
PRuning Through Satisfaction?

Marijn J.H. Heule1, Benjamin Kiesl2, Martina Seidl3, and Armin Biere3

1 Department of Computer Science, The University of Texas at Austin
2 Institute of Information Systems, TU Wien

3 Institute for Formal Models and Verification, JKU Linz

Abstract. The classical approach to solving the satisfiability problem of
propositional logic prunes unsatisfiable branches from the search space.
We prune more agressively by also removing certain branches for which
there exist other branches that are more satisfiable. This is achieved by
extending the popular conflict-driven clause learning (CDCL) paradigm
with so-called PR-clause learning. We implemented our new paradigm,
named satisfaction-driven clause learning (SDCL), in the SAT solver
Lingeling. Experiments on the well-known pigeon hole formulas show
that our method can automatically produce proofs of unsatisfiability
whose size is cubic in the number of pigeons while plain CDCL solvers
can only produce proofs of exponential size.

1 Introduction

Conflict-driven clause learning (CDCL) [11] is the leading paradigm for solving
the satisfiability problem of propositional logic (SAT). It is well-known that
CDCL solvers are able to generate resolution proofs but this useful ability comes
at a price because it means that CDCL solvers suffer from the same restrictions
as the resolution proof system. For instance, there are seemingly simple formula
families that admit only exponential-size resolution proofs, implying that solving
these formulas with CDCL takes exponential time [14].

To deal with the limitations of resolution, stronger proof systems have been
proposed [19]. Popular examples of such proof systems are extended resolu-
tion [18] and an even more general system based on blocked clauses [10]. These
systems extend resolution by allowing the introduction of short definition clauses
over new variables. As shown by Cook [3], the introduction of these clauses al-
ready suffices to obtain short proofs of the famous pigeon hole formulas—a class
of formulas known for admitting no short resolution proofs [4]. But the intro-
duction of new variables has a downside: The search space of possible variables
is infinite in general, which complicates the search for useful definition clauses.
This may explain the limited success of GlucosER [1], a CDCL solver that uses
extended resolution. To cope with this drawback, we recently introduced a proof
system, called PR (short for propagation redundancy), that allows for short proofs
of the pigeon hole formulas without the need to introduce new variables [6].

? Supported by the National Science Foundation under grant CCF-1526760 and by
the Austrian Science Fund (FWF) under projects S11409-N23 and W1255-N23.

In this paper, we enhance the CDCL paradigm by extending it in such a
way that it can exploit the strengths of the PR proof system. To do so, we
introduce satisfaction-driven clause learning (SDCL), a SAT solving paradigm
that extends CDCL as follows: If the usual unit propagation does not lead to a
conflict, we do not immediately decide for a new variable assignment (as would
be the case in CDCL). Instead, we first try to prune the search space of possible
truth assignments by learning a so-called PR clause.

Intuitively, a PR clause is a clause that might not be implied by the current
formula but whose addition preserves satisfiability. As we show in this paper,
deciding whether a given clause is a PR clause is NP-complete. We therefore use
an additional SAT solver for finding such clauses. Finding useful PR clauses is a
non-trivial problem as it is not immediately clear which clauses should be added
to improve solver performance. To gain further insight, we develop a strong
theory that relates our SAT encoding for finding PR clauses with two concepts
from the literature: autarkies [9] and set-blocked clauses [8].

The main contributions of this paper are as follows: (1) We introduce satis-
faction-driven clause learning, a paradigm that extends CDCL by performing
the addition of PR clauses. (2) We prove that the problem of deciding whether a
given clause is a PR clause is NP-complete. (3) We use a SAT solver for finding
PR clauses and show that the corresponding SAT encoding is strongly related to
the concepts of autarkies and set-blocked clauses. (4) We implement SDCL as an
extension of the award-winning SAT solver Lingeling [2], which is developed
by the last author of this paper. An experimental evaluation shows that our
approach can generate proofs for much larger pigeon hole formulas than two
existing tools based on extended resolution.

2 Preliminaries

Below we present the most important background concepts related to this paper.

Propositional logic. We consider propositional formulas in conjunctive normal
form (CNF), which are defined as follows. A literal is either a variable x (a
positive literal) or the negation x of a variable x (a negative literal). The com-
plementary literal l of a literal l is defined as l = x if l = x and l = x if l = x.
Accordingly, for a set L of literals, we define L = {l | l ∈ L}. A clause is a
disjunction of literals. A formula is a conjunction of clauses. We view clauses
as sets of literals and formulas as sets of clauses. For a set L of literals and a
formula F , we define FL = {C ∈ F | C ∩L 6= ∅}. For a literal, clause, or formula
F , var(F) denotes the variables in F . For convenience, we treat var(F) as a
variable if F is a literal, and as a set of variables otherwise.

Satisfiability. An assignment is a function from a set of variables to the truth
values 1 (true) and 0 (false). An assignment is total w.r.t. a formula if it assigns
a truth value to all variables occurring in the formula; otherwise it is partial. A
literal l is satisfied (falsified) by an assignment α if l is positive and α(var(l)) = 1

(α(var(l)) = 0, resp.) or if it is negative and α(var(l)) = 0 (α(var(l)) = 1, resp.).
We often denote assignments by sequences of literals they satisfy. For instance,
x y denotes the assignment that assigns 1 to x and 0 to y. For an assignment α,
var(α) denotes the variables assigned by α. Further, αL denotes the assignment
obtained from α by flipping the truth values of the literals in L. A clause is
satisfied by an assignment α if it contains a literal that is satisfied by α. Finally,
a formula is satisfied by an assignment α if all its clauses are satisfied by α. A
formula is satisfiable if there exists an assignment that satisfies it.

Formula simplification. We denote the empty clause by ⊥ and the satisfied
clause by >. Given an assignment α and a clause C, we define C |α = > if α
satisfies C; otherwise, C |α denotes the result of removing from C all the literals
falsified by α. For a formula F , we define F |α = {C |α | C ∈ F and C |α 6= >}.
We say that an assignment α touches a clause C if var(α) ∩ var(C) 6= ∅. Given
an assignment α, the clause {x | α(x) = 0} ∪ {x | α(x) = 1} is the clause that
blocks α. A unit clause is a clause with only one literal. The result of applying
the unit clause rule to a formula F is the formula F |l where (l) is a unit clause
in F . The iterated application of the unit clause rule to a formula, until no unit
clauses are left, is called unit propagation. If unit propagation yields the empty
clause ⊥, we say that it derived a conflict.

Formula relations. Two formulas are logically equivalent if they are satisfied by
the same assignments. Two formulas are satisfiability equivalent if they are either
both satisfiable or both unsatisfiable. Given two formulas F and F ′, we denote
by F � F ′ that F implies F ′, i.e., all assignments satisfying F also satisfy F ′.
Furthermore, by F `1 F ′ we denote that for every clause (l1∨· · ·∨ ln) ∈ F ′, unit
propagation on F ∧ (l1) ∧ · · · ∧ (ln) derives a conflict. If F `1 F ′, we say that
F implies F ′ through unit propagation. For example, (x) ∧ (y) `1 (x ∨ z) ∧ (y),
since unit propagation of the unit clauses (x) and (z) derives a conflict with (x),
and unit propagation of (y) derives a conflict with (y).

Conflict-driven clause learning (CDCL) in a nutshell. To evaluate the satisfia-
bility of a formula, a CDCL solver iteratively performs the following operations:
First, the solver performs unit propagation. Then, it tests whether it has reached
a conflict, meaning that the formula is falsified by the current assignment. If no
conflict has been reached and all variables are assigned, the formula is satisfi-
able. Otherwise, the solver chooses an unassigned variable based on some de-
cision heuristic, assigns a truth value to it, and continues by again performing
unit propagation. If, however, a conflict has been reached, the solver learns a
short clause that prevents it from repeating similar (bad) decisions in the fu-
ture (“clause learning”). In case this clause is the (unsatisfiable) empty clause,
the unsatisfiability of the formula can be concluded. In case it is not the empty
clause, the solver revokes some of its variable assignments (“backjumping”) and
then repeats the whole procedure again by performing unit propagation.

3 Searching for Propagation-Redundant Clauses

As already mentioned in the introduction, the addition of so-called PR clauses
(short for propagation-redundant clauses) to a formula can lead to short proofs
for hard formulas without the introduction of new variables. In this section,
we present an approach for finding PR clauses. Although PR clauses are not
necessarily implied by the formula, their addition preserves satisfiability [6]. The
intuitive reason for this is that the addition of a PR clause prunes the search
space of possible assignments in such a way that there still remain assignments
under which the formula is as satisfiable as under the pruned assignments. In the
following definition, assignments can be partial with respect to the formula [6]:

Definition 1. Let F be a formula, C a clause, and α the assignment blocked
by C. Then, C is propagation redundant (PR) with respect to F if there exists
an assignment ω such that ω satisfies C and F |α `1 F |ω.

The clause C can be seen as a constraint that prunes from the search space
all assignments that extend α. Since F |α implies F |ω, every assignment that
satisfies F |α also satisfies F |ω, meaning that F is at least as satisfiable under ω
as it is under α. Moreover, since ω satisfies C, it must disagree with α on at least
one variable. We refer to ω as the witness, since it witnesses the propagation-
redundancy of the clause. Consider the following example [6]:

Example 1. Let F = (x ∨ y) ∧ (x ∨ y) ∧ (x ∨ z), C = (x), and let ω = x z be
an assignment. Then, α = x is the assignment blocked by C. Now, consider
F |α = (y) and F |ω = (y). Clearly, unit propagation on F |α ∧ (y) derives a
conflict. Thus, F |α `1 F |ω and so C is propagation redundant w.r.t. F . ut

Most known types of redundant clauses are PR clauses [6]. This includes blocked
clauses [10], set-blocked clauses [8], resolution asymmetric tautologies (RATs) [7],
and many more. As a new result, we show next that deciding whether a given
clause is a PR clause is NP-complete, which complicates the search for PR clauses.

Definition 2. The PR problem is the following decision problem: Given a for-
mula F and a clause C, decide if C is propagation-redundant w.r.t. F .

Theorem 1. The PR problem is NP-complete.

Proof. Membership in NP: Let α be the assignment blocked by C. To decide
whether or not C is propagation-redundant with respect to F , just guess an
assignment ω and check if F |α `1 F |ω.

NP-hardness: We present a polynomial reduction from the SAT problem.
Let F be an input formula (in CNF) for the SAT problem and let v be a fresh
variable that does not occur in F . Now, let C = v and obtain the formula F ′

from F by adding to each clause the literal v. We show that F is satisfiable if
and only if C is propagation-redundant with respect to F ′.

For the “only if” direction, assume that F is satisfied by some assignment ω
and let α = v be the assignment blocked by C. Now, obtain a new assignment

ω′ from ω by extending it as follows: ω′(x) = ω(x) if x ∈ var(F) and ω′(v) = 0.
Then, ω′ disagrees with α on v. Moreover, since ω satisfies F , it satisfies F ′.
Hence, F ′ |ω′ = ∅ and thus F ′ |α `1 F ′ |ω′ trivially holds. It follows that C is
propagation-redundant with respect to F ′.

For the “if” direction, assume that C is propagation-redundant with respect
to F ′ and let α = v be the assignment blocked by C. Then, there exists an
assignment ω′ such that F ′ |α `1 F ′ |ω′ and ω′ disagrees with α, meaning that
ω′(v) = 0. Since every clause in F ′ contains v, it follows that α satisfies F ′ and
so it must be the case that ω′ satisfies F ′. Since ω′(v) = 0 and F ′ |v = F , it
follows that ω′ satisfies F . ut

Since the identification of PR clauses is NP-hard, we use a SAT solver to search
for PR clauses. We thus next introduce a SAT encoding which, for a given formula
F and an assignment α, tries to find a witness ω that certifies the propagation
redundancy of the clause that blocks α. We obtain the encoding, which we call
the positive reduct, by selecting only a subpart of F :

Definition 3. Let F be a formula, α an assignment, and C the clause that blocks
α. The positive reduct p(F, α) of F with respect to α is the formula G∧C, where
G is obtained from F by first removing all clauses that are not satisfied by α and
then removing from the remaining clauses all literals that are not assigned by α.

Example 2. Let F = (x ∨ y ∨ z) ∧ (w ∨ y) ∧ (w ∨ z) and α = x y z. Then, the
positive reduct p(F, α) of F w.r.t. α is the formula (x∨y∨z)∧(z)∧(x∨y∨z). ut

We next show that the positive reduct is satisfiable if and only if the clause
blocked by α is a set-blocked clause [8] (see Definition 4 below), meaning that it
is also a PR clause [6] (note that deciding set-blockedness of a clause is also NP-
complete [8]). We show later that we can usually shorten this set-blocked clause
and thereby turn it into a PR clause that might not be set-blocked anymore.

Definition 4. A clause C is set-blocked by a non-empty set L ⊆ C in a for-
mula F if, for every clause D ∈ FL, the clause (C \ L) ∪ L ∪ D contains two
complementary literals.

We say that a clause is set-blocked in a formula F if it is set-blocked by some of
its literals in F . Consider the following example [8]:

Example 3. Let C = (x∨ y) and F = (x∨ y)∧ (x∨ y). Then, C is set-blocked by
L = {x, y}: Clearly, FL = F and C \ L = ∅. Therefore, for D1 = (x ∨ y) we get
that (C \L)∪L∪D1 = (x∨ y ∨ y) contains two complementary literals and the
same holds for D2 = (x∨ y), for which we get (C \L)∪L∪D2 = (x∨ y∨x). ut

Assume we are given a clause C which blocks some assignment α. Our new result
given in the following theorem implies that C is set-blocked in a formula F if and
only if the positive reduct p(F, α) is satisfiable. Recall that for an assignment α
and a set of literals L, αL denotes the assignment obtained from α by flipping
the truth values of the literals in L:

Theorem 2. Let F be a formula, α an assignment, and C the clause that
blocks α. Then, C is set-blocked by L ⊆ C in F if and only if αL satisfies
the positive reduct p(F, α).

Proof. For the “only if” direction, assume that C is set-blocked by L in F . We
show that αL satisfies p(F, α). Clearly, αL satisfies C since αL is obtained from
α by flipping the truth values of the literals in L. Now, let D be a clause in
p(F, α) that is different from C. We show that D is satisfied by αL. By the
definition of p(F, α), D is satisfied by α and thus, if D contains no literals of
L (i.e., D 6∈ FL), it is also satisfied by αL. Assume therefore that D ∈ FL.
Then, since C is set-blocked by L in F , the clause (C \L)∪L∪D contains two
complementary literals.

Since C cannot contain two complementary literals (because it blocks the
assignment α), there must be a literal l ∈ D such that one of the following
holds: (1) l ∈ D, (2) l ∈ C \ L, (3) l ∈ L. In the first case, D is clearly satisfied
by αL. In the second case, since αL differs from α only on literals in L and since
α falsifies C, it follows that αL falsifies l and thus it satisfies l. Finally, in the
third case, it follows that l ∈ L and so αL satisfies l since it satisfies all the
literals in L. It follows that D is satisfied by αL. Therefore, αL satisfies p(F, α).

For the “if” direction, assume that αL satisfies p(F, α). We show that L
set-blocks C in F . Let D ∈ FL. Since α falsifies C, it falsifies L. Therefore, α
satisfies L and thus p(F, α) contains the clause D′, obtained from D by removing
all literals that are not assigned by α. By assumption, αL satisfies D′ and since
it falsifies L, it must satisfy some literal l ∈ D′ \ L. But then l ∈ C \ L and
thus the clause (C \ L) ∪ L ∪D contains two complementary literals. Hence, C
is set-blocked by L in F . ut

Thus, if the SAT solver finds an assignment α for which the positive reduct
with respect to F is satisfiable, then the clause that blocks α is a set-blocked
clause and so its addition to F preserves satisfiability. Even better, when using a
CDCL solver, we can usually add a shorter clause: If α is the current assignment
of the solver, it consists of two parts—a part αd of variable assignments that
were decisions by the solver and a part αu of assignments that were derived from
these decisions via unit propagation. This means that F |αd `1 F |α. Since C is
set-blocked—and thus propagation-redundant—with respect to F , we know that
there exists some assignment ω such that F |α `1 F |ω. But then F |αd `1 F |ω
and so the clause that blocks αd, which is a subclause of the clause that blocks
α, is a PR clause with respect to F . We conclude:

Theorem 3. Let C be a PR clause w.r.t. a formula F and let α = αd ∪ αu be
the assignment blocked by C. Assume furthermore that the assignments in αu

are derived via unit propagation on F |αd. Then, the clause that blocks αd is
propagation-redundant w.r.t. to F .

We can thus efficiently find short PR clauses by using an additional SAT solver
for finding a set-blocked clause and then shortening the clause by removing
literals that are not decision literals.

4 Conditional Autarkies

We have seen that the positive reduct can be used to determine whether a
clause is set-blocked with respect to a given formula. As we show in this section,
searching for satisfying assignments of the positive reduct is actually the same
as searching for certain kinds of partial assignments [12]:

Definition 5. A partial assignment ω is an autarky for a formula F if ω sat-
isfies every C ∈ F for which var(ω) ∩ var(C) 6= ∅.

In other words, an autarky is a (partial) assignment that satisfies every clause
it touches. For example, if a literal l is pure in a formula (i.e., l does not occur
in the formula), then the assignment ω = l is an autarky for the formula. But
also the empty assignment as well as every assignment that satisfies the whole
formula are autarkies. If we are given an autarky ω for a formula F , we can use ω
to simplify F because F |ω and F are satisfiability equivalent, although they are
not necessarily logically equivalent [12]. Autarkies yield PR clauses as follows:

Theorem 4. Let F be a formula and ω an autarky for F . Then, every clause
C such that ω satisfies C and var(C) ⊆ var(ω) is a PR clause with respect to F .

Proof. Let α be the assignment blocked by C. We show that F |α `1 F |ω. Let
D |ω ∈ F |ω for D ∈ F . Since D is not satisfied by ω, it follows that D is not
touched by ω and thus—since var(α) ⊆ var(ω)—it is also not touched by α.
Hence, D |α = D |ω = D is contained in F |α and so F |α `1 D |ω. It follows
that C is a PR clause with respect to F . ut

Suppose a SAT solver has found a partial assignment ωcon for some formula F .
We can then try to search for autarkies in the simplified formula F |ωcon. Given
an autarky ωaut for F |ωcon, we call ω = ωcon ∪ωaut a conditional autarky for F :

Definition 6. A partial assignment ω is a conditional autarky for a formula F
if there exists a subassignment ωcon ⊂ ω such that ω is an autarky for F |ωcon.
We call ωcon the conditional part of ω.

If ω \ ωcon assigns exactly one variable, we call the literal satisfied by ω \ ωcon a
conditional pure literal with respect to ωcon.

Example 4. Consider the formula F = (x∨ y)∧ (x∨ z)∧ (y∨ z). The assignment
ω = y z is a conditional autarky with conditional part ωcon = y: By applying
ωcon to F , we obtain the formula F |y = (x) ∧ (x ∨ z). The only clause of F |y
that is touched by ω is the clause (x ∨ z), which is satisfied ω. The literal z is a
conditional pure literal with respect to ωcon. ut

Note that every autarky ω is a conditional autarky where ωcon is the empty
assignment. However, as illustrated by Example 4, the converse does not hold:
Although the assignment ω = y z is a conditional autarky for F , it is not an
autarky for F because the clause (x ∨ y) is touched but not satisfied by ω. The
following theorem shows that satisfying assignments of the positive reduct are
nothing else than conditional autarkies:

Theorem 5. Let F be a formula and α a partial assignment. Then, an assign-
ment ω over var(α) satisfies the positive reduct p(F, α) if and only if ω is a
conditional autarky for F with ωcon = α ∩ ω.

Proof. For the “only if” direction, assume that ω is a satisfying assignment of
p(F, α). First, note that ω disagrees with α on at least one variable since ω
satisfies the clause that blocks α. Therefore, ωcon ⊂ ω. It remains to show that
ω is an autarky for F |ωcon. Let D |ωcon be a clause in F |ωcon such that D ∈ F
and assume that D |ωcon is touched by ω. Since var(ω) = var(α), it follows
that D |ωcon is also touched by α. Now, if α does not satisfy D |ωcon, then ω
satisfies D |ωcon since ω disagrees with α on all variables in var(α) \ var(ωcon).
In contrast, if α satisfies D |ωcon, then the clause D′, which contains only those
literals of D that are touched by α, is contained in p(F, α). Hence, ω satisfies D′

and thus it satisfies D |ωcon. It follows that ω is a conditional autarky for F .
For the “if” direction, assume that ω is a conditional autarky for F with

ωcon = α ∩ ω and let D′ ∈ p(F, α). If D′ is the clause that blocks α, then ω
satisfies D′ since ω disagrees with α (note that by definition ωcon ⊂ ω). Assume
thus that D′ is not the clause that blocks α. Then, there exists a clause D ∈ F
such that α satisfies D and D′ is obtained from D by removing all literals
that are not assigned by α. Assume now that ωcon does not satisfy D′. Then,
D |ωcon ∈ F |ωcon (note that ωcon cannot satisfy D since the literals in D\D′ are
not assigned by α and thus also not by ω). Since α satisfies D, it satisfies D |ωcon.
Hence, D |ωcon is touched by α and thus also by ω. But then ω satisfies D |ωcon

since it is a conditional autarky for F . Hence, since D′ contains all literals of D
that are assigned by α (and thus by ω), ω satisfies D′. It follows that ω satisfies
p(F, α). ut

Combining Theorem 5 with Theorem 2, which states that a clause C is set-
blocked by L ⊆ C in a formula F if and only if αL satisfies p(F, α), we obtain
the following relationship between conditional autarkies and set-blocked clauses:

Corollary 1. Let F be a formula, C a clause, and α the assignment blocked
by C. Then, C is set-blocked by L ⊆ C in F if and only if αL is a conditional
autarky for F with conditional part αL ∩ α.

This correspondence between set-blocked clauses and conditional autarkies re-
veals an interesting relationship between set-blocked clauses and PR clauses:

Theorem 6. Let C ∨ L be a clause that is set-blocked by L with respect to a
formula F . Any clause C ∨ l with l ∈ L is a PR clause with respect to F .

Proof. Let α be the assignment that is blocked by C ∨ l. We need to show that
there exists an assignment ω such that ω satisfies C ∨ l and F |α `1 F |ω. Let
ω be αL. Clearly, ω satisfies C ∨ l on l. Moreover, we know from Theorem 1
that ω is a conditional autarky for F with conditional part ωcon = α ∩ ω. Now,
let F ′ = F |ωcon, α′ = α \ ωcon, and ω′ = ω \ ωcon. Then, F |α = F ′ |α′ and
F |ω = F ′ |ω′. Since var(α′) ⊆ var(ω′) and ω′ is an autarky for F ′ (Lemma 4),
it follows that F ′ |α′ `1 F ′ |ω′. But then F |α `1 F |ω and thus C ∨ l is a PR
clause w.r.t. F . ut

SDCL (formula F)
1 α := ∅
2 forever do
3 α := Simplify (F, α)
4 if F |α contains a falsified clause then
5 C := AnalyzeConflict ()
6 if C is the empty clause then return unsatisfiable
7 F := F ∪ {C}
8 α := BackJump (C,α)
9 else if p(F, α) is satisfiable then

10 C := AnalyzeWitness ()
11 F := F ∪ {C}
12 α := BackJump (C,α)
13 else
14 l := Decide ()
15 if l is undefined then return satisfiable
16 α := α ∪ {l}

Fig. 1. Pseudo-code of the SDCL procedure

This basically means that if a clause C∨L is set-blocked by L in a formula F , we
can add any clause C ∨ l such that l ∈ L to F without affecting its satisfiability.

Example 5. Consider the formula F = (x∨ y ∨ z)∧ (x∨ y ∨ z)∨ (x∨ y ∨ z). The
clause (x∨ y ∨ z) is set-blocked by {x, y} in F and so (x∨ z) and (y ∨ z) are PR
clauses w.r.t. F as both α = x y z and ω = x y z are autarkies for F . Therefore,
the addition of (x ∨ z) or (y ∨ z) to F preserves satisfiability. ut

We have seen different approaches to finding and adding PR clauses to a formula.
In the following, we make use of these approaches when introducing our extension
of conflict-driven clause learning.

5 Satisfaction-Driven Clause Learning

Our satisfaction-driven clause learning (SDCL) paradigm extends the CDCL
paradigm in the following way: Whenever the CDCL solver is required to pick a
new decision, we first check whether the current assignment and all its extensions
can be pruned from the search space by learning the clause which contains the
negation of all previous decisions. As explained in Section 3, such a learned
clause can be obtained by searching for a satisfying assignment of the positive
reduct with respect to the formula and the current assignment of the solver.

Figure 1 shows the pseudo code of the SDCL procedure. Removing lines 9 to
12 would result in the classical CDCL algorithm, which consists of three phases:
simplify, learn, and decide. The simplify phase uses unit propagation to extend
the current assignment α (line 3). The main reasoning of CDCL is performed
in the learn phase, which kicks in when a conflict is reached, i.e., when a clause

is falsified by the current assignment α (i.e., when the if condition in line 4 is
true). In this case, a so-called conflict clause is computed by the AnalyzeConflict
procedure (line 5). A conflict clause serves as a constraint that should prevent
the solver from investigating unsatisfiable parts of the search space in the future
by encoding the reasons for the current conflict. The naive approach for this
is to use the clause that blocks α as conflict clause. A stronger conflict clause
can be obtained by computing the conflict clause that blocks only the decision
literals of α. In practice, there are several approaches for learning even smaller
clauses [11,17].

If the conflict clause is the empty clause, then the solver can conclude that
the formula is unsatisfiable (line 6); otherwise, the clause is added to the formula
(line 7). After adding the conflict clause to the formula (clause learning), the
solver backjumps (line 8) to the level where the conflict clause contains a literal
that is not falsified. Finally, the decide phase (lines 14 to 16) extends α by
selecting a literal and making it true. In case all variables are assigned and no
clause is falsified, the formula is identified as satisfiable (line 15).

The SDCL related lines (9 to 12) work as follows: If the current assignment
α does not lead to a conflict (i.e., the if condition on line 4 fails), we check
(optionally in a limited way) whether the positive reduct p(F, α) is satisfiable.
If not, a new decision is made (line 14). Otherwise, we conclude that the clause
that blocks α is set-blocked and thus redundant with respect to F . Similar to
the AnalyzeConflict procedure, which shortens conflict clauses in practice, we
can learn a clause that is smaller than the one that blocks α. This is done in
the AnalyzeWitness procedure, which analyzes the assignment that satisfies the
positive reduct (the witness). As shown in Theorem 3, we can add the clause
that blocks only the decision literals of α since it is a PR clause. Alternatively, we
can add PR clauses based on conditional autarkies as described in Theorem 6.
After the clause addition, we backjump by unassigning all variables up to the
last decision (line 12) and continue with a new iteration of the procedure.

A crucial part of the algorithm is the underlying decision heuristic of the
Decide procedure. Most practical implementations of CDCL use the so-called
VSIDS (Variable State Independent Decaying Sum) [13] heuristic which selects
the variable that occurs most frequently in recent conflict clauses. In our early
experiments, VSIDS turned out to be a poor heuristic for SDCL. A possible
explanation is that VSIDS can select variables as early decisions that occur
in different parts of the formula, thereby making it impossible to satisfy the
resulting positive reduct.

In order to select variables in the same part of the formula, we propose the
autarky decision heuristic: Given a formula F and the current assignment α,
the autarky decision heuristic selects the variable that occurs most frequently in
clauses in F |α \ F (i.e., in the clauses of F that are touched but not satisfied
by α). Occurrences are weighted based on the length of clauses—the smaller
the clause, the larger the weight. If F |α \ F is empty, then α is an autarky for
F , hence the name. So this heuristic tries to guide the solver to an autarky.

We expect that this heuristic helps with finding conditional autarkies—and thus
with satisfying the positive reduct formulas—more efficiently.

The autarky heuristic can only be used for non-empty assignments. We there-
fore need a special heuristic for the first decision. This turned out to be chal-
lenging and is still part of current research. A heuristic that works really well for
the pigeon hole formulas is to select the variable x that is least constrained, i.e.,
either x or x occurs least frequently in the formula. The rationale behind this
heuristic is that it creates an initial positive reduct with as few unit clauses as
possible: Notice that a clause which is satisfied by the first decision becomes a
unit clause in the positive reduct unless unit propagation assigns other literals in
that clause. Such a unit clause makes it impossible to satisfy the positive reduct
for the first decision. Also, this heuristic finds pure literals and fixes them using
a PR clause: The positive reduct has only the clause that blocks the current
assignment and can thus be trivially satisfied. However, it is unlikely that this
heuristic is effective for a wide spectrum of benchmark families.

In the next section, we illustrate how short proofs of the pigeon hole formulas
can be produced manually by combining the addition of set-blocked clauses
with resolution. With this we want to illustrate why short proofs can be found
automatically by our implementation of SDCL.

6 Solving Pigeon Hole Formulas using SDCL

A pigeon hole formula PHPn intuitively encodes that n + 1 pigeons have to be
assigned to n holes such that no hole contains more than one pigeon. In the
encoding, a variable xi,k denotes that pigeon i is assigned to hole k:

PHPn :=
∧

1≤i≤n+1

Pi︷ ︸︸ ︷
(xi,1 ∨ · · · ∨ xi,n) ∧

∧
1≤i<j≤n+1

∧
1≤k≤n

Hk
i,j︷ ︸︸ ︷

(xi,k ∨ xj,k) (1)

Clearly, pigeon hole formulas are unsatisfiable. Following Haken [4], we use array
notation for clauses: Every clause is represented by an array of n + 1 columns
and n rows. An array contains a “ ” (“ ”) in the i-th column and k-th row
if and only if the variable xi,k occurs positively (negatively, respectively) in the
corresponding clause. The representation of PHPn in array notation has for every
clause (xi,1 ∨ · · · ∨ xi,n), an array in which the i-th column is filled with “ ”.
Moreover, for every clause (xi,k ∨ xj,k), there is an array that contains two “ ”
in row k—one in column i and the other in column j. For instance, PHP4 in
array notation looks as follows:

1 2 3 4 5
1
2
3
4

1 2 3 4 5
1
2
3
4

1 2 3 4 5
1
2
3
4

1 2 3 4 5
1
2
3
4

1 2 3 4 5
1
2
3
4

P1 P2 P3 P4 P5

1 2 3 4 5
1
2
3
4

1 2 3 4 5
1
2
3
4

. . .

1 2 3 4 5
1
2
3
4

1 2 3 4 5
1
2
3
4

H1
1,2 H1

1,3 H4
3,5 H4

4,5

We use array notation to describe a method for learning binary clauses. For
the explanation, we pick (x1,5∨x4,1) in PHP4 as it allows an easy formulation of
the proof of pigeon hole formulas. The proof idea is similar to that of Cook: We
reduce a pigeon hole formula PHPn to the smaller formula PHPn−1. The main
difference is that in our case PHPn−1 still uses the same variables as PHPn.

Again, we pick the clause C = (x1,5∨x4,1) ∈ PHP4. Let αd = x1,5 x4,1 be the
assignment blocked by C. Then, α = x1,1 x1,2 x1,3 x1,4 x1,5 x4,1x4,2 x4,3 x4,4 x4,5
is obtained from αd by applying unit propagation. Let C ′ be the clause that
blocks α. The clauses and assignments in array notation are as follows:

1 2 3 4 5
1
2
3
4

1 2 3 4 5
1
2
3
4

1 2 3 4 5
1
2
3
4

1 2 3 4 5
1
2
3
4

C C ′ αd α

Next, we construct the positive reduct p(PHP4, α). The positive reduct contains
C ′ and all clauses of PHP4 that are satisfied by α, which are the following 22
clauses: P1, P5, H

1
1,2, . . . ,H

1
4,5, H

4
1,2, . . . H

4
4,5. From these clauses, we remove the

literals that are not assigned by α and obtain the positive reduct p(PHP4, α):

1 2 3 4 5
1
2
3
4

1 2 3 4 5
1
2
3
4

1 2 3 4 5
1
2
3
4

C ′ P ′1 P ′5

1 2 3 4 5
1
2
3
4

. . .

1 2 3 4 5
1
2
3
4

1 2 3 4 5
1
2
3
4

. . .

1 2 3 4 5
1
2
3
4

H1
1,2 H1

4,5 H4
1,2 H4

4,5

The positive reduct is satisfied by the following witness and conditional autarky:

1 2 3 4 5
1
2
3
4

1 2 3 4 5
1
2
3
4

ω ωcon

According to Theorem 3, we can learn clause C and, according to Theorem 6,
we can learn the clauses A1, A2, A3, and A4:

1 2 3 4 5
1
2
3
4

1 2 3 4 5
1
2
3
4

1 2 3 4 5
1
2
3
4

1 2 3 4 5
1
2
3
4

1 2 3 4 5
1
2
3
4

C A1 A2 A3 A4

After learning (x1,5 ∨ x4,1), we can learn the clause (x2,5 ∨ x4,1) in a similar
way. Now the assignment αd = x4,1 can be extended using unit propagation to
obtain α = x3,1 x3,2 x3,3 x3,4 x3,5 x4,1x4,2 x4,3 x4,4 x4,5 The positive reduct of the
extended formula, p(PHP4∧(x1,5∨x4,1)∧(x2,5∨x4,1), α), is satisfiable, allowing
us to learn the unit clause (x4,1). By repeating the same procedure three times,
we can learn the clauses (x4,2), (x4,3), and (x4,4) in a similar way. Now the
clauses P1 to P4 can be shortened because their last literal is falsified. We have
thus reduced PHP4 to PHP3.

7 Evaluation

We implemented a prototype4 of SDCL on top of the plain Lingeling solver [2]
(no pre- or inprocessing), including proof-logging support in the PR proof for-
mat [6]. We focus on solving large pigeon hole formulas efficiently and automat-
ically, although we envision that the paradigm will be broadly applicable.

Apart from the standard encoding of the pigeon hole formulas, we ran exper-
iments on two alternative, more compact, encodings. Both encodings replace the
at-most-one constraint ≤1(x1,k; . . . ;xn+1,k), i.e., the Hk

i,j clauses in formula (1):
The first alternative replaces the direct encoding by a sequential counter encod-
ing [15]. The second alternative, the minimal encoding, iteratively replaces three
literals of the at-most-one constraint with a new literal and adds an at-most-one
constraint between the three replaced literals and the new literal.

We compared our method with two tools that can reason using extended
resolution: Ebddres [16] and GlucosER [1]. Both tools can refute pigeon hole
formulas efficiently compared to CDCL solvers. Ebddres solves a given formula
using BDDs and optionally converts the BDD proof into an extended-resolution
proof, linear in the number of BDD nodes, which in turn can be checked using
the TraceCheck tool [5]. GlucosER is an extension of the Glucose solver
that allows extended learning—a method that adds definitions based on conflict
clauses. Proof logging is not supported by GlucosER, but it could in theory
be added with reasonable effort.5

Table 1 shows the results of our experiments. Each benchmark was executed
on a compute node with two Intel(R) Xeon(R) E5-2620 v4 @ 2.10GHz CPUs
and 128 GB of main memory, running Ubuntu 16.04.2 64-bit.

4 The tools and files are available at http://fmv.jku.at/prune/
5 Because we were unable to compile the sources, we could not add proof logging.

Instead, we used a statically compiled binary.

http://fmv.jku.at/prune/

Table 1. The number of variables and clauses of pigeon hole formulas—standard (-std),
sequential counter (-seq), and minimal (-min)—as well as the runtime (in seconds)
and proof size (in BDD nodes or lemmas) for solving the formulas with Ebddres,
GlucosER, and our SDCL variant of Lingeling. “TO” means a timeout after 9000
seconds and “OF” means 32-bit index overflow (≥ 230 cache lines) for Ebddres.

input Ebddres GlucosER Lingeling (PR)
formula #var #cls time #node time #lemma time #lemma

PHP10-std 110 561 1.00 3,182,495 22.71 329,470 0.07 329
PHP11-std 132 738 3.47 9,493,302 146.61 1,514,845 0.11 439
PHP12-std 156 949 10.64 27,351,195 307.29 2,660,358 0.16 571
PHP13-std 182 1,197 30.81 76,513,832 982.84 6,969,736 0.22 727

PHP20-std 420 4,221 OF —— TO —— 1.61 2,659
PHP30-std 930 13,981 OF —— TO —— 13.45 8,989
PHP40-std 1,640 32,841 OF —— TO —— 67.41 21,319
PHP50-std 2,550 63,801 OF —— TO —— 241.14 41,649

PHP10-seq 220 311 OF —— 1.62 25,712 0.07 327
PHP11-seq 264 375 OF —— 6.94 77,747 0.10 437
PHP12-seq 312 445 OF —— 19.40 174,084 0.14 569
PHP13-seq 364 521 OF —— 172.76 1,061,318 0.18 725

PHP20-seq 840 1,221 OF —— TO —— 1.05 2,657
PHP30-seq 1,860 2,731 OF —— TO —— 6.55 8,987
PHP40-seq 3,280 4,841 OF —— TO —— 27.10 21,317
PHP50-seq 5,100 7,551 OF —— TO —— 86.30 41,647

PHP10-min 180 281 28.60 81,490,141 0.64 15,777 0.06 329
PHP11-min 220 342 143.92 399,014,970 1.82 34,561 0.10 439
PHP12-min 264 409 OF —— 9.87 121,321 0.13 571
PHP13-min 312 482 OF —— 57.66 483,789 0.18 727

PHP20-min 760 1,161 OF —— TO —— 1.03 2,659
PHP30-min 1,740 2,641 OF —— TO —— 6.30 8,989
PHP40-min 3,120 4,721 OF —— TO —— 26.65 21,319
PHP50-min 4,900 7,401 OF —— TO —— 85.00 41,649

Our version of Lingeling is the only tool that can solve pigeon hole for-
mulas with 20 or more pigeons. Over 99% of the learned clauses (“lemmas”)
produced by Lingeling are PR clauses; the remaining ones are conflict clauses.
The number of lemmas for PHPn is cubic in n, while the number of variables
and the size of the formula are at least quadratic in n. All PR clauses that are
found by Lingeling are also added to the proofs. The size of the automatically
produced PR proofs is similar to that of our manual proofs [6]. For the proofs
returned by Lingeling, we observed that between around 5 % and 40 % of the
clauses are not required for proving unsatisfiability. Moreover, our approach is
robust: Performance varies only minimally across the different encodings of the
pigeon hole formulas.

If we turn off our SDCL code, Lingeling requires exponential runtime on
PHPn formulas. Runtimes are similar but in all cases larger than for GlucosER,
e.g., 153 seconds for PHP13-min. We also want to highlight that the autarky

decision heuristic is essential for proving the unsatisfiability of the pigeon hole
formulas—without this heuristic, Lingeling could not find proofs within the
given time limit.

8 Conclusions

We proposed a theoretical and a practical approach to searching for PR clauses.
First, we showed that searching for a PR clause is an NP-complete problem.
As a consequence, a SAT solver that performs the addition of PR clauses has to
solve multiple NP-complete problems instead of only one. To make this approach
feasible and efficient, we turned the problem of finding a PR clause into a SAT
encoding that is significantly easier than the original problem. We called this en-
coding the positive reduct and showed that satisfying the positive reduct yields a
set-blocked clause, or, equivalently, a conditional autarky. We also demonstrated
how this set-blocked clause can be shortened. Based on our theoretical results,
we introduced SDCL—a new SAT-solving paradigm that generalizes CDCL so
that it produces not only conflict clauses but also PR clauses. Finally, we imple-
mented SDCL in the solver Lingeling and performed preliminary experiments
with the pigeon hole formulas that are very promising.

In future work, we want to focus on making the SDCL approach effective on
a wide spectrum of formulas. There are several challenges ahead. First and fore-
most, a heuristic needs to be developed that facilitates finding PR clauses with
few decisions. Our autarky decision heuristic appears to be a useful first step.
Second, experiments should be performed to find out which PR clauses prune
the search space most effectively. In our evaluation, we selected PR clauses based
on decisions. An alternative is to use PR clauses based on conditional autarkies.
It is also not yet clear when and how often an SDCL solver should search for
PR clauses to achieve the best performance. Moreover, it could make sense to
restrict the time spent on solving the positive reduct. Finally, we observed that
although the computational costs for solving the positive reducts are low, the
costs of generating the reducts are very high. Reducing the generation costs
could thus improve the performance significantly.

References

1. Audemard, G., Katsirelos, G., Simon, L.: A Restriction of Extended Resolution for
Clause Learning SAT Solvers. In: Proc. of the 24th AAAI Conference on Artificial
Intelligence (AAAI 2010). pp. 15–20. AAAI Press (2010)

2. Biere, A.: Splatz, Lingeling, Plingeling, Treengeling, YalSAT Entering the SAT
Competition 2016. In: Proc. of SAT Competition 2016 – Solver and Benchmark
Descriptions. Dep. of Computer Science Series of Publications B, vol. B-2016-1,
pp. 44–45. University of Helsinki (2016)

3. Cook, S.A.: A short proof of the pigeon hole principle using extended resolution.
SIGACT News 8(4), 28–32 (Oct 1976)

4. Haken, A.: The intractability of resolution. Theoretical Computer Science 39, 297–
308 (1985)

5. Heule, M.J.H., Biere, A.: Proofs for satisfiability problems. In: All about Proofs,
Proofs for All (APPA), Math. Logic and Foundations, vol. 55. College Pub. (2015)

6. Heule, M.J.H., Kiesl, B., Biere, A.: Short proofs without new variables. In: Proc. of
the 26th Int. Conference on Automated Deduction (CADE-26). LNCS, vol. 10395,
pp. 130–147. Springer (2017)

7. Järvisalo, M., Heule, M.J.H., Biere, A.: Inprocessing rules. In: Proc. of the 6th Int.
Joint Conference on Automated Reasoning (IJCAR 2012). LNCS, vol. 7364, pp.
355–370. Springer, Heidelberg (2012)

8. Kiesl, B., Seidl, M., Tompits, H., Biere, A.: Super-blocked clauses. In: Proc. of
the 8th Int. Joint Conference on Automated Reasoning (IJCAR 2016). LNCS, vol.
9706, pp. 45–61. Springer, Cham (2016)

9. Kleine Büning, H., Kullmann, O.: Minimal unsatisfiability and autarkies. In: Hand-
book of Satisfiability, pp. 339–401. IOS Press (2009)

10. Kullmann, O.: On a generalization of extended resolution. Discrete Applied Math-
ematics 96-97, 149–176 (1999)

11. Marques Silva, J.P., Sakallah, K.A.: GRASP: A search algorithm for propositional
satisfiability. IEEE Trans. Computers 48(5), 506–521 (1999)

12. Monien, B., Speckenmeyer, E.: Solving satisfiability in less than 2n steps. Discrete
Applied Mathematics 10(3), 287–295 (1985)

13. Moskewicz, M.W., Madigan, C.F., Zhao, Y., Zhang, L., Malik, S.: Chaff: Engi-
neering an efficient SAT solver. In: Proceedings of the 38th Design Automation
Conference (DAC 2001). pp. 530–535. ACM (2001)

14. Nordström, J.: On the interplay between proof complexity and SAT solving.
SIGLOG News 2(3), 19–44 (2015)

15. Sinz, C.: Towards an optimal CNF encoding of boolean cardinality constraints.
In: Proc. of the 11th Int. Conference on Principles and Practice of Constraint
Programming (CP 2005). LNCS, vol. 3709, pp. 827–831. Springer (2005)

16. Sinz, C., Biere, A.: Extended Resolution Proofs for Conjoining BDDs. In: Proc. of
the 1st Int. Computer Science Symposium in Russia (CSR 2006). LNCS, vol. 3967,
pp. 600–611. Springer (2006)

17. Sörensson, N., Biere, A.: Minimizing learned clauses. In: Proc. of the 12th Int.
Conference on Theory and Applications of Satisfiability Testing (SAT 2009). LNCS,
vol. 5584, pp. 237–243. Springer (2009)

18. Tseitin, G.S.: On the complexity of derivation in propositional calculus. In: Au-
tomation of Reasoning: 2: Classical Papers on Computational Logic 1967–1970.
pp. 466–483. Springer, Heidelberg (1983)

19. Urquhart, A.: The complexity of propositional proofs. In: Current Trends in The-
oretical Computer Science, pp. 332–342. World Scientific (2001)

