferred (i.e., added to the CNF).

Proposition 2. Ternary resolution simulates structural hashing ofITE andXOR.

Proof. Consider the clauses for twoITE gatesx := ITE(c, t, f) andy := ITE(c, t, f):

(¬x∨¬c∨ t) ∧ (¬x∨ c∨f) ∧ (x∨¬c∨¬t) ∧ (x∨ c∨¬f)
(¬y∨¬c∨ t) ∧ (¬y∨ c∨f) ∧ (y∨¬c∨¬t) ∧ (y∨ c∨¬f)

Using ternary resolution,(¬x ∨ y ∨ ¬c) = (¬x ∨ ¬c ∨ t) ⊲⊳ (y ∨ ¬c ∨ ¬t) and
(¬x ∨ y ∨ c) = (¬x ∨ c ∨ f) ⊲⊳ (y ∨ c ∨ ¬f) can be inferred. These resolvents can
be combined to(¬x ∨ y) = (¬x ∨ y ∨ ¬c) ⊲⊳ (¬x ∨ y ∨ c). In a similar fashion, the
other binary clause can be obtained:(x ∨ ¬y ∨ ¬c) = (x ∨ ¬c ∨ ¬t) ⊲⊳ (¬y ∨ ¬c ∨ t)
and(x ∨ ¬y ∨ c) = (x ∨ c ∨ ¬f) ⊲⊳ (¬y ∨ c ∨ f). Now using these resolvents, we get
(x ∨ ¬y) = (x ∨ ¬y ∨ ¬c) ⊲⊳ (x ∨ ¬y ∨ c). A similar argument applies toXOR. ⊓⊔

4 Capturing Non-transitive HBR

For the following, given a CNF formulaF and two literalsl and l′ that occur inF ,
we say thatl′ dominatesl (or l′ is a dominatorof l) in F if there is a clauseC =
(l ∨ l1 ∨ · · · ∨ lk) ∈ F≥3 such that(¬l1), . . . , (¬lk) ∈ BCP(F2 ∪ {(l′)}). In other
words,l′ dominatesl in F if there is such a clauseC for which each of the literals¬li
are reachable froml′ in BIG(F ). This implies that by assigningl′ = 1, unit propagation
onF will assignl = 1 based on onlyF2 and the clauseC.

Example 1.Consider the formulaF = (¬a ∨ b) ∧ (¬a ∨ c) ∧ (¬b ∨ d) ∧ (¬b ∨ e) ∧
(¬c ∨ d) ∧ (¬c ∨ e) ∧ (¬d ∨ ¬e ∨ f). A part ofBIG(F ) with a hyperedge on the right
showing the ternary clause(¬d ∨ ¬e ∨ f) can be illustrated as:

a

b

c

d

e

f

By assigninga = 1, unit propagation onF2 and(¬d ∨ ¬e ∨ f) ∈ F≥3 will assign
d = 1 ande = 1, and hence alsof = 1. Thusa dominatesf . The literalf has two
other dominators:b andc, both of which are implied bya. �

Given a CNF formulaF and a literall in F , the set ofnon-transitive hyper binary
resolventsNHBR(F, l) of F w.r.t. l is the setS of binary clauses arising from the
following fixpoint computation. Letτ := {l = 1} andS := {}. Apply the following
(non-deterministic) steps repeatedly until fixpoint:

1. While there is a unit clause(x) ∈ τ(F2 ∪ S), let τ := τ ∪ {x = 1}.
2. If there is a unit clause(y) ∈ τ(F≥3) and literall′ with τ(l′) = 1 that dominatesy

in F ∪ S, letS := S ∪ {(¬l′ ∨ y)}.

6



Step 1 corresponds to applying unit propagation underτ on the current setF2 ∪ S
of binary clauses. In step 2, it is checked whether a dominator of y has been assigned
to true wherey is part of a non-binary clause inF that is reduced to the unit(y) under
τ . Notice that there is always at least one dominator for each(y) ∈ τ(F≥3), namelyl;
however, this is not in general the only dominator. Still, only one clause is added per
execution of step 2.

ComputingNHBR(F, l) usingl as dominator was proposed in [16], while [2] dis-
cusses the use of alternative dominators. It should be notedthat the above-defined con-
struction algorithm is very similar to the one proposed in [1]. To our best understanding,
the main difference is that our definition restricts step 2 toconsider only unitsin τ(F≥3)
in contrast to considering any units inferred by applying BCP onτ(F≥3).

In essence, the construction ofNHBR(F, l) consists of applying lookahead on the
literal l restricted toF2, and checking for dominators w.r.t. non-binary clauses inF
whenever a BCP fixpoint in reached. Notice thatτ may become conflicting (i.e., both
l′ = 1 and l′ = 0 would be assigned for some literall′) during the computation of
NHBR(F, l). This implies thatl is a failed literal, which can in practice be detected
on-the-fly during the computation ofNHBR(F, l). For the following analysis, we will
always assume thatl is not a failed literal.

We call a binary clauseC a non-transitive hyper binary resolventw.r.t. a CNF for-
mula F if C ∈ NHBR(F, l) for some literall in F . Given a CNF formulaF , the
procedureNHBR applies the following until fixpoint: while there is a non-transitive
hyper binary resolventC ∈ NHBR(F, l) w.r.t. F for somel, let F := F ∪ {C}. A
formula resulting fromNHBR is denoted byNHBR(F ). However, this fixpoint is not
unique in general, and henceNHBR is not confluent, as will be shown in the following.
Among other observations, we will also show that anyC ∈ NHBR(F, l) for anyF, l is
indeednon-transitivein F , which implies thatNHBR canincrease reachabilityin the
binary implication graph.

4.1 Understanding NHBR

Proposition 3. For a CNFF and literall,F is logically equivalent toF∪NHBR(F, l).

Proof. Any assignment that satisfiesF ∪ NHBR(F, l) also satisfiesF . Now, assume
thatF is satisfiable, and fix an arbitrary truth assignmentτ that satisfiesF . Take an
arbitrary clause(¬l′ ∨ y) ∈ NHBR(F, l) with l′ being a dominator ofy. Notice that
l′ → y, so¬y → ¬l′. So eitherτ(y) = 1 or τ(y) = τ(l′) = 0. Both satisfy(¬l′ ∨ y).
Thusτ satisfiesNHBR(F, l). ⊓⊔

Example 2.Let F = (a ∨ b) ∧ (a ∨ ¬c ∨ d) ∧ (¬b ∨ ¬c ∨ e) ∧ (¬b ∨ c). We have
NHBR(F,¬a) = {(a, d), (¬b, e)}, which means that both of these non-transitive hyper
binary resolvents can be added toF while maintaining logical equivalence. �

The following proposition shows that all clauses inNHBR(F, l) for any literall are
indeed non-transitive inF .

Proposition 4. For any CNFF , literal l, and clauseC ∈ NHBR(F, l), we have that
C is not transitive inF .

7



Proof. Consider the firstC = (¬l′∨y) ∈ NHBR(F, l) added toS during the computa-
tion ofNHBR(F, l). By definition,l′ dominatesy in F (recall step 2 of the computation
of NHBR(F, l)), S being the empty set. Assume thatC is transitive inF . It follows
that there is a path froml′ to y in BIG(F ). However, by step 1 in the computation of
NHBR(F, l), we would haveτ(y) = 1 after step 1, and hence(y) /∈ τ(F≥3), and thus
C would not be added toS.

The claim follows by induction using a similar argument for thei+ 1 clause added
to S assuming that thei clauses added before toS are not transitive inF . ⊓⊔

This implies that, in caseNHBR can add clauses to a CNF formulaF , NHBR will
increase reachability in the implication graph ofF .

Corollary 1. If NHBR(F ) \ F 6= ∅, then it holds that there are two literalsl, l′ such
that (i) there is a path inBIG(NHBR(F )) from l to l′, and (ii) there is no path in
BIG(F ) from l to l′.

However, as an additional observation, we note by adding a clauseC ∈ NHBR(F, l)
toF , some clauses inF2 may become transitive in the resultingF ∪ {C}.

Example 3.Consider the formulaF := (a ∨ b) ∧ (a ∨ c) ∧ (a ∨ ¬b ∨ d) ∧ (c ∨ ¬d).
Notice that(a ∨ d) ∈ NHBR(F,¬a). After adding(a ∨ d) to F , the clause(a ∨ c) is
transitive in the resulting formulaF ∪ {(a ∨ d)}. �

The following clarifies the connection between hyper binaryresolvents and non-
transitive hyper binary resolvents: in essence,NHBR is a refinement ofHBR that fo-
cuses on adding the most relevant hyper binary resolvents that improve reachability in
the implication graph and hence can contribute to additional unit propagations.

Proposition 5. Given a CNF formulaF , and a hyper binary resolventC w.r.t. F , it
holds thatC is transitive inF , or thatC ∈ NHBR(F, l) for some literall.

Proof. Take an arbitrary hyper binary resolventC = (l ∨ ¬l′) w.r.t. a CNF formulaF
and letD = (l ∨ l1 ∨ · · · ∨ lk) be the longest clause used in the hyper binary resolution
rule to inferC. Clearly, ifD is binary, thenC is transitive. Now assume thatD ∈ F≥3.
Because(l ∨ ¬l′) is a hyper binary resolvent, unit propagation onF2 ∪ {(l′)} assigns
all literals l1, . . . , lk to false. Assume thatC is not transitive inF . In this case unit
propagation onF2 ∪ {(l′)} will not assignl to true. Hence, after unit propagation on
F2 ∪ (l′), D ∈ F≥3 becomes the unit clause(l), and hence(l ∨ ¬l′) ∈ NHBR(F, l′).

⊓⊔

As for the number of produced hyper binary resolvents,NHBR does not escape the
quadratic worst-case, which, as we show, holds for all knownimplementations ofHBR.

Proposition 6. For CNF formulas overn variables,NHBR addsΩ(n2) hyper binary
resolvents in the worst-case. This holds even for formulas with O(n) clauses.

Proof. There are2n(n− 1) different non-tautological binary clauses overn variables.
So clearlyNHBR adds onlyO(n2) resolvents. As a worst-case example, consider the
formulaF = (xi∨v)∧ (xi∨w)∧ (¬v∨¬w∨yj ) with i, j ∈ {1, . . . , k} having2k+2
variables and3k clauses. Since all(xi ∨yj) ∈ NHBR(F,¬xi), NHBR will addΩ(k2)
resolvents. ⊓⊔

8



We will now address the question of confluence ofNHBR.

Proposition 7. NHBR is not confluent.

Proof. Consider the formulaF := (a∨b∨c)∧(¬b∨c)∧(a∨¬d)∧(c∨d∨e)∧(d∨¬e).
Notice that(a ∨ c) ∈ NHBR(F,¬c) and (c ∨ d) ∈ NHBR(F,¬d). Furthermore,
(c ∨ d) ∈ NHBR(F ∪ {(a ∨ c)},¬d), but (a ∨ c) /∈ NHBR(F ∪ {(c ∨ d)},¬c).
Therefore, the resulting formula could only contain(a ∨ c) if this resolvent is added
before(c ∨ d), The reason for the non-confluence in this example is that(a ∨ c) is
transitive inF ∪ {(c ∨ d)}. ⊓⊔

Example 4.Recall step 2 of the computation ofNHBR(F, l). While l is always guar-
anteed to be a dominator of(y) ∈ τ(F≥3), there can be other dominators as well (recall
Example 1). In case there is a dominatorl′ 6= l, then it is preferable to add(¬l′ ∨ y)
to S instead of(¬l ∨ y) in the sense that(¬l′ ∨ y) is not transitive inF ∪ {(¬l ∨ y)},
while (¬l ∨ y) is transitive inF ∪ {(¬l′ ∨ y)}. Recall the formulaF in Example 1.
The dominators off are¬a, d, ande (recall Example 1), andb andc are implied bya.
HenceNHBR(F, a) = {(¬a∨f), (b∨f), (c∨f)}. Hence, instead of adding(¬a∨f),
one can add(b ∨ f) or (c ∨ f). �

AlthoughNHBR in itself is not confluent, interestingly, when combiningNHBR
with ELS andTRD, a unique fixpoint is reached (modulo variable renaming within
literal equivalence classes). A similar observation has been previously made in [1, The-
orem 1] for the combination ofHBR andELS alone withoutTRD.

Proposition 8. For any CNF formulaF , NHBR followed by the combination ofELS
andTRD until fixpoint is confluent (modulo variable renaming).

Proof. (sketch) Given any CNF formulaF , the implication graph ofELS(F ) is acyclic,
and henceTRD(ELS(F )) is unique (modulo variable renaming). Now assume that
there are two literalsl, l′ and clausesC,C′ such thatC ∈ NHBR(F, l) andC′ ∈
NHBR(F, l′). Assume thatC′ is transitive inF ∪ {C} and thatC is not transitive in
F ∪ {C′}. If NHBR adds the clauses toF in the orderC′, C, TRD will afterwards
remove the transitiveC′ from F ∪ {C′, C}, resulting inF ∪ {C′} to whichNHBR
would not addC. Finally, sinceNHBR can only increase reachability in the implication
graph,NHBR will not re-introduce any previously added clauses that mayhave been
afterwards removed byTRD. ⊓⊔

Example 5.As a concrete example, recall that the reason for the non-confluence in the
proof of Proposition 7 is that(a ∨ c) is transitive inF ∪ {(c ∨ d)}. However, a unique
result is obtained by applyingTRD afterNHBR.

5 Realizing Non-transitive HBR

Apart from the classicalBCP that removes satisfied clauses and falsified literals, the
variantBCPNHBR efficiently addsnon-transitivehyper binary resolvents by prioritiz-
ing binary clauses during propagation. The fact that hyper binary resolution can be

9



achieved through unit propagation is due to [1] and has been extended in [2]. Another
extension, called lazy hyper binary resolution (LHBR) [17]is discussed in Sect. 8.

The pseudo-code ofBCPNHBR is shown in Fig. 1. Besides a formulaF and a literal
l, it takes a truth assignmentτ (here interpreted as astackof variable-value assignments)
as input. For wellformedness, it is required that all assignments inτ are implied byl = 1
using only binary clauses. That is, all literals inτ can be reached froml in BIG(F ).

BCPNHBR (formula F , truth assignment τ , literal l)
1 τ.push(l = 1)
2 while τ (F ) contains unit clauses do
3 while (l′) ∈ τ (F2) do τ.push(l′ = 1)
4 if (l′′) ∈ τ (F≥3) then F := F ∪ {(¬l ∨ l′′)}
5 return 〈F, τ 〉

Fig. 1. Pseudo-code of theBCPNHBR procedure.

First, the input literall is set to true on the assignment stackτ (line 1). As long
as unit clauses exist (line 2), propagation of binary clauses is prioritized (line 3). If
there are only unit clauses left originating fromF≥3, then a random one is selected and
converted into a non-transitive hyper binary resolvent (line 4). In the end, the resulting
formula and extended assignment are returned (line 5).

In practice, implementingBCPNHBR can be expensive. To reduce the computa-
tional costs, [2] proposes two optimizations. The first, using alternative dominators is
discussed in Sect. 4. The second is restricting computationto C ∈ NHBR(F, l) with
l ∈ RTS(F ) (i.e., starting only from literals that are roots in the implication graph).
This restriction reduces the costs significantly. ForFLE, starting only from literals
l ∈ RTS(F ), will not change the fixpoint [18,19]. Yet, this is not the case forNHBR.

Proposition 9. By restrictingNHBR to add onlyC ∈ NHBR(F, l) with l ∈ RTS(F ),
some non-transitive hyper binary resolvents will not be added.

Proof. Consider formulaF = (¬a∨b)∧(¬a∨c)∧(¬c∨d)∧(b∨¬c∨¬d). Notice that
(b ∨ ¬c) ∈ NHBR(F, c), while for all l ∈ RTS(F ) holds thatNHBR(F, l) = ∅. ⊓⊔

In the following section, we will discuss an alternative technique, namely,tree-
based lookahead, that can be used to efficiently computeNHBR(F ) till fixpoint.

6 Tree-Based Lookahead

Tree-based lookahead originates from [3] but has not been properly described in the
literature yet. It is a technique to reduce the computational cost to find failed literals
and non-transitive hyper binary resolvents by reusing propagations. For some intuition
about how this technique works, consider a CNF formulaF which contains a binary
clause(¬a∨b) and several other clauses. Due to the presence of(¬a∨b), we know that
when propagatinga = 1, b is forced to1 as well as all variables that would have been
forced byb = 1. It is possible to reuse the propagations ofb = 1 (i.e., without rerunning

10



BCP), by assigninga = 1 afterwardswithoutunassigning the forced variables. If there
is another binary clause(¬c ∨ b), then the effort of propagatingb = 1 can additionally
be shared with the effort of propagatingc = 1 after backtracking overa = 1 and then
assigningc = 1 without backtracking the assignments implied byb = 1.

This concept can be generalized by decomposingBIG(F ) into in-trees: trees in
which edges are oriented so that the root is reachable from all nodes (the root has out-
degree 0 and other nodes have out-degree 1). For each implicationx → y in the in-trees,
y is assigned beforex. Note that in-trees in the in-tree decomposition are almostnever
induced subgraphs, e.g. they are missing some edges; there are edges ofBIG(F ) that
are not part of any in-tree, and even might connect two different in-trees.

The first step in tree-based lookahead is to create the in-trees, which is realized by
the getQueue procedure, shown in Fig. 2. First queueQ is initialized and all cycles
in BIG(F ) are removed usingELS. Note that applyingELS once toF might produce
new binary clauses by shrinking longer clauses, and even introduce new cycles. We thus
have to run this process until completion.

Afterwards a random depth-first search is applied starting from the leafs ofBIG(F ).
Notice that if¬l ∈ RTS(F ), l is a leaf. In theenqueue procedure, firstl is added to
Q followed by a recursive call for all literals that implyl and are not in the queue yet.
The procedure ends adding the special element▽ to Q that denotes that the algorithm
should backtrack if that element is dequeued. The resultingQ contains each literall in
F exactly once, and for each literal occurring inQ the special element▽ occurs once.

getQueue (F )
1 Q := {}
2 while ELS(F ) 6= F do
3 F := ELS(F )
4 foreach ¬l ∈ RTS(F ) do
5 Q := enqueue(F,Q, l)
6 return Q

enqueue (F , Q, l)
1 Q.enqueue(l)
2 foreach (l ∨ ¬l′) ∈ F2 do
3 if l′ /∈ Q then
4 Q := enqueue(F,Q, l′)
5 Q.enqueue(▽)
6 return Q

Fig. 2. Left: thegetQueue procedure. Right: theenqueue sub-procedure.

TheTreeLook algorithm (Fig. 3) uses the queueQ to compute failed literals and
non-transitive hyper binary resolvents efficiently. Afterinitialization (line 1 and 2), it
dequeues elements fromQ until it is empty (line 3 and 4). In case the current literall
is not▽ (line 5), the decision level is increased by pushing∗ on the assignment stack
τ (line 6). If l is assigned to0 or the current assignmentτ falsifiesF then the failed
literal (¬l) is found (line 7). Otherwise, ifl is still unassigned (line 8), then it is assigned
to 1, followed byBCPNHBR prioritizing binary clauses, under which unit clauses that
originate from non-binary clauses are transformed into a non-transitive hyper binary
clause (line 9). IfBCP results in a conflict, then a failed literal is found (line 10).
Each time the element▽ is dequeued, the algorithm backtracks one level, by popping
elements fromτ until it removes∗ (line 11). Finally, the resultingF , simplified with
failed literals and strengthened by non-transitive hyper binary resolvents (which may
be trivially unsatisfiable (line 12)), is returned (line 13).

Example 6.ConsiderF = (¬a∨¬b)∧(b∨¬c∨e)∧(b∨c)∧(c∨d)∧(a∨¬d∨¬e).NHBR
can add two clauses toF :NHBR(F, b) = {(b∨e)} andNHBR(F, c) = {(c∨¬e)}. The

11



TreeLook (formula F )
1 τ := {}
2 Q := getQueue(F )
3 while Q is not empty do
4 l := Q.dequeue()
5 if l 6= ▽ then
6 τ.push(∗)
7 if τ (l) = 0 or ∅ ∈ τ (F ) then F := BCP(F ∪ {¬l})
8 else if τ (l) 6= 1 then
9 〈F, τ 〉 := BCPNHBR(F, τ, l)

10 if ∅ ∈ τ (F ) then F := BCP(F ∪ {¬l})
11 else while τ.pop() 6= ∗
12 if ∅ ∈ F then break
13 return F

Fig. 3. TheTreeLook algorithm.

TreeLook (F ) algorithm can find them as follows. Assume that the result ofgetQueue
(F ) is Q = {c,¬b, a,▽,▽,¬d,▽,▽, d,¬c,▽,▽,¬a, b,▽,▽}, visiting the leafs in the
orderc, d, ¬a. This Q partitionsBIG(F ) (see Fig. 4) in three in-trees by removing
the dotted edge¬c b. After initialization, τ is extended by pushing∗ andc = 1.
This does not result in any units. Now,τ is extended with∗ andb = 0. The clause
(b ∨ ¬c ∨ e) ∈ F≥3 becomes unit. Therefore(b ∨ e) is added toF , which is unit (e)
by construction underτ . Henceτ is extended bye = 1. Afterwards,∗ anda = 1 are
pushed toτ . No new units exist inτ(F ) and the next element inQ is dequeued which
is ▽. This causes poppinga = 1 and∗ from τ as the first backtracking step. The next
element is also zero, which popse = 1, b = 0, and∗ from τ . Extending the shrunken
τ by pushing∗ andd = 0, does not result in any unit inτ(F ). The first in-tree is now
finished and the algorithm will pop all elements fromτ due to the double▽ element
dequeued fromQ. TheNHBR (c ∨ ¬e) is found in the second in-tree: afterd = 1 and
c = 0, τ is extended byb = 1 anda = 0. Now (a∨¬d∨¬e) ∈ F≥3 is unit (¬e) under
τ . The third in-tree does not add any clause toF . Notice that after adding both binaries
toF , (b ∨ c) becomes redundant (transitive) as well as(b ∨ ¬c ∨ e) (subsumed). �

7 Experiments

TheTreeLook algorithm (Fig. 3) is implemented in the MARCHRW SAT solver [20].
The SAT Competition version of MARCHRW runsFLE until completion in each node
of the search-tree. We slightly modified the code such that itrunsNHBR until comple-

a

¬b

c

¬d

¬c

b

¬a

d

a

¬b

c

¬d

e

¬c

b

¬a

d¬e

Fig. 4. BIG(F ) in Example 6 before (left) and after (right) applyingNHBR onF . Both graphs
have three leafs:¬a, c, andd. The dotted edge¬c b is not in the in-tree decomposition.

12



tion. In other words, lookahead runs until no new non-transitive hyper binary resolvent
is found, instead of no new failed literal. The resulting version, called MARCHNH
(benchmarks, sources and logs athttp://fmv.jku.at/treelook), also has the
ability to output the formula after preprocessing, so the result is similar to existing im-
plementations ofHBR, HYPRE [1] and HYPERBINFAST [2]. The experiments were
done on a cluster of computing nodes with Intel Core 2 Duo QuadQ9550 2.8-GHz pro-
cessors, 8-GB main memory, under Ubuntu Linux. Memory was limited to 7 GB and a
timeout of 10 h was enforced for each run.

As benchmarks we used all 818 sequential circuits of the Hardware Model Checking
Competition 2010http://fmv.jku.at/hwmcc10. A miter was constructed from
each circuit by connecting the inputs (and latches) of two copies of the same circuit,
and by constraining outputs and next state functions to be pairwise equivalent. We used
aigmiter for constructing the miters, and translated them to CNF withaigtocnf.
Both tools are available fromhttp://fmv.jku.at/aiger. Note that these bench-
marks are trivial on the AIG level and can simply be solved by structural hashing. Actu-
ally, a non-optimized implementation of structural hashing needs less than 13 seconds
for all 818 benchmarks, and less than half a second for the most difficult one (intel048
with 469196 variables and 1300546 clauses).

Running times for the hardest benchmarks using logarithmicscale are shown in
Fig. 5: NHBR through tree-based lookahead (MARCHNH with TreeLook) can solve
all of benchmarks on its own (i.e., without any additional search). Switching off tree-

10

100

1000

10000

720 740 760 780 800 820

R
un

tim
e

in
S

ec
on

ds

Benchmarks Sorted by Runtime

MARCHNH no TreeLook
HYPRE

HYPERBINFAST

L INGELING LHBR only
M INI SAT 2.2.0

L INGELING 587f
MARCHNH

with TreeLook

Fig. 5. Runtimes of CNF solving tools on 818 instances generated from HWMCC 2010. The plot
starts at 750 because many instances could be solved easily.Notice that only LINGELING and
M INI SAT perform search. The other tools runNHBR till unsatisfiability is detected.

13

http://fmv.jku.at/treelook
http://fmv.jku.at/hwmcc10
http://fmv.jku.at/aiger


based lookahead (MARCHNH no TreeLook), i.e. always applyingBCPNHBR(F, τ, l)
with τ = ∅, the timeout is reached on eleven benchmarks and is two orders of magnitude
slower. In between are the results of the previous implementations ofHBR including
LHBR (see next Sect. 8), which take much more time and memory,even though they
use ELS. HYPRE hits the memory limit on 15 miters, HYPERBINFAST runs out of
memory on eight, and LINGELING (LHBR only) runs out of time on two. Surprisingly
state-of-the-art CDCL SAT solvers such as LINGELING 587F and MINI SAT 2.2.0 can
not solve some of the miters even within 10 hours of search (LINGELING could not
solve two miters, MINI SAT four).

Although not the main focus here, we also measured the effectof applying NHBR
as a preprocessing technique for SAT Competition 2011 application instances. For a
clean experiment, we compared plain Lingeling (no pre- and inprocessing) with and
without NHBR. With NHBR, Lingeling solved 7 more instances.

8 Related Work and Existing Implementations
A version of the SAT solver PRECOSAT [17] submitted to the SAT Competition 2009
contained an algorithm for cheaply computing hyper binary resolventson-the-flydur-
ing BCP in a standard CDCL solver on all decision levels. Thismethod was calledlazy
hyper binary resolution(LHBR), and a preliminary version was implemented in PI-
COSAT [21] before. It has since then been ported to many other recent SAT solvers,
including CIRCUS [22], L INGELING [23], and CRYPTOM INI SAT [24]. Extensions of
LHBR including a detailed empirical analysis of its benefits, can be found in [22].

The basic idea of LHBR is to restrict the implication graph, made of assigned liter-
als and their forcing antecedents resp. reason clauses, to binary clauses. The implication
graph is in general a DAG and the restriction to binary clauses turns it into a forest of
trees, which we callbinary implication forest. This allows us to save for each assigned
variable the root of its binary implication tree. If a literal is implied by a non-binary
clause, and all its antecedent literals in this clause are inthe same tree, or equivalently
they have the same root, a binary clause through LHBR is obtained. This can be checked
by scanning the forcing non-binary clause, and checking whether all its variables, ex-
cept the implied one, have the same root. If this is the case, the closest dominator of the
antecedents can be computed as least-common ancestor in thetree.

The binary clause derived through LHBR is used as reason instead of the originally
forcing non-binary clause, which extends the binary implication tree of the antecedents.
It adds an edge from the dominator to the newly forced literal. To avoid adding too
many transitive clauses, propagation over binary clauses is run until completion for all
assigned literals before non-binary clauses are considered for propagation. This form
of LHBR adds a negligible overhead to BCP, because checking for a common root
among antecedent literals is cheap and only has to be performed if a non-binary clause
becomes forcing. Thus, from the point of view of effectiveness, ease of implementation,
and overhead, LHBR is comparable to on-the-flyself-subsumption [25]. One difference
though is, that the former is implemented as part of BCP and the latter in the analysis
algorithm for learning clauses from conflicts.

In practice we observed that the vast majority of binary clauses derived through
LHBR are obtained during failed literal probing resp. lookahead at decision level 0

14



anyhow. Thus a simpler implementation similar to the one used in lookahead solversin-
cluding tree-based lookaheadalready gives the largest benefit without the need to store
roots of the binary implication forest. The additional advantage of using LHBR even
during search is to cheaply learn binary clauses at all decision levels, which are valid
globally and can be added permanently. In lookahead solversbinary clauses learned
through LHBR have to be removed during backtracking.

The competition version LINGELING 587f used in Sect. 7 uses LHBR during failed
literal probing. This time-limited lookahead is one of the many implemented pre- resp. in-
processing techniques [26]. We patched LINGELING to run LHBR until completion
(http://fmv.jku.at/lingeling/lingeling-587f-lhbrtc.patch) on these in-
stances, but as shown in the experiments the run-times were much worse, even with
(full) ELS and (time-limited) TRD.

Recursive Learning [27] and Stålmarck’s method [12] work on circuits resp. on
data structures (triplets) close to circuits and can easilybe combined with structural
hashing. This leads to an algorithm similar to congruence closure algorithms used in
SMT solvers [28]. There are versions of both Stålmarck’s method and Recursive Learn-
ing working directly on CNF [29,30]. In both cases only boolean constants are propa-
gated and not equivalences as in the original method of Stålmarck. We conjecture that a
combination of these CNF techniques with equivalence reasoning would also simulate
structure hashing, but we are not aware of published resultsalong this line.

9 Conclusions
We focused on understanding how non-transitive hyper binary resolvents can be effi-
ciently exploited on the CNF-level. We explained how hyper binary resolution can be
implemented through tree-based lookahead, which allows tosimulate structural hash-
ing on the CNF-level also in practice much more efficiently than previous CNF-level
solutions. As a side-result, we believe our explanation of tree-based lookahead is of
independent interest, providing an efficient way of implementing lookahead, which is
important for example in the recently proposedcube & conquerapproach [31].

The motivation for tree-based look-ahead was originally twofold. First, it provides
an efficient implementation technique for failed literal probing during pre- and inpro-
cessing [26]. This was the focus of this paper. Second, tree-based look-ahead can also
be used to efficiently compute look-ahead heuristics, such as the number of clauses re-
duced to binary clauses after assuming and propagating a literal. It is unclear at this
point whether the second motivation is really important, orwhether other cheaper-to-
compute metrics could also be used.

While our TreeLook implementation significantly improves over existing CNF-
level approaches, there is still a large gap between the efficiency of circuit-level struc-
tural hashing and of using CNF reasoning alone for identifying equivalences. Future
work consists of closing this gap further. As a final remark, as also pointed out by
anonymous reviewers, it should be possible to reformulate tree-based lookahead for
applying singleton arc consistency in CP and probing in MIP solvers.

Acknowledgements.We thank Donald Knuth for detailed comments and suggestions
on a draft version of this paper.

15

http://fmv.jku.at/lingeling/lingeling-587f-lhbrtc.patch


References

1. Bacchus, F., Winter, J.: Effective preprocessing with hyper-resolution and equality reduction.
In: Proc. SAT 2003. Volume 2919 of LNCS., Springer (2004) 341–355

2. Gershman, R., Strichman, O.: Cost-effective hyper-resolution for preprocessing CNF for-
mulas. In: Proc. SAT. Volume 3569 of LNCS., Springer (2005) 423–429

3. Heule, M.J.H., Dufour, M., van Zwieten, J., van Maaren, H.: March eq: Implementing addi-
tional reasoning into an efficient look-ahead SAT solver. In: SAT’04. Volume 3542 of LNCS.
(2005) 345–359

4. Heule, M.J.H., van Maaren, H. In: Handbook of Satisfiability, Chapter 5: Look-Ahead Based
SAT Solvers. IOS Press (2009) 155–184

5. Van Gelder, A.: Toward leaner binary-clause reasoning ina satisfiability solver. Annals of
Mathematics and Artificial Intelligence43 (2005) 239–253

6. Aho, A., Garey, M., Ullman, J.: The transitive reduction of a directed graph. SIAM Journal
on Computing1(2) (1972) 131–137

7. Bacchus, F.: Enhancing Davis Putnam with extended binaryclause reasoning. In:
Proc. AAAI, AAAI Press (2002) 613–619

8. Bryant, R.E.: Graph-based algorithms for boolean function manipulation. IEEE Trans. Com-
puters35(8) (1986) 677–691

9. Kuehlmann, A., Krohm, F.: Equivalence checking using cuts and heaps. In: Proc. DAC,
ACM (1997) 263–268

10. Williams, P.F., Andersen, H.R., Hulgaard, H.: Satisfiability checking using boolean expres-
sion diagrams. STTT5(1) (2003) 4–14

11. Abdulla, P., Bjesse, P., Eén, N.: Symbolic reachability analysis based on SAT-solvers. In:
TACAS. Volume 1785 of LNCS. (2000) 411–425

12. Sheeran, M., Stålmarck, G.: A tutorial on Stålmarck’sproof procedure for propositional
logic. Formal Methods in System Design16(1) (2000) 23–58

13. Billionnet, A., Sutter, A.: An efficient algorithm for the 3-satisfiability problem. Operations
Research Letters12(1) (1992) 29–36

14. Li, C.M., Anbulagan: Look-ahead versus look-back for satisfiability problems. In: CP.
Volume 1330 of LNCS., Springer (1997) 341–355

15. Anbulagan, Pham, D.N., Slaney, J.K., Sattar, A.: Old resolution meets modern SLS. In:
Proc. AAAI. (2005) 354–359

16. Heule, M.J.H.: March: Towards a lookahead SAT solver forgeneral purposes (2004) MSc
thesis.

17. Biere, A.: P{re,i}coSAT@SC’09. In: SAT 2009 Competitive Event Booklet. (2009)
18. Boufkhad, Y.: Aspects probabilistes et algorithmiquesdu problème de satisfaisabilité (1996)

PhD thesis, Univertsité de Paris 6.
19. Simons, P.: Towards constraint satisfaction through logic programs and the stable model se-

mantics (1997) Report A47, Digital System Laboratory, Helsinki University of Technology.
20. Mijnders, S., de Wilde, B., Heule, M.J.H.: Symbiosis of search and heuristics for random

3-SAT. In: Proc. LaSh. (2010)
21. Biere, A.: (Q)CompSAT and (Q)PicoSAT at the SAT’06 Race (2006)
22. Han, H., Jin, H., Somenzi, F.: Clause simplification through dominator analysis. In:

Proc. DATE, IEEE (2011) 143–148
23. Biere, A.: Lingeling, Plingeling, PicoSAT and PrecoSATat SAT Race 2010. FMV Report

Series TR 10/1, JKU, Linz, Austria (2010)
24. Soos, M.: CryptoMiniSat 2.5.0, SAT Race’10 solver description (2010)
25. Han, H., Somenzi, F.: On-the-fly clause improvement. In:Proc. SAT. Volume 5584 of

LNCS., Springer (2009) 209–222

16



26. Järvisalo, M., Heule, M.J.H., Biere, A.: Inprocessingrules. In: Proc. IJCAR. Volume 7364
of LNCS. (2012) 355–370

27. Kunz, W., Pradhan, D.K.: Recursive learning: a new implication technique for efficient
solutions to CAD problems-test, verification, and optimization. IEEE T-CAD13(9) (1994)

28. Barrett, C.W., Sebastiani, R., Seshia, S.A., Tinelli, C. In: Handbook of Satisfiability,
Chpt. 26: SMT Modulo Theories. IOS Press (2009)

29. Marques-Silva, J., Glass, T.: Combinational equivalence checking using satisfiability and
recursive learning. In: Proc. DATE. (1999)

30. Groote, J.F., Warners, J.P.: The propositional formulachecker HeerHugo. J. Autom. Rea-
soning24(1/2) (2000) 101–125

31. Heule, M.J.H., Kullmann, O., Wieringa, S., Biere, A.: Cube and conquer: Guiding CDCL
SAT solvers by lookaheads. In: HVC 2011 Revised Selected Papers. Volume 7261 of LNCS.,
Springer (2012) 50–65

17


