Journal of Automated Reasoning manuscript No.
(will be inserted by the editor)

Solution Validation and Extraction for QBF Preprocessing

Marijn Heule - Martina Seidl - Armin Biere

Received: date / Accepted: date

Abstract In the context of reasoning on quantified Boolean formulas (QBFs), the ex-
tension of propositional logic with existential and universal quantifiers, it is beneficial
to use preprocessing for solving QBF encodings of real-world problems. Preprocess-
ing applies rewriting techniques that preserve (satisfiability) equivalence and that do
not destroy the formula’s CNF structure. In many cases, preprocessing either solves
a formula directly or modifies it such that information helpful to solvers becomes
better visible and irrelevant information is hidden. The application of a preprocessor,
however, prevented the extraction of proofs for the original formula in the past. Such
proofs are required to independently validate the correctness of the preprocessor’s
rewritings and the solver’s result as well as for the extraction of solutions in terms
of Skolem functions. In particular for the important technique of universal expansion
efficient proof checking and solution generation was not possible so far.

This article presents a unified proof system with three simple rules based on quan-
tified resolution asymmetric tautology (QRAT). In combination with an extended
version of universal reduction, we use this proof system to efficiently express cur-
rent preprocessing techniques including universal expansion. Further, we develop an
approach for extracting Skolem functions. We equip the preprocessor blogqger with
QRAT proof logging and provide a proof checker for QRAT proofs which is also able
to extract Skolem functions.

This work was supported by the Austrian Science Fund (FWF) through the national research network RiSE
(S11408-N23), Vienna Science and Technology Fund (WWTF) under grant ICT10-018, AFRL Award
FA8750-15-2-0096, and the National Science Foundation under grant number CCF-1618574.

Marijn J.H. Heule

Department of Computer Science, The University of Texas at Austin, GDC building, room 7.714, Austin,
USA

E-mail: marijn@cs.utexas.edu

Martina Seidl - Armin Biere
Institute for Formal Models and Verification, Johannes Kepler University Linz, Altenbergerstr. 69, 4040
Linz, Austria

1 Introduction

The upper part of Figure[T]shows the typical workflow for solving quantified Boolean
Sformulas. Given a formula in conjunctive normal form (CNF), it is first passed to a
preprocessor which rewrites the formula in a satisfiability preserving manner. Such
a preprocessor typically implements a rich portfolio of sophisticated simplification
techniques. Sometimes the preprocessor is able to solve the formula directly, other-
wise it has to be passed to a complete solver.

Effectively checking the result returned by a QBF solver has been an open chal-
lenge for a long time [S} 27} 28] 32} 134} 141} i45]]. The previous state-of-the-art was to
simply dump Q-resolution proofs [33]] and to validate their structure. This approach
has two major problems. On the one hand the proofs might get extremely large and
can often not be produced due to technical limitations. On the other hand, important
solving and preprocessing techniques are based on calculi other than Q-resolution,
which can not easily be simulated by Q-resolution if at all.

Due to the diversity of techniques in state-of-the-art preprocessors [10} [15], it is
not straightforward to provide a checker which verifies the output of the preprocessor.
In fact, it would be preferable to translate the different preprocessing techniques to
a canonical representation which then can be checked easily. Some efforts in this
direction use Q-resolution [28,45]. If a Q-resolution proof is available, then checking
is polynomial w.r.t. proof size. However, the proof itself might become exponentially
large w.r.t. solving complexity and already writing down the proof is too costly.

In propositional logic, the RUP proof checking format [[16] is extremely success-
ful because it simply logs the learnt clauses and provides an easy checking criterion.
For optimization purposes, recently, the DRUP extension has been presented [25]]
which provides elimination criteria for redundant clauses. It has been recognized that

Standard Solving Workflow

QBF ¢ Preprocessor —{QBF q)/]_, QBF Solver tfl;uli

QRAT
Proof Trace

Proof Checker ‘ Certifier |
: Functions !

ok/ ok/
error error

Contributions of this paper

Fig. 1 Overview of extended QBF solving workflow.

RUP and DRUP can be characterized with the resolution asymmetric tautology prop-
erty (RAT) which has been originally developed in the context of propositional pre-
processing for characterizing and comparing the strength of the various techniques.
In this article, following [19]], we extend RAT [24] to QRAT, the quantified resolution
asymmetric tautology property, and introduce novel clause addition and elimination
techniques using QRAT. With these novel rules, a new powerful proof system is
obtained, which is able to capture all state-of-the-art preprocessing techniques in a
uniform and compact manner. This allows us to develop a checker verifying the cor-
rectness of a QBF preprocessor. Moreover, checking QRAT proofs is polynomial in
the proof size. We integrated QRAT -based tracing in our preprocessor blogqer [10]
and implemented an efficient checker for QRAT proofs which is further able to ex-
tract Skolem functions from a proof of satisfiability.

In many applications, such as QBF-based synthesis [7, [11], a (checkable) proof
is not enough. Users also need certificates in form of Skolem functions. Depending
on the domain these Skolem functions correspond to synthesized circuits, universal
plans in non-deterministic planning, game strategies etc. While it is also possible
but cumbersome to directly generate certificates during solving [6]], a more common
approach is to extract them from a proof generated by a QBF solver. In this article,
we follow the latter approach, where proofs provide an interface between solver and
certificate extractor. This makes the extractor independent from the actual solver.
Further, proofs can be checked independently and they might be useful for other
applications such as core extraction, interpolation, etc.

The seminal results of [2l 3] showed how to extract Skolem functions from Q-
resolution proofs as produced by search-based solvers (e.g., [37, 40, |47]]) and [4]]
extends the approach to long-distance Q-resolution. An implementation of this ap-
proach has been presented in [41]]. However, when preprocessing techniques such as
universal expansion [8]], are used, then no certificates could be obtained. We closed
this gap by showing how to extract certificates from our QRAT proof system.

To summarize, this article presents a novel proof system which is the basis for
the first coherent presentation of a complete workflow w.r.t. proof generation, proof
checking, certificate extraction, as well as certificate checking for the arbitrary com-
bination of state-of-the-art QBF preprocessing techniques (see lower part of Fig.[I).

Parts of this article have been presented at the 7th Int. Joint Conference on Au-
tomated Reasoning (IJCAR 2014) [19] and at the 14th Int. Conference on Formal
Methods in Computer-Aided Design (FMCAD 2014) [18]. Some of the definitions
are generalized and proofs have been streamlined accordingly. In addition, we also
consider the preprocessing technique blocked literal elimination (BLE) which we
presented at the 7th Int. NASA Formal Methods Symposium (NFM 2015) [22]] in our
workflow and we show experimental results with BLE enabled.

2 Preliminaries

The QBFs considered in this article are in prenex conjunctive normal form (PCNF).
A QBF ¢ in PCNF has the structure II.y consisting of the quantifier prefix Il and
the matrix y. The quantifier prefix IT has the form QX1 0>X> ... 0,X, with disjoint

variable sets X;, Q; € {V,3}, Q; # Qi+1, and the set of variables of ¢ defined as
vars(¢) =X U...UX,. The matrix y is a propositional formula in conjunctive normal
form (CNF), i.e., a conjunction of clauses. A clause is a disjunction of literals and a
literal is either a variable (e.g., x) or a negated variable (e.g., X). The variable of a
literal is denoted by var () where var(l) = x if [= x or [= %. In the first case, we call
[a positive literal, in the second case, we call / a negative literal. The negation of a
literal / is denoted by I. As usual, [= [. The quantifier Q(IT,/) of a literal [is Q; if
var(l) € X;. Let Q(I1,1) = Q; and Q(IT,k) = Qj, then [<y k if i < j. Note, that this
order is in general not a partial order, since [<yj k as well as k <pj [for all literals /
and k in the same scope, say X;, even if [and k are different.

By T (empty matrix) and _L (empty clause) we denote the truth constants true and
false. The polarity pol(!) of literal with var(l) = xis T iff /| =x and L iff | = . We
sometimes write formulas in CNF as sets of clauses and clauses as sets of literals. We
consider only closed QBFs, so y contains only variables which occur in the prefix.
The subformula y; consisting of all clauses of matrix y containing literal / is defined
by yi ={C|! € C,C € y}. A variable assignment 7 : vars(¢) — { L, T} maps the
variables of ¢ to truth constants. By 7(¢) we denote ¢ under 7, i.e., each variable x
is replaced by 7(x) and the assigned variables are removed from the prefix. A partial
variable assignment maps only a subset of vars(¢) to truth constants. A QBF VxII.y
is false iff IT.w[x/T] or IT.w[x/ 1] is false where II.y[x/t] is the QBF obtained by
replacing all occurrences of variable x by 7. Respectively, a QBF 3xI1.y is false iff
both IT.y[x/T] and IT.y[x/ L] are false. If the matrix y of a QBF ¢ contains the
empty clause after eliminating the truth constants according to standard rules, then ¢
is false. Accordingly, if the matrix y of QBF ¢ is empty, then ¢ is true.

Models and countermodels of QBFs can either be described intensionally in form
of Herbrand and Skolem functions [3] or extensionally in form of subtrees of as-
signment trees. An assignment tree of a QBF ¢ is a complete binary tree of depth
[vars(¢)| + 1 where non-leaf nodes of each level are associated with a variable of ¢.
The order of the associated variables in the tree respects the order of the variables
in the prefix of ¢. A non-leaf node associated with variable x has one outgoing edge
labelled with x and one outgoing edge labelled with x. Each path starting from the
root of the tree represents a (partial) variable assignment. We also write a path as a
sequence of literals. A path T from the root node to a leaf is a complete assignment
and the leaf is labelled with the value of the QBF under 7. Nodes associated with
existential variables act as OR-nodes, while universal nodes act as AND-nodes. Re-
spectively, a node is labelled either with T or with L. A QBF is true (satisfiable) iff
its root is labelled with T. A QBEF is false (unsatisfiable) iff its root is labelled with
L. A crucial notation in our work is the following.

Definition 1 (Prefix/Suffix Assignment) Let T be a complete assignment, then 7*

and 7, denote the partial prefix and suffix assignment w.r.t. to variable x obtained
from the complete assignment 7 as follows:

v={y=t) |y<nxy#x}, w={y—10)|y£nx}

We also write T = 7*I7, with var(/) =x and 7(I) = T in this case.

The corresponding non-explicit definitions in our previous work, e.g., [19] could be
misinterpreted to assign literals k in the suffix 7,, as opposed to assign them in prefix
7%, even if they are in the same scope as /.

Example 2 Consider the QBF Vad3b,cVd Je. (aVbVévdVe) and the full assignment
T = abcde, then, e.g., T(a) = T and 7(b) = L. Then we have partial assignments
72 = ac and 1, = de, as well as 7€ = ab and 7, = de, with T = 1°b1), and 7 = 1°¢7,.

A pre-model M of QBF ¢ is a subtree of the assignment tree of ¢ such that (1)
for each universal node in M, both children are in M; (2) for each existential node
in M, exactly one of the children is in M; and (3) the root of the assignment tree is
in M. A pre-model M of QBF ¢ is a model of ¢ if in addition each node in M is
labelled with T. Obviously, only a true QBF can have a model. A false QBF has at
least one countermodel, which is defined dually: in a pre-countermodel M existential
nodes have two children, whereas universal nodes have only one and the root of the
assignment tree is in M. A pre-countermodel M is a countermodel if each node is
labelled with L.

Two QBFs are satisfiability equivalent (written as ¢ ~ ¢») iff they have the same
truth value. Two QBFs ¢ and ¢, are logically equivalent (written as ¢ =~ ¢,) if they
have the same set of (counter) models.

3 Quantified Implied Outer Resolvents

The following notion reduces a clause to those literals which are not inner to a given
literal, i.e., outer or in the same scope but different. Thus it captures the “context”
of the given literal w.r.t. that clause, which is then used to define a context-sensitive
variant of resolvent.

Definition 3 (Outer Clause) The outer clause of clause C on literal [€ C w.r.t. prefix
IT is defined as OC(IT,C,l) = {k | ke C,k <p L,k #I}.

Definition 4 (Outer Re_solvent) Let C be a clause with [€ C and D a clause occur-
ring in QBF I1.y with [€ D. The outer resolvent of C with D on literal / w.r.t. I,

denoted by OR(IT,C, D, 1), is the clause (C\{/}) UOC(IT,D,I).

Our considered proof system uses rules which can be interpreted as applications
of instances of the following generic clause redundancy property.

Definition 5 (Quantified Implied Outer Resolvents) Clause C has property (QIOR)
w.r.t. QBF IT.y on literal / € C iff w = OR(II,C,D,!) for all D € y with [€ D.

Note, that ¥ = R is here and in the following interpreted in the classical proposi-
tional way, e.g., all assignments satisfying the precondition y also satisfy the conclu-
sion R. Further, applied to formulas with a pure existential prefix, e.g., in the propo-
sitional case (SAT), the outer resolvent is the same as the (propositional) resolvent,
which contains all literals of the resolved clauses except the pivot literals. In previous
work, we considered only an instance (QRAT) of this generalization, which we will
discuss further down in Section [4l

Lemma 6 Given a clause C with QIOR w.r.t. QBF I1.y on literal | € C with var(l) =
x. If there is an assignment T that falsifies C\ {1}, but satisfies y, then the assignment
T¥ satisfies all D € y with | € D.

Proof Let D € y be a clause with [€ D and R = OR(I1,C,D,). The definition

of QIOR gives ¥ |= R, and thus 7(R) = 7((C\{l}) UOC(I1,D,I)) = T, because T

satisfies y. Butsince 7(C\ {/}) = L we need to have 7(OC(I1,D,[)) = T. Notice that
OC(I1,D,!) only consists of literals k different from / either occurring outside of x in
IT or in the same scope, e.g., k <p7 [and k # [, and we obtain 7*(OC(II,D,l)) = T.

Finally, ¥(D) = T follows from OC(II,D,!) C D. O

Theorem 7 Given a QBF ¢ = I1.y and a clause C € y with QIOR on an existential
literal | € C with respect to QBF ¢’ = IT'.y/' where W' = w\{C} and IT' is IT without
the variables of C not occurring in W'. Then ¢ and ¢’ are satisfiability equivalent.

Proof If ¢ is satisfiable then ¢ is also satisfiable, since all models of ¢ are also mod-
els of ¢’. In the following, we show that if ¢’ is satisfiable then ¢ is also satisfiable.
Let M’ be a model for ¢'. Let M = M’ except if violating assignments T = ¥/ 7, with
var(()l) = x in M’ exist which satisfy y' = y\ {C} but falsify C. In this case, we use
71 instead of 7*I. Notice that such a change only modifies the polarity of a single
label of an edge in M, if viewed as a tree, but changes potentially multiple assign-
ments of the form 7*Ip,. Each of those assignments now becomes 7*/p,. This change
only affects the clauses D € ¥ with [€ D. Since 7 satisfies all these D (Lemma @),
the replacement does not affect satisfiability of any of them. On the other hand, 7%/
satisfies C. Thus the resulting pre-model M turns out to be a model of ¢. a

The intuition behind QIOR is as follows: consider all potential outer resolvents
of a clause on a certain literal with resolution candidates containing the negation of
the picked literal. If all of them are “redundant”, or more precisely logically implied,
then this clause is redundant too and can be added or removed.

Theorem 8 Given OBF ¢y = I1.y and ¢ = I1.y U {C} where C has QIOR on a
universal literal | € C with respect to ¢y. Further, let ¢' = I1.yw U{C'} with C' =
C\{l}. Then ¢ and ¢’ are satisfiability equivalent.

Proof If ¢/ is satisfiable then ¢ is also satisfiable, since all models of ¢’ are also mod-
els of ¢. In the following, we show that if ¢ is satisfiable then ¢’ is also satisfiable.
Let M be a model for ¢. Let M’ = M except if violating assignments 7 in M exist
which falsify C’. These T have assignment prefix 7*/. Now consider the assignments
of the form 7¥Ip, in M. We will show below that the / in these assignments is redun-
dant. Since C" = C\ {} is falsified by 7, all clauses D € y with [€ D are satisfied
by ¥ (Lemma @) Therefore, the partial assignment 7*p, satisfies y U {C} (because
7¥1p, in M) and thus y U {C'} (because C and C’ only differ in /). We use this ob-
servation to construct M’ such that is uses both 7*/p, and t*Ip, for each 7¥Ip, in M
iff 7 is a violating assignment. In the tree-view of a model, this replaces the labels in
the subtree under 7%/ by a copy of the labels of the subtree under 7°/. The resulting
pre-model M’ turns out to be a model of ¢’. O

4 Quantified Resolution Asymmetric Tautologies (QRAT)

Checking whether an outer resolvent is implied by a formula, as stated in Def. [5] of
QIOR is co-NP hard. This is too costly in practice. In order to remain polynomially
computable, we use the following restriction, which still allows us to express all the
interesting preprocessing techniques we are aware of.

Denote with y - C that unit propagation shows that C is implied by y, where
unit propagation is defined in the standard way. This is equivalent to and in practice
computed by w AC I L, where C is the conjunction of the negation of all literals in
C. Or in other words, C is implied by y via unit propagation iff unit propagation on
the conjunction of y and all negated literals in C can derive the empty clause. A clause
implied by unit propagation is also known as an Asymmetric Tautology (AT) [23},20].

Definition 9 (Asymmetric Tautology) Clause C is an AT w.r.t. to y iff w | C.

Notice that the prefix of a QBF is ignored in the above definition and thus even
for QBF, the notion of AT is purely propositional. It does not change models.

The considered restricted variant of QIOR replaces semantic implication (F) by
unit propagation (-1). It is also known as Quantified Resolution Asymmetric Tautol-
0gy (QRAT) and defined below.

Definition 10 (Quantified Resolution Asymmetric Tautology) Clause C has QRAT
on literal / € C w.r.t. QBF IT.y iff w - OR(IT1,C,D,!) for all D € y with [€ D.

Note, that this definition differs from the original version [19] although both vari-
ants are equivalent. To improve readability, our new version uses unit propagation, in-
stead of the less common notion of Asymmetric Literal Addition (ALA) used in [19]].

Since QIOR implies QRAT, Theorem [/] gives the following corollary, which cor-
responds to Theorem 1 in [19].

Corollary 11 Givena QBF ¢ =I1.y and a clause C € y with QRAT on an existential
literal | € C with respect to QBF ¢’ = II'.y' where W' = w\{C} and IT' is IT without
the variables of C not occurring in W'. Then ¢ and ¢’ are satisfiability equivalent.

The elimination of a clause which has QRAT w.r.t. a QBF ¢ is called QRAT
Elimination (QRATE). Application of QRATE on a QBF IT.yw U {C} is written as

QRATE

QRATE(C.), IT.y or, more briefly, as II.yU{C} —— II.y

II.yU{C}
if C and [are clear from the context. Analogously, QRAT allows the introduction of
a clause, which has QRAT w.r.t. a QBF ¢, called QRAT Addition (QRATA), written

QRATA

QRLA(C’I)) IT'.wU{C} or, respectively, as IT.y ——= IT".wU{C}

II.y

if C and [are clear from the context. Note that the added clause may contain new
variables which do not occur in the original QBF. Then the prefix has to be extended
by these variables to obtain a closed QBF again. There is no restriction on how these
variables are quantified nor where they are put within the prefix.

Example 12 Consider the true QBF I1.y =Va3b,c.(aVb) A(aVvc)A(bVE). Clause
(aVc) has QRAT on ¢ w.r.t. IT.y. The only clause with literal ¢ is (b V ¢), which
produces the outer resolvent (aV b). Then y - (aV b), because (aV b) € y. Hence,
QRATA can add (a V ¢) to y which yields Va3b,c.(aVDb) A(aVve) A(bVE)A(aV D).

Example 13 Now let d be a new existential variable in the innermost quantifier block
of the original formula IT.y in the previous example. The clause (b V ¢V d) has
QRAT on ¢ (and d) w.rt. y. Adding it through QRATA to v gives the true QBF
Va3b,c,d.(aVb)A(@Vve)A(bVE)A(bVeVd).

These two examples can also serve to explain elimination, e.g., in the resulting
QBFs the added clause has QRAT and thus could be removed through QRATE to
obtain the original formula.

For removing or adding a clause which has QRAT on literal /, it is necessary that
[is existential. The following example illustrates that it would not be sound either to
allow for universal variables or to ignore the variable dependency restrictions.

Example 14 Consider the false QBF 3aVb.(aV b) A(aVb). Clause (aV b) has QRAT
on b because the only outer resolvent, i.e., with (@V b), is a tautology. Eliminating
(aV b) does not preserve unsatisfiability. Hence, removing clauses justified by QRAT
on universal literals is unsound. If we drop the variable dependency restriction, i.e.,
also allow inner literals in the definition of outer clause, then in this example (a V b)
would have QRAT on « since the only resolvent is a tautology. Again, removing
(aV b) does not preserve unsatisfiability.

However, as we will show below, one can remove universal literals if they have
QRAT. This is a generalization of the pure literal elimination rule (see next section)
which is a clause elimination technique if the pure literal is existentially quantified
and which is a literal elimination technique if the pure literal is universally quantified.

Since QIOR implies QRAT, Theorem [§] gives the following corollary, which cor-
responds to Theorem 2 in [19].

Corollary 15 Given QBF ¢y = I1.y and ¢ = I1.y U {C} where C has QRAT on a
universal literal | € C w.r.t. ¢o. Further, let ' = IT.y U{C'} with C' = C\ {l}. Then
¢ and ¢’ are satisfiability equivalent.

In principle, a universal literal on which a clause C has QRAT w.r.t. to a QBF ¢
may be safely removed from C or vice versa added. In the following, we only need
the elimination of universal literals. The elimination of a universal literal / from a
clause C which has QRAT on [w.r.t. a QBF ¢ is called QRATU, written

QRATU(C,1)

myu{c} Dyu{c\{}} or ILyu{cy ¥ myu{c\{1}}

if C and [are clear from the context.

Table 1 Preprocessing Rules (the r,s,# indices are all universally quantified).

name rewriting rule precondition
tautology - Taut
EL limination ILy,CVIVI== Iy none -
E2. subsumption I.y,C,D Subs, II.y,C cCcD %
: = =
existential p Q1) =3 ‘g
E3. pure literal Iy,CVI,....Covl—=11. I 3
glimination Aot " v var(l) € vars(y AC,) ;
=
blocked QBCE QI1,h) =13, kS
E4. clause Hy CVli=—I1y VD € y with [€ D:
elimination Jk,k € C®; D withk <7 1
universal URed QII,l) =V,
ML eduction My,CVI==5I.y,C Vk(EC:)k<nl
M2. strengthening I.y,IVC,IVD St Il.y,C,IvVD DCC
Iy, 1,CiVI,...,C VI,
M3, Unit literal WD]’ \/ll D vnl ' Q(I1,1) =13,
* elimination Unit oo var(l) & vars(y AC, A Dy)
=—11.y.C,,...,C, g
universal II.y,Ci VI,...,.C, VI QI =V k=
M4, pure literal P ' ’ iy 3
gliminati()n g II.y,Cy,...,Cy var(l) ¢ vars(y AC) g
3
) QLY =3, :
Ms. Titeral My,cviLA my.cvivk VD € y with I'€ D: 5
addition ’ ’ k_e D with k <py [or =
3h,he C@y D with h <pp 1
equivalence - - Equi Q(I1,1) =3,
Mé. replacement MLy, IV k,1V k=" 1.yl /k] (k)<nl
blocked BLE Q(I1,1) = v,
M7. literal MNy,CVi==I.y,C VD € y with [€ D:
elimination Jk,k € C®; D withk <p7 1
HHyl[l,Cl V)7‘,~~~~,Cn vy,
Al variable DIV)';-A-va Vy Q(I,y) =13,
* elimination YElim Iy A (GUDj) y & vars(y ACr A Dy) £
1<% 5
_ _ <
IIvx3Y.y,Cy VXK,...,Cy VX, X%Val‘s(l]/ACr/\Ds/\E[), Q
universal Div,...:Dm V3B, Ep i €Y :yi € vars(Ey), g
S Q
A2. expansion N Vyi €Y 1 y; & vars(y),

n3vy'.y.c,...,G,,D},...,D,,

El,...,EpE} ... E]

5 Preprocessing for QBFs

D, = Dy[y1/¥},---,Yq/Y,):
E| =Ely1/y),---.vq/¥})

To successfully solve quantified Boolean formulas (QBF), the introduction of an ad-
ditional preprocessing step has been shown to be extremely beneficial in combina-
tion with search based solvers [30, 38]]. The preprocessed formula even though still
in CNF, is in general not logically equivalent, but only satisfiability equivalent. This
requires—as we will see later—special actions to reconstruct solutions for the orig-
inal formula. Below, we introduce techniques for CNF-based preprocessing used in
state-of-the-art tools [[10} [15} 20} 42] operating on a linear quantifier prefix.

We can distinguish three types of rules: (1) clause elimination rules; (2) clause
modification rules; and (3) clause addition rules. Table [I|summarizes the preprocess-
ing techniques and their necessary preconditions. The expression C ®, D denotes the
resolvent over pivot variable x. We omit showing the soundness of the preprocessing
rules as this is extensively discussed in the referenced literature.

Clause Elimination Rules remove clauses while preserving unsatisfiability. Tau-
tology elimination (E1) removes clauses containing a positive and negative occur-
rence of a variable. Subsumption [8]] (E2) removes clauses that are a superset of other
clauses. Existential pure literal elimination [13] (E3) removes all clauses with an ex-
istential literal that occurs only positive or only negative in the formula. Quantified
blocked clause elimination [20] (E4) removes clauses which contain an existential
literal [producing only tautological resolvents (with opposite literals k and k) when
used as pivot. Note that in the case of QBF, the restriction &,k <py [has to hold.

Clause Modification Rules add, remove, and rename literals. The universal re-
duction rule [33]] (M1) removes a universal literal if it is the innermost literal in
a clause. The strengthening rule [8|] (M2) relies on clauses produced by resolution
which subsume one of its antecedents. If an existential literal / occurs in a clause of
size one, then unit literal elimination [13] (M3) allows to remove clauses containing
I and literal occurrences I. Universal pure literal elimination [13] (M4) removes a
universal literal if it occurs only in one polarity in the whole formula. Covered literal
addition [20] (M5) extends a clause with literals that occur in all non-tautological
resolvents. The equivalence replacement rule [8] (M6) substitutes the occurrence of
a literal / (and [) by a literal k (and k) if clauses of the form (I k) and (I V k) are in
the formula. Literal / must be existentially quantified and / > 7 k. Finally, the blocked
literal elimination rule [22]] (M7) removes a universal literal [from a clause if all
resolvents obtained with / as pivot contain two opposite literals k and k, i.e., they are
tautological, with k,k <py I.

Clause Addition Rules extend the formula with new clauses, while modifying
and removing old ones. The variable elimination rule [8] (Al), also known as DP
resolution [[14]], replaces the clauses in which a certain existential variable occurs by
all non-tautological resolvents on that variable. The universal expansion rule 1] (A2)
removes an innermost universal variable by duplicating and modifying all clauses that
contain one or more innermost existential variables.

6 Representing Preprocessing Techniques with QRAT

The QRAT proof system as presented above provides clause elimination and addition
rules as in propositional logic when the pivot variable is existentially quantified [29].
Further, QRAT allows for the removal/addition of variables in the case of universal
pivots [22]. This is almost sufficient to express the preprocessing rules introduced
in the previous section. The only missing element is universal reduction, which also
marks the difference between propositional resolution and resolution for QBF [33]].
To this end, we introduce the concept of extended universal reduction, based on The-
orem 4.9 of Van Gelder’s work on resolution path dependency schemes [44]. In the
following, we do not introduce the concept of resolution path dependencies, but we

11

describe the universal literal elimination criterion according to the terminology used
in the rest of the article.

Definition 16 (Inner Clause) Let C be a clause in the QBF I1.y. The inner clause
of C on literal [€ C is defined as IC(IT,C,l) = {k | ke C,k=1ork > 1}.

Definition 17 (Extended Inner Clause) The extended inner clause EIC(IT1,C,1) with
respect to a QBF I1.y is the smallest clause such that

1. C CEIC(IT,C,1),
2. IC(M,D,1) CEIC(IT,C,1) if k € EIC(IT,C,1), QUIT, k) = Jand k > I.

In other words, the extended inner clause EIC(IT,C,/) is the unique clause ob-
tained by repeatedly applying the following extension rule C :=C U IC(IT,D,I)
for k € C with Q(IT,k) =3 and k >7 [, and k € D with D € y until fixpoint.

Lemma 18 Given a OBF I1.y. Then for any clause C € y with universal literal
1 € C such that | ¢ EIC(I1,C,1), the removal of | from C is satisfiability preserving.

Lemma [I§]is a generalization of the universal reduction rule which we call ex-
tended universal reduction in the following. Its application is written as follows:

ERED, myu{c\{1}} or Myuf{c ER myuic\ {1}
if C and [are clear from the context.

Now we are able to express the preprocessing techniques shown in Table [T] with
only four rules: QRATE, QRATA, QRATU, and EUR. Table shows the translations
for the clause elimination techniques, Table [3|for the clause modification techniques,
and Table |4 for the clause addition techniques. We refer to Table|l|for preconditions
to apply the preprocessing rules.

Tautologies, subsumed clauses as well as blocked clauses have QRAT, so only
one application of QRATE is necessary for their removal. If an existential literal is
pure then all clauses in which it occurs are blocked w.r.t. this literal (i.e., all resolvents
are tautologies; this holds because [occurs only in one polarity and hence the set of
resolvents is empty). Therefore such clauses can be omitted by multiple applications
of QRATE—we indicate multiple applications of a rule by marking the rule with an
asterisk, e.g., for the translation of existential pure we write QRATEx.

For strengthening a clause C V[, we first add the resolvent with DV [which is C.
Now, C'V1is subsumed and can, as we have discussed before, be removed by QRATE.
To express unit literal elimination, we first add clauses C;, i.e., the resolvents of C; vi
and /. Then all C; VI become QRAT and can be removed. Now the literal / occurs only
in one polarity and hence, the clauses containing / can be removed by QRATE (cf.,
existential pure literal elimination). Universal pure literal elimination simply maps to
multiple applications of QRATU such that / does not occur in the formula anymore.
If a universal literal / is removed from a clause C, this can naturally be expressed by
extended universal reduction.

If k is covered by literal / in C VI w.r.t. IT.y, then C VIV k has QRAT w.r.t. IT.y.
After adding C VIV k using QRATA, C VI gets QRAT and can be removed using

M.y U{C}

12

Table 2 Clause Elimination Rules.

preprocessing rule rewriting
My,CVIVIZ=S Ty my,cvivi ¥AE My
M.y,C,D =2 T.y,C my,c,p 5 1y.c
.y,CiVI,...,CoV I~ [Ty .y, Vi,...,.Cov 1 SB[y
ny,c2EE 1y my,c 45 1y
Table 3 Clause Modification Rules.
preprocessing rule rewriting
M.y,CVI,DVI II.y,.CVI,DVI
=% T.y,C,DVI QRATA, 11 w,c,cvI, DV A Ty,c,DVvI
_ _ II.y,CiVI,....C,VI,1,D\VI,....D, V1
H‘II[7CIVI7"'7C11\/Z7 QRATAx% I C \/l_ C \/l_
1,DiV1,....DpV1 - 2 AYG VLGV
Unit Hv.C c I,D\VI,....D,VI,Cy,...,C,
Wl QRATES Ty, 1,Cy,...,Co 5 Ty, ¢y,...,C,
II.y,CiVI,...,C, VI .
po ! " y,Cvi,....Covi Y Ty ey, G
—= IL.y,Cy,...,C,
II.y,CVI EUR
IH.y,CVI— I1.y,C
URed My,C 4 v
Iny'.civi,....Co,VI,DiVi,....D,VI,IVKkIVk
]] QAR .y, Cy VL. .GV LDy V..., Dy VT,
IIy,IVEkIVk IVkIVk,C Vk,...,.CoVk,DiVEk,....DyVk
Equiv Hl[/[l/k])) QRATEx*))
oy, IvkiIvkC Vk,....C,Vk,D\Vk,....DuVk
QRATES 11w/, C1 Vk,...,CoV kDL VE,....DpV Kk
M.y,CVI my,cvi A Ty, cvi,cvivk
A my,CcVIvk SRATE, My,CViIVE
II.y.CVIi
S ny,cvi Y my.c
= I1.y,C

QRATE. Quantified covered clause elimination [10] is a clause elimination procedure
that extends clauses with covered literals until clauses become blocked. To represent
this procedure, we add an intermediate clause for each covered literal addition. When
the clause becomes blocked, it can be eliminated using QRATE.

If a literal [shall be substituted by a literal k due to equivalence replacement, the
formula has to contain the binary clauses (I V k) and (IV k). Then first the clauses
CiVkand D; V k are added by resolution, i.e., by QRATA. As a consequence, all

Table 4 Clause Addition Rules. Clauses are added / removed in order of appearance.

preprocessing rule rewriting
II3y.y,C Vy,...,.CuVy, II3y.y,Ci Vy,...,CoV3,D Vy,...,DpVy
VEIirr1Dlvy"“7Dm\/y QRATAx, n3y.y,CVvy,...,C, V3,
:>H-w1</\< (CiUDj) DiVy,...,DuVy, CiUDy,...,CoUDy,
Sisn
1<j<m QRATEY, IT.w,C,UD;, ..., CoUD,,

Ivx3y.y,C, V&,...,C, VX,
DiVx,...,.DuVx,Ey,... Ep

QRATAY, ITVx3Y Y.y, Ci Vi, ... ,Cu VR,
ITvxdry, DiVx,....DuVx,Er,....Ep,
C1\/x,...,Cn\/x, EIVX,---,EP\/)E,
D1v,....Dmvz, XV XV VS,
Ey,....E, x\/)71\/y'1,...,x\/y'\y\\/y'y,
YE®, r1ayy’ ¥l
= ¥, D\Vx,....Dp VX, E{Vx,....E,V X
Ci,....Co,Er,... Ep, QRATES / ’]
D,,...,D,.E},... E —— IIVx3YY'.y,C V&,...,C, VX,

m>

P E\V%,...,E,VX,D\Vx,...,D),Vx,
E\Vx,...,E,Vx
EURx ’
—— I3YY'.y,Cy,..., Gy Ey, ... Ep,
/ / !/ !
D},...,D,.E},...,E,

clauses containing / and [are asymmetric tautologies and can therefore be removed
by QRATE.

A blocked literal is a universal literal which has QRAT, therefore, BLE can be
simply expressed by QRATU.

Variable elimination is rewritten as follows. First all possible non-tautological
resolvents on the pivot variable y are added with QRATA. Then all clauses containing
y or y become QRAT and can be eliminated by QRATE.

Finally, we describe universal expansion using redundancy elimination and ad-
dition rules. Consider the QBF ITVx3Y.y from which we want to eliminate the in-
nermost universal variable x. Let E = {E; | E; € yy,x ¢ E;,x ¢ E,}. In the first step,
we add clauses E; V X (which are subsumed by E;) using QRATA. This is necessary,
because we later need to eliminate E,. We introduce conditional equivalences repre-
sented by the clauses x Vy; V¥, and x V ; VV y! for all y; € Y and append 3Y’ to the
prefix. Now we copy all original clauses with literal y;, but without X and add literal x
in case it is not already present. The conditional equivalences allow to treat original
and primed copies of clauses with x as alternative. One version can be exchanged for
the other as long the equivalence clauses are there. We add the primed copies and
afterwards remove the original ones. Now all clauses E; are asymmetric tautologies
and can be removed. Next, we remove the conditional equivalences x V y; VV ¥, and
xV¥; Vy: which have QRAT on the y; after removal of the E; clauses. At this point,

14

clauses containing variables from Y do not contain x and clauses with variables from
Y’ do not contain X. So extended universal reduction can remove the literals x and x.

7 QRAT Proofs

This section describes our new proof format for QBFs and how to check it. The syntax
of the proof format is very similar to the DRAT proof format [46] for propositional
formulas in CNF. It is extended to express elimination of universal literals though.
Furthermore, the redundancy check in the original DRAT checker is adapted to take
QBF quantifier dependencies into account.

7.1 The QRAT Proof Format

Proofs are sequences of clause additions, deletions, and modifications. They are built
using three kind of lines: addition (QRATA), deletion (QRATE), and universal elim-
ination (QRATU and EUR). In our format, addition lines have no prefix and are un-
constrained in the sense that one can add any clause at any point in the proof. Clause

deletion lines, with prefix “d”, and universal elimination lines, with prefix “u”, are
13 2"

restricted. The clause after a “d” or “u” prefix must be either present in the original
formula or as a clause added earlier in the proof.

Definition 19 (Proof Step) Let P be a QRAT proof of length |P| for a QBF IT.y.
For each proof step i € {0,...,|P|}, we define y},, a CNF formula, as below, where
C; refers to the clause in line i of P and /; refers to the first literal on line i of P.

74 if i =0;
i v '\ {C} if the prefix of C; is “d”;
Vp= v '\ {CIU{C\ {L;}} if the prefix of C; is “u™;
v lu{C} otherwise.

A proof P is called a satisfaction proof (a proof of satisfiability) for QBF I1.y if
the following two properties hold. First, for all i € {1,...,|P|}, if clause C; has prefix
“d”, then it must have QRAT on /; with respect to yb. In case /; is universally quan-
tified, we check whether C; is an asymmetric tautology with respect to yb. Second,
l//,‘,P‘ must be empty.

A proof P is called a refutation proof for QBF II.y if the following three prop-

erties hold. First, for all i € {1,...,|P|}, if clause C; has no prefix, then it must have
QRAT on /; with respect to l//}fl -In case /; is universally quantified, we check whether
C; is an asymmetric tautology with respect to w5 1. Second, for alli € {1,...,|P|}, if

(TRt}

clause C; has prefix “u”, then /; must be universally quantified. Additionally, C; must
have either QRAT on /; with respect to 1//},_1, or /; can be removed using EUR. Third,
C|p| must be the empty clause (without a prefix). Figure 2 shows a true and a false
QBF and a QRAT proof for both.

true QBF satisfaction proof false QBF refutation proof
p cnf 3 3 p cnf 3 3
alo -1-20 alo -2 0
e230 d 3-10 e230 d-2-30
1 20 d-3-20 1 20 1 0
-1 30 d-2-10 1 30 u 1 0
-2 -30 d 2 10 -2-30 0

Fig. 2 Two QBFs in QDIMACS format and QRAT proofs. The true QBF Va3b,c.(aVb)V (aVe)V (bVe)
on the left with a satisfaction proof next to it. On the right the false QBF Va3b,c.(aVb)V (aVc)V (bVE)
with a refutation next to it. The formulas and proofs are spaced to improve readability. Proofs consist of
three kind of lines: addition (no prefix), deletion (“d ” prefix) and universal elimination (“u ” prefix).

A universal elimination line in satisfaction proofs can be replaced by a clause
addition and deletion line to obtain another satisfaction proof. Therefore, the clause
without its first literal is added and afterwards the subsumed clause is deleted. For
example, consider the line “u 1 2 3 0” in a satisfaction proof. This line can be re-
placed by “2 3 0” followed by “d 1 2 3 0”. Consequently, any satisfaction proof
can be converted such that it contains only addition and deletion lines.

Recall that QRATA can add clauses that contain new variables. The QRAT proof
format does not support the specification of the quantifier block where the new vari-
ables shall be placed. For all known preprocessing techniques, newly introduced vari-
ables are placed in the innermost active existential quantifier block. Consequently, the
QRAT format assumes this convention for all new variables.

7.2 Checking QRAT Proofs

Although the syntax for QRAT proofs is identical for true and false QBFs, validating
a proof is different. For true QBFs only the clause deletion lines (the ones with a
“d” prefix) have to be checked, while for false QBFs, all the lines except the clause
deletion lines have to be checked.

The easiest, but rather expensive, method to validate proofs checks the redun-
dancy of each clause: for true QBFs all deletion lines and for false QBFs all addition
and universal elimination lines.

Example 20 Consider the true QBF IT.y = VYa3b,c.(aV b) A(aVc) A (bV¢). This
is the same QBF as in Figure [2] (left). Figure [2] also shows the satisfaction proof
P:=(avb),d(cva),d(¢Vh),d(bVa),d(bVa). Satisfaction proofs are checked in
chronological order. So, first, (@ V b) is added, afterwards (c V @) is removed, until all
original clauses and all added clauses have been deleted.

Figure [3| shows the basic algorithm to validate satisfaction QRAT proofs. Let us
ignore line vi, v2, v9, and v13 for the moment, because they are only required to
produce Skolem functions which we will discuss in the next section. We loop over
the clauses in the proof in the order a QBF solver or preprocessor added or removed
clauses (line v3). The first unexamined clause is obtained from the proof together with
its flag and pivot (line v4). The flag can be either add or delete (in the proof format

validateQRAT (QBF I1.y, QRAT proof P)
vi let V = vars(P)
v2 initSkolem ()
v3 while P#0 do

v (flag,1,C) := P.dequeue()
v5 if flag = delete then
v6 vi=y\{C}
v7 if v+ C then continue
v8 else if C has QRAT on [€ C w.r.t. I1.y then
v9 addSkolem (C, 1)
v10 else return ‘INVALID PROOF’

vil else v := yU{C}

vi2 if ¥ # 0 then return ‘INVALID PROOF’
v13 finishSkolem ()

vi4 return ‘VALID PROOF’

Fig. 3 Procedure to check satisfaction QRAT proofs and output Skolem functions.

no prefix or a “d” prefix, respectively). If the flag is add, no checking is required
because this is a strengthening step. The new clause is simply added to y (line vi1).
Else, the clause will be removed (line v6). This elimination step needs to be validated.
We check if the clause is logically implied by y by computing whether the clause is
an asymmetric tautology (line v7). If that is not the case, the clause needs to have
QRAT w.r.t. ¥ (line v8), otherwise the proof is invalid (line v10). This procedure
continues until all clauses in the proof have been processed. At this point, y should
be empty, showing that the original formula is satisfiability equivalent to the empty
formula. If y is empty, the proof is valid (line vi4), otherwise it is invalid (line v12).

However, one can check proofs more efficiently by marking involved clauses dur-
ing each redundancy check. That way the checker can be restricted to validate marked
clauses only. The marking procedure is a bit tricky. It would be easy to mark all prop-
agating clauses, but this unnecessarily marks too many clauses, thereby increasing
the clauses that need to be checked. Instead, it is possible to mark only a subset of the
propagated clauses, similarly as computing the clauses that are involved in a conflict
via conflict analysis in SAT solvers. Checking only marked clauses was proposed to
check clausal proofs of CNF formulas efficiently [[16].

For false QBFs, checking is similar to the SAT case: during initialization the
empty clause is marked. Refutation proofs are validated in reverse order, starting
with the marked empty clause. The right part of Figure [2| shows a false QBF and a
refutation proof for that QBF. For true QBFs the procedure differs: initially all orig-
inal clauses are marked and satisfaction proofs are checked in chronological order.
The left part of Figure 2] shows a true QBF and a satisfaction proof for that QBF.

We equipped our preprocessor blogger [10] with QRAT-based tracing as de-
scribed in Section[f] In contrast to previous extensions of bloqqer [28] [36] we hardly
had to modify its internal behavior. Hence, with QRAT-based tracing, we have the
first QBF preprocessor fully supporting proof generation for true and false formulas.

17

We implemented an efficient QRAT checker QRATtrimP_-] which is based on
DRATtrim [46], a clausal proof checking tool for CNF. It uses the optimizations
of Section[7.2] such as validating marked clauses only and checking satisfaction and
refutation proofs in chronological and reverse order, respectively.

8 Extracting Skolem Functions

In this section, we introduce an approach to extract Skolem functions from QRAT
proofs. We present this approach on three levels: first, we provide formal definitions
and prove soundness of our approach. Second, we describe pseudo code, explaining
how the approach can be implemented efficiently. Third, we discuss more technical
details of the implementation.

8.1 Skolem Functions for QBF

Whereas in propositional logic a model of a formula is given by a satisfying variable
assignment, for a QBF a “model” has to reflect the variable dependencies between
existential and universal variables. Beside assignment trees as above, another conve-
nient and potentially much more succinct way is to express QBF models as Skolem
functions which are defined as follows.

Definition 21 (Skolem Function) Let x be an existential variable of a satisfiable
QBF ¢ =II.y and letyy,...,y, be all universals of ¢ with y; <7 x. Then a proposi-
tional formula f(y;,...,y,) is a Skolem function for x.

Definition 22 (Skolem Set) Given a QBF ¢. A mapping F of Skolem functions
which maps every existential variable x € vars(¢) to a Skolem function F(x) of x
is called a Skolem set.

We do not assume that Skolem functions are in CNF, i.e., we allow any Boolean
connective like V, A, —,—,... under its standard semantics. In particular, we use the
if-then-else connective with ite(yq; y2; y3) defined as (Y1 — y2) A (W1 — y3).

Definition 23 A Skolem function f(yi,...,ys) is valid on a QBF ¢ iff ¢[x/f] ~ ¢.
A Skolem set is valid on a QBF ¢ iff it is a set of valid Skolem functions on ¢.

Obviously, every Skolem set on ¢ can be interpreted as a symbolic (potentially
exponentially more succinct) representation of a pre-model of ¢ and vice versa. Fur-
ther a Skolem set is valid iff its corresponding pre-model is actually a model.

Note that in practice we might also want to consider Skolem functions that depend
on existential variables too. This has the potential of much more succinct Skolem sets,
particularly if represented as trees instead of circuits. If we want existential variables
to occur then we can extend the prefix order <y to a total order on all variables and

I The QRATtrim version with Skolem function extraction is available on
http://wuw.cs.utexas.edu/~marijn/skolem/.

http://www.cs.utexas.edu/~marijn/skolem/

18

require that Skolem functions depend only on outer universal and existential variables
w.r.t. this total order. All the arguments of this section apply to this extended definition
as well, after eliminating existential variables in Skolem functions through simple
syntactic substitution. Note, that substitution is a linear operation if Skolem functions
are represented as circuits, e.g., with and-inverter-graphs (AIGs).

Given a QBF I1.y containing an existential variable x, the function f(U) denotes
a Skolem function for x with the set of universal variables U that are outer to x in I1,
as parameters. Note that in the following, we omit U if clear from the context. We
also write F(x) = f for a Skolem set F and f the Skolem function of x.

The substitution of existential literals by their Skolem functions is defined as
follows, yielding a formula with universal quantification only.

Definition 24 (Substitution by Skolem Set) Consider {xi,...,x,}, the set of all the
existential variables of a QBF ¢. Further let F be an (extended) Skolem set of ¢. Then
define ¢[F] = @ [x1 /F(x1),...,xn/F(xn)].

The following notion of outer formula is used for constructing Skolem functions.

Definition 25 (Outer Formula) The outer formula of an existentizil [w.r.t. the QBF
I.y, denoted by OF (I1, y,1), is defined as {OC(I1,D,!) | D € y,l € D}.

We interpret an outer formula as a CNF, i.e., a conjunction of the respective outer
clauses and use the following properties for the construction of Skolem functions,
which are immediate consequences of Theorem [7](or Corollary [TT].

Corollary 26 Let clause C have QRAT on an_existential literal | € C w.r.t. a QBF
.y with var(l) = x. If an assignment T = ©*I1, falsifies C but satisfies y, then t*
satisfies the outer formula OF(IT,y,1).

Corollary 27 Let clause C have QRAT on an existential literal | € C w.r.t. a QBF
.y with var(l) = x. Further, let T = t°I1, be a satisfying assignment of Y. If the
outer formula OF(I1,y,1) is falsified by assignment T then C is satisfied by T too.

Although we do not manipulate the prefix IT for W) in Def. [I9|explicitly, we as-
sume that variables not occurring in the current prefix are removed and new variables
are added appropriately. Refer to this updated prefix as H}, and define (j)}, =11 },.y/},.

In order to construct the Skolem functions, we traverse the QRAT proof in re-
verse order. Using the last corollary above, we can satisfy a clause C deleted at step
i in a QRAT proof with ite(OF (ITh, wh™ 1) [Fo s pol(;); FiI). Now we have all
ingredients to define the construction of Skolem functions.

Definition 28 (Construction of Skolem Functions) Let I1.y be a satisfiable QBF
and P be a QRAT satisfaction proof of IT.y with length |P|. Then a Skolem trace
Tp of P is a sequence of Skolem sets (F(},, . .,F‘,f‘) for proof steps (wg,...,wjf‘)
defined as follows. In the last proof step i = |P| for all existential variables x € vars(P)
pick constant Skolem functions F‘,f‘ (x) € {L, T} arbitrarily. In earlier proof steps

Fi(x) = F;,“ (x) unless the proof step has prefix “d” and [is the first literal of clause C;
with var (/) = x. In this case set Fi,(x) = ite(OF (ITj, w5, 1) [Fi) pol(1); F5 (x)).

19

In the definition above, we introduce a set of propositional formulas by traversing
the proof in reverse order: (1) In the last proof step, i.e., when the empty formula
has been derived, all variables occurring in the proof are initialized with an arbitrary
truth constant. (2) If a clause is deleted at step i, the current Skolem function f, of the
previous step is modified. (3) If a clause is updated at step i or added, then the set of
propositional formulas remains the same as in step i + 1.

Theorem 29 Let ¢ = I1.y be a satisfiable QBF and P be a QRAT proof of ¢ of
length n, i.e., |P| = n. Let Fp = F% be a Skolem set with F% constructed from a Skolem
trace (FY, ... F%) as described above. Then Fp is valid on ¢.

Proof We show by reverse induction that Skolem set Fi, is valid on ¢y, e.g., §;[F}] ~
T. The base case i = n is trivial. Assume ¢ [Ffjl] ~ T for i < n.If proof step i with
clause C; has no prefix (addition) or prefix “u”, we have 1//;;+1 =) and the Skolem
set does not change which concludes the induction step.

Otherwise proof step i has prefix “d”. Let / be the first (existential) literal in C;.
With the induction hypothesis we get the model M of (]);,H corresponding to F},“
such that 7(C) = T for every clause C € y5™" and 7 in M. Let M’ be the pre-model
of ¢} which corresponds to Fi,. We show that M’ is a model of ¢}, or equivalently
7(C) =T for all clauses C € y and for all T in M. Due to the construction of Skolem
traces, M and M’ might only differ (and thus potentially not satisfy y}) for assign-
ments T on x = var([), for which Fi(x) = ite(OF (ITj, w5, 1)[Fir!]; pol (1); Fi ! (x)).
First, if T(OF (ITh, wi™)[F5™']) = T, then 7 trivially satisfies all clauses C € y}, with
I € C (including C;), because 7(x) = pol(l) and thus 7(I) = T. It further satisfies
all clauses D € v}, with [€ D since OF(ITh, w5™) |= D. In the other case, where
t(OF(IT), wh ™) [FE1]) = L, we have T € M by construction, T satisfies w5 and
then also C; by Cor. 27} Therefore all clauses C € yb, are satisfied. O

To check that a Skolem set Fp generated from proof P is valid, each existential
variable x of QBF ¢ has to be substituted by its corresponding Skolem function Fp(x).
The resulting propositional formula must be valid. This validity check can be done
by a SAT solver. In practice, it also needs to be ensured that a given Skolem function
for x does not contain universal variables y; with y; > x. This syntactic criterion can
easily be checked. Thus while the satisfiability checking problem of QBF is PSPACE
complete, checking validity of a Skolem set is in co-NP [33].

8.2 Skolem Function Extraction

Figure 4] shows the procedures used to extract Skolem functions. These procedures
are plugged into the proof validation procedure in Fig. [3] which goes forward over
the proof, while the formal Skolem functions construction in Def. @ and Thm. @]
goes backward over the proof.

A forward version can be obtained by introducing a new existential variable y for
every update to a Skolem function of a variable x. This y acts as place holder for the
still to be determined Skolem function of x at this point, which could be obtained by
processing the tail of the proof in reverse oder, as in the backward construction. This

20

initSkolem ()
is1 foreach existential x €V do
is2 L(x):=x, G(x):=x

addSkolem (clause C, literal 1)
ast let x be L(var(l))

as2 let y be a new existential variable
in the same quantifier block as x

a3 L(y)i=y GO)i=y
as4 let 0:=OC(II,C,l)U{l}

ass if O has QRAT on [w.r.t. IT.y then
asé G(x) := ite(OC(IT,C,I)[L];y; pol(1))
as7 else

as8 G(x) :=ite(OF(I1, y,1)[L]; pol(1);)
as9 L(x):=y

finishSkolem ()
£S1 foreach existential x €V do
£52 G(L(x)):=T

Fig. 4 Procedures to init, add, and finish Skolem functions (used in Fig. .

recursive process is similar to lazy evaluation in functional programming or to the
concept of “holes” in advanced Prolog programming, i.e., the Skolem function of the
new y will also be determined later during validation. At the end, see finishSkolem,
all the not yet determined Skolem functions are set to be constant (line £s2), which
corresponds to the base case in Def. 28] and Thm. [29]

In general this lazy forward approach will yield Skolem functions which depend
on existential variables too. However, as already discussed above, these dependencies
can be eliminated by syntactic substitution. Our implementation will perform this
substitution on-the-fly, while dumping the Skolem functions as AIGs.

The algorithm maintains two global data structures. The first one L maps each
(original and introduced) existential variable to its last introduced place holder vari-
able, on which its Skolem function depends. Initially, see line iS2 in initSkolem,
L(x) := x for all existential variables in the original QBF ¢ = IT.y. This map is ex-
tended for newly introduced variables y in the same way (line as3). If the clause C;
in line i of the proof P is processed by addSkolem the place holder x = L(var(l))
corresponds to F5(var(l)) of Def.

The second global data structure G maps each existential variable to its partial
Skolem function. These Skolem functions are built top-down. Each update (line as6,
as8) in essence fills in a hole (x) and introduces a new one (y). At the end, after filling
the remaining holes by constants in finishSkolem, G(x) corresponds to F(x) for all
original existential variables x. The final Skolem function of x is obtained by G(x)[G],
which substitutes partial Skolem functions of all existential variables recursively.

21

While describing the construction of Skolem functions (Def. , we discussed
how to update Skolem functions when adding a QRAT clause C. This update step re-
quires to evaluate the outer formula of the pivot. The outer formula can be large which
in turn would make the Skolem functions large. Therefore, we first check whether we
can avoid computing the outer formula. This can be done when O, a copy of C with
all inner literals to the pivot removed, has QRAT as well.

The argument is as follows. First, add O to the current formula. Since O sub-
sumes C, the clause C can be removed, while preserving logical equivalence. We
know that O still has QRAT, because removing a subsumed clause does not influ-
ence that property. As a consequence, applying Lemma [6] we obtain the following.
If an assignment 7 satisfies the current formula, but falsifies O\ {l}, then 7* with
var(l) = x satisfies OF(I1, 0,1). Furthermore t* falsifies O\ {l}, because O has no
inner literals to /. Hence instead of checking that 7* satisfies OF (IT,0,1), we could
check whether 7 falsifies O\ {l}. Observe that this check is different in the case 7*
satisfies both OF(I1,0,1) and O\ {/}. In this case, we could either keep the current
Skolem function (because t* satisfies O\ {/}) or flip the polarity of / to true (because
7* satisfies OF (I1, O,1)). The alternative method would perform the former, while the
default method performs the latter.

Now we have all elements to explain the addSkolem procedure. A new existential
variable y is created (line aS2), in the same quantifier block as x. Afterwards, we
compute O, a copy of C with all inner literals to the pivot removed (line as4), which
is the same as the outer clause of C w.r.t. [but with / added back. If O has QRAT on /
w.r.t. I1.y (line as4) then the Skolem function only needs to check whether the outer
clause of C w.r.t. the pivot is falsified. In this case, the Skolem function for the pivot
is updated as shown in the pseudo-code on line ase.

Otherwise, if this optimization is not possible, the Skolem function is updated
to check the outer formula of the pivot as shown in line as8, which exactly matches
the way how Skolem functions are updated in Def. The procedure terminates
by updating L in line as9, which marks y as new place holder for x. The substitutions
denoted “...[L]” in these two updates replace all occurrences of an existential variable
zby L(z) and -z by —L(z). This corresponds to the substitution “...[Fi!]” in Def.
which uses the same notation.

Example 30 The true QBF below and in Fig. [5is used to illustrate how the extraction
of Skolem functions from a QRAT proof works:

IT.y := Ja,bVx,3c.(aVb) A (@Vb)A(avxVve)A(xVe)

Figure [5|also shows how this formula looks in the QDIMACS format, which is used
by most QBF solvers and preprocessors (left) and a QRAT proof for that formula
(right). Note that in QRAT proofs, the pivot of clause C is the first literal appearing in
the clause deletion line corresponding to C. During initialization L and G are assigned
as follows: L(a) := G(a) :=a, L(b) := G(b) := b, and L(c) := G(c) :=c.

The proof consists of the following steps. First, C; := (aV b) is removed from
l[/g = y using b as pivot. Since C; has no inner literals, O; := C; and consequently
0, has QRAT on b w.r.t. the new W} obtained from l//l(,) after removing C; = (aV b):

v = (aVbh)A(@VvVxVe)A(XVe)

22

true QBF in DIMACS satisfaction QRAT proof

p cnf 4 4
Ja,b e120 d -2-10 d (bVva) C
Vx a30 2 3 40 (bVxVe) (3
Je. ed 0 d -1 3 40 d (@avxve) C3
(aVvb) 1 20 d 1 20 d (aVb) Cy
(@avb) -1-20 d 2 3 40 d (bvxVe) Cs
(@vxve) -1 3 40 d -4 -30 d (evx) Ce
(Fve) -3-40

Fig. 5 A true QBF (left) with a satisfaction proof (right). The boxed ASCII versions of the formula and
the proof are spaced to improve readability. Proofs consist of two kind of lines: addition (no prefix) and
deletion (“d ” prefix). The formula and proof represent our example in the QDIMACS and QRAT format,
respectively. Variables in both formats are numbers. The following mapping is used (a, b, x, ¢) corresponds
to (1,2,3,4). Negative literals are shown as negative numbers.

We introduce a new existential variable b; and update G in line as6 as follows
G(b) := ite(OC(IT3,Cy,b)[L]; by; L) = ite(OC(ITP, (aV b),b)[L]; b5 L)

= ite((a)[L];b1; L) ite(—L(a);b1; L)
= ite(a;b1; L) =aAb

For the new variable b; we initialize L(b;) := G(b;) := b; in line a3 and remember
L(b) = by in line as9. Then the second step in the proof adds clause C, = (bV xV ¢)
to l,l/},. Since this involves clause addition, no Skolem function is added, but leads to:

Vi = (aVb)A@vxVe)AEVE)A(bVxVe)

The third step is the most tricky one. Clause Cs := (@ V xV ¢) is now removed using
pivot a. It has QRAT on a on the following formula 11113; w.r.t. @, since its single outer
resolvent OR(I13,C3, (a V b),a) = (bVxV c) is even subsumed.

Vi = (aVh)A(EVE)A(bVxVe)

In C; both x and c are inner to @, so O3 := (a). The clause O3 does not have QRAT
on @ w.r.t. y3, and we can not use the optimization in line ase. Instead we have to use
the regular update in line 288, and then remember L(a) = a; with a; the new variable.

G(a):=ite(OF(IT3, yi,a)[L]; Lia)) =ite((b)[L]; Liar) =ite(by; Liar) =ay Ab

The fourth step removes C4 = (aV b) using pivot a. This step is practically the same
as the first step, and with L(a) = a; and L(b) = b; (before the update) we get

G(ar) := ite(OC(IT3,Cy,a)[L};a; T) = ite(br;a; T) = az V by
Then we remember L(a) = a; (after the update) with a; the new introduced variable.
v = (RVEA(bVVe)

In the fifth step, clause Cs := (b V xV ¢), which was added in step two, is removed.
Again, the literals x and c are inner to b. This results in Os := (b). In contrast to step

23

three, this Os has QRAT on b w.r.t. the new V3 = (¥V ¢) because it no longer contains
any clause with literal b. With L(b) = b the optimized update in line as6 gives

G(by) := ite(OC(IT},Cs,b) [L]; b T) = ite(Lsbp; T) = T

Then we update L(b) = b, with the new variable b,. Finally, the last remaining clause
Ce = (X V ¢) with pivot ¢ is removed. The Skolem function update in line asé gives

G(c) := ite(OC(IT3,Cs,0)[L]sc1; L) = ite(F5c13 L) = XAc

After the QRAT proof has been validated, we call finishSkolem which does the
following assignments: G(ay) := G(by) := G(c;) := T and after collecting and par-
allel substitution of all those partial Skolem functions G we get

Fp(a) = FY(a) = G(a)[G] = (a1 Ab))[G] = ((a2Vb1)AL)[G] = L
Fp(b) = F%(b) = G(b)[G] = (aAb1)[G] =TAT =T
Fr(c) = F9(c) = G(c)[G] = (kAe1)[G] = (RAT) =i

which is the resulting Skolem set.

8.3 Representation and Size of Skolem Functions

The representation of Skolem functions has a big impact on their size. Representing
Skolem functions as a CNF using only the universal variables occurring earlier in the
prefix, may result in Skolem functions that are exponential in the size of the QRAT
proof. However, one can construct Skolem functions from a QRAT proof that are in
worst case polynomial in the size of the proof (and linear in practice).

Example 31 Consider the true QBF expressing y; := XOR(xp, .. .,x;):
Vxg..x,3y1 ..yn.(xo\/xl \/)71) A\ (xo\/)fl \/yl) A\ ()f()\/xl \/y1) N ()f()\/ X1 \/}71) N

/\ ic1 VX VI) A Gim1 VEV Yi) A (Vi1 VX Vi) A (Fie1 VX Vi)
i€{2..n}

All clauses in this formula can be removed by QRATE (in reverse order as shown
above), resulting in a QRAT proof that is linear in the size of the formula. Expressing
Yy := XOR(xp, .. ., X,) using only universal variables requires a CNF formula of 2"+!
clauses. Our procedure will produce Skolem functions which are linear in the size of
the QRAT proof by reusing the Skolem functions of variables occurring earlier in the
prefix: F(y;) := XOR(xp,x;) and F(y;) := XOR(x;,F(y;—1)) withi € {2..n}.

Given a QRAT proof P with k being the length of the largest clause in P, the size
of the Skolem functions produced by our method is &'(k|P|?). Consider the pseudo-
code in Figure[d] In the worst case, all lines in P are deletion steps forcing the Skolem
functions to be updated |P| times. The size of the update depends on whether the
check on line as5 succeeds. We express the update using and-inverter-graphs (AIGs).
If it succeeds, the size of the update is &'(k) gates. Otherwise, the size of the update
is the size of y which is '(k|P|) gates.

24

8.4 Implementation, Optimization and Validation

We enhanced our QRAT checking tool, called QRATtrim,m with Skolem function
extraction capabilities. The Skolem functions are emitted as a propositional formula
in DIMACS format or as and-inverter-graphs (AIGs) in AIGER format. This section
describes our implementation, optimizations and validation of Skolem functions.

The outer formula computed in line as8 of the addSkolem procedure (Figure 4)
is typically much larger than necessary and consequently makes Skolem functions
larger than necessary. In order to produce smaller Skolem functions, we implemented
the following optimization (using the notation in addSkolem): For all D € y with
[€ D, we compute the outer resolvent R = OC(IT,D,I) U (C\{l}). We check whether
R is an asymmetric tautology with respect to y and store all OC(IT,D,) for which
the corresponding R is not an asymmetric tautology. The alternative outer formula

becomes the conjunction of these OC(IT, D, !) together with the negation of C\ {/}.

The presented finishSkolem assigns all Skolem functions G(L(x)) := T. However,
for some variables, G(L(x)) := L is much more effective. Note, that Thm. [29] allows
to pick an arbitrary constant. We observed that the best truth value for final Skolem
functions G(L(x)) is based on the polarity of a literal used as pivot for a QRAT check.
For some variables x (typically a few hundred), there are QRAT checks with literal x
as a pivot, but no QRAT checks with literal X as pivot (or the other way around). By
assigning G(L(x)) := T (or G(L(x)) := L, respectively), and applying simplification,
we obtain the Skolem functions Fp(x) = T (or Fp(x) = L, respectively).

Validating a set of Skolem functions consists of two checks. If both checks suc-
ceeds, the set of Skolem functions is valid. Let F be a set of Skolem functions for a
QBF IT.y. The first check consists of substituting the existential variables in y by all
the Skolem functions in F. The resulting formula is negated and checked by a SAT
solver to be unsatisfiable.

The second check uses the AIG representation of the Skolem functions and IT to
check that no input gate g; (universal variable) influences the truth value of output
gate g, (existential variable) with g; > g,. So no universal variable influences the
truth of an inner-more existential variable.

Apart from implementing a tool that extracts Skolem functions from a QRAT
proof, we also implemented a tool cheskol that checks whether the Skolem functions
are correct. A tool, called CertCheck [41]], has the same functionality but uses a more
strict check for the second part, i.e., whether the truth of no existential variable x
depends on the truth value of any variable (also existential) inner to x. This check is
too restrictive to validate our Skolem functions.

Example 32 Consider the formula JaVb3c.(aVbVc)A(aVve). A possible QRAT
proof removes first (a VbV ¢) on pivot ¢ and afterwards (aV ¢) on pivot a. The latter is
allowed because the prefix collapses to Ja, ¢ after removing (aV bV ¢). Our procedure
for extracting Skolem functions gives Fp(a) = =Fp(c) and Fp(c) = T (depending on
which optimizations are used). Although the Skolem function for a depends on the
Skolem function for ¢ which is inner to a, the Skolem functions are correct because
the Skolem function of a does not depend on a universal variable inner to a.

25

=
o
o

10}

checking time (sec)
AN
checking time (sec)
=
o

-

JI E “/ -
[At
/ - %
Ol | 1 1 01 L L L
0.1 1 10 100 0.1 1 10 100
solving time (sec) solving time (sec)

Fig. 6 Solving times versus checking times for true and false formulas.

Our validation tool called cheskol uses the less restrictive dependency check and
emits the result of substitution and negation as a formula in DIMACS format (after
Tseitin encoding), the typical input format for SAT solvers.

9 Evaluation

The most recent version v037 of the publicly available preprocessor bquqe directly
solves 37 true instances and 41 false instances of the QBF Eval 2012 benchmark set,
on which the CNF tracks of QBF Gallery 2013 and QBF Gallery 2014 are based.
Enabling QRAT proof tracing did not decrease the number of solved formulas. All
proofs of these 78 formulas could be checked with our QRAT checker QRATtrim @
Figure [6] compares solving times and checking times. on average, checking takes
twice as long as solving for satisfiable formulas. On the other, for unsatisfiable for-
mulas, checking is considerably faster than solving.

Table[5]shows results for our Skolem function extraction tool, i.e., a modified ver-
sion of QRATtrim. We converted our certificates to the QBC format allowing for size
comparison with certificates produced by other tools. Note that the extracted Skolem
functions are typically smaller than the QRAT proofs. We validated our Skolem func-
tions using the tool cheskof which checks the dependencies and computes whether
the Skolem functions imply the formula using the SAT solver lingeling [9].

Janota et al. [28] restricted blogger such that it is able to produce resolution
(RES) proofs. However, several preprocessing techniques are not supported by that
approach. As a consequence, their modified version of blogqer solves less formu-
las (only 22 out of 37). If a formula cannot be solved by bloqqer they use the solver
depQBF to compute a resolution proof of the simplified formula. They merge the cer-
tificate (resolution proof) obtained from depQBF with the partial certificate obtained
from their blogqger. The results of resolution-based approaches, our approach and
some older tools [6| 32} [31]] are shown in Table[6] The only tool that has comparable
performance compared to our bloqqer+QRAT approach is bloqqer+RES+depQBF.

2 http://fmv. jku.at/blogger

http://fmv.jku.at/bloqqer

26

Table 5 Skolem functions extraction from QRAT proofs produced by blogger on QBF Eval 12.

formula sol-t ext-t ch-t tr-s gbc-s
bl11_PR_720 0.65 0.81 0.01 4,018.35 33.31
biu...b001-p010-OPF02-c08 0.92 1.75 0.32 3,138.93 137.56
¢3_.BMC_pl k2 1.00 2.15 0.03 1,776.21 70.80
counter_8 0.33 0.44 0.08 265.87 36.21
itc-b13-fixpoint-8 11.29 75.71 351.57 123,077.00 25,286.80
k_branch_n-10 298 16.28 1.15 4,619.94 605.10
k_branch_n-14 6.32 82.31 1.99 15,349.60 968.72
k-branch_n-16 6.45 136.06 386 12914.60 1,292.48
k_branch_n-20 13.83 442.66 8.08 20,131.90 1,951.84
k-branch_n-7 1.40 3.75 0.27 2,222.69 191.96
k_d4_n-10 0.88 320 19.80 5,591.46 2,019.67
k-d4.n-11 1.00 4.01 27.38 6,706.69 2,316.07
k_d4_n-14 140 739 4792 10,261.00 3,384.55
k-d4_n-15 1.51 8.76 59.30 11,503.70 3,711.80
k-d4_n-20 2.14 1850 7891 1644190 4,898.16
k_d4_n-21 231 2206 11635 20,660.20 5,709.78
k-dum_n-10 026 044 0.04 258.61 47.53
k_dum_n-11 026 044 0.05 299.73 62.98
k-dum_n-12 020 052 0.05 330.77 64.57
k_dum_n-16 0.33 0.70 0.09 455.66 88.54
k_dum_n-20 0.33 0.88 0.15 613.37 134.16
k_dum_n-21 0.36 1.04 0.40 767.64 234.31
lights3_021_1.022 026 044 0.09 252.41 53.43
lights3_021-1-033 0.15 0.43 0.08 387.24 46.00
lights3_.035_1_059 036 077 0.22 638.58 110.29
rankfuncO_unsigned_64 1.16 7.59 26.78 3,243.67 4,984.67
rankfunc16_unsigned_16 0.53 147 0.82 782.88 341.07
rankfunc24 _signed_32 0.59 1.86 3.03 1,053.36 901.13
rankfunc27_unsigned_32 0.36 0.81 1.62 1,445.79 568.83
rankfunc52_signed_64 140 9.33 138.77 3,588.83 5,052.10
$3330_d2_s 5.82 19.22 5.66 122,569.00 797.96
stmt137_903.911 030 059 0.26 1,036.93 111.89
stmt1_629_630 0.54 1.17 045 1,670.66 186.70
stmt17_.99_98 090 2.62 1.02 3,387.52 372.50
stmt27_584_603 032 059 028 974.67 131.92
stmt27_946_955 030 058 0.27 976.93 112.21
stmt41_.118_131 0.25 049 047 773.02 165.15

sol-t/ext-t/ch-t: solving/extraction/checking time (sec)
tr-s/qbc-s: size of QRAT file/qbc file (kilobyte)

If all preprocessing techniques are turned on, the average size of the Skolem
functions produced by bloqqer+QRAT is in general larger than those produced by
blogqer+RES+depQBF. Recall that blogger+RES+depQBF does not support sev-
eral preprocessing techniques. Consequently, unsupported techniques such as cov-
ered clause elimination (QCCE) [17] are turned off. Although bloqqer+QRAT sup-
ports QCCE, using it has a negative impact on the size of Skolem functions. Turning
QCCE off reduces the size of Skolem functions significantly — at the cost of solving
three formulas less (itc-b13-fixpoint-8, k_branch_n-20, s3330_d2_s). The left scatter
plot of Figure |7| compares the size of Skolem functions obtained from proof traces
generated with and without QCCE. Note that we converted the AIG representations

27

Table 6 Comparison of solving/checking times (some formula names are abbreviated).

formula blogger blogger bloqqer depQBF ebdd squolem sKizzo
QRAT RES depQBF
b11_PR_7_20 0.7/0.0 -/~ 0.1/0.2 0.0/0.0 -/- 4.9/04 -/-
biu..b001-p010-.. 0.9/0.3 -/- -/- -/- -/- -/- -/-
¢3_ BMC_pl k2 1.0/0.0 0.2/1.3 0.2/1.3 0.1/0.1 -/~ 486/31 3.8/0.6
counter_8 0.3/0.1 -/~ 0.1/0.7 0.0/0.1 12/831 /- 4.5/0.9
itc-b13-fixpoint-8 11/351 3.2/16.0 3.2/16.0 -/- -/- -/- -/-
k-branch_n-10 3.0/1.1 -/- 2.0/ -/- -/- -/- -/-
k-branch_n-14 6.3/2.0 -/- -/- -/- -/- -/- -/-
k_branch_n-16 6.5/3.9 4.6/1.6 4.6/1.6 -/- -/- -/- -/-
k-branch_n-20 13.8/8.1 -/- -/- -/- -/- -/- -/-
k_branch_n-7 1.4/0.3 -/- 0.6/18.8 -/- -/- -/- -/-
k-d4_n-10 0.9/19.8 -/~ 0.3/28.6 -/~ 30.1/- 3.3/0.9 13.0/9.0
k.d4 n-11 1.0/27.4 -/~ 0.4/295 -/~ 36.0/- 3.3/0.6 24/19.5
k_d4_n-14 1.4/47.9 -/- 0.5/ -/- 49.2/- 3.6/0.9 578/0.2
k_d4_n-15 1.5/59.3 -/- -/- -/- 52.6/- 3.6/0.7 -/-
k_d4_n-20 2.1/78.9 -/- -/- -~ 721/~ 4.2/1.1 -/-
k-d4_n-21 2.3/116 -/- -/- -/- 75.0/- 4.4/1.0 -/-
k_dum_n-10 0.3/0.0 0.1/1.1 0.1/1.1 -/- 1.6/1.1 2.9/0.3 4.2/0.6
k-dum_n-11 0.3/0.1 0.1/1.4 0.1/1.4 -/- 1.6/1.3 3.3/0.7 4.0/0.6
k_dum_n-12 0.2/0.1 0.1/1.5 0.1/1.5 -/- 1.6/1.4 3.4/0.6 0.5/2.4
k-dum_n-16 0.3/0.1 0.1/1.3 0.1/1.3 -/~ 1.7/1.7 3.0/0.7 4.2/0.7
k_dum_n-20 0.3/0.1 0.2/1.3 0.2/1.3 -/- 1.7/1.8 2.5/0.6 4.1/0.8
k_-dum_n-21 0.4/0.4 0.2/0.5 0.2/0.5 -/- 1.6/2.0 3.0/0.4 4.0/0.9
lights3.021-1-022 0.3/0.1 0.1/0.8 0.1/0.8 -/~ 30.3/- 2.1/0.3 4.4/0.7
lights3_021_1.033 0.1/0.1 0.1/1.2 0.1/1.2 -/~ 29.9/- 29/0.3 4.7/04
lights3_035_1_059 0.4/0.2 0.1/0.6 0.1/0.6 -/- -/~ 3.1/0.6 6.2/1.0
rf0_unsigned_64 1.2/27 1.6/1.1 1.6/1.1 -/- -/- -/- 4.3/3.9
rfl6_unsigned_16 0.5/0.8 0.3/0.5 0.3/0.5 -/- -/- - 4.1/2.2
rf24 signed_32 0.6/3.0 0.5/1.3 0.5/1.3 -/- -/- -/- -/-
rf27_unsigned 32 0.4/1.6 0.3/1.3 0.3/1.3 -/- -/- -/- 1.5/2.5
rf52_signed_64 1.4/138 1.6/1.1 1.6/1.1 -/- -/- -/- -/-
$3330.d2_s 5.8/5.7 -/~ 1.6/0.2 -/- -/- -/- -/-
stmt137-903.911 0.3/0.3 0.1/0.0 0.1/0.0 -/- -/- -/- 0.3/0.2
stmt1_629_630 0.5/0.5 0.1/0.1 0.1/0.1 -/- -/- -/- 17.4/0.5
stmt17-99_98 0.9/1.0 -/- -/- -/- -/- - 29/1.7
stmt27.584 603 0.3/0.3 0.1/0.1 0.1/0.1 -/- -/- -/- 0.3/0.2
stmt27-946.955 0.3/0.3 0.1/0.1 0.1/0.1 -/- -/- -/- 0.3/0.2
stmt41-118-131 0.2/0.5 0.1/0.1 0.1/0.1 -/- -/- /- 0.3/0.5

into QBC certificates to have the same file format as blogqer+RES+depQBF. Finally,
the right scatter plot of Figure [7| compares the sizes of the Skolem functions pro-
duced by bloqqer+QRAT (without QCCE) and bloqqer+RES+depQBF. It illustrates
that the Skolem functions extracted by bloqqer+QRAT are in general smaller than
those produced by blogqer+RES+depQBF, especially for the harder benchmarks.

10 Conclusion

We presented a proof system which captures recent preprocessing and solving tech-
niques for QBF in a uniform manner. Based on asymmetric tautologies, the proof

[\
oo

10000 - //

10000 ¢

1000 ¢ 1000 ¢ /

blogger (without CCE) + grat
blogqger (without CCE) + grat
N

[
w00, & " w0, #_ 3
ree" /“.-l' .
10 L L L 10 / 1 1 1
10 100 1000 10000 10 100 1000 10000
blogger + grat blogger + depqgbf + res

Fig. 7 Comparison of certificate sizes (KB). Unsolved formulas are shown with size 30,000 KB.

system consists only of four simple rules. We showed how state-of-the-art prepro-
cessing techniques can be represented within this proof system. Our rules QRATE,
QRATU, and QRATA may be applied as preprocessing rules themselves similar as
QBCE and we plan to integrate them in our preprocessor. We deal with all the chal-
lenges regarding certificates and preprocessing for QBF that were recently listed [28]],
namely: can we (1) produce polynomially-verifiable certificates for true QBFs in the
context of preprocessing, (2) narrow the performance gap between solving with and
without certificate generation, (3) develop methods to deal with universal expansion
and other techniques; and (4) extract Skolem functions from QRAT proofs.

This work opens several streams of future work. First, we extract only Skolem
functions from formulas which are solved by the preprocessor. In some applications,
also the extraction of Herbrand function is of interest. In contrast to the Skolem func-
tions, for which the deleted clauses of a proof are considered, the newly introduced
clauses have to be taken into account for the generation of the Herbrand functions.

Second, if the preprocessor cannot solve a formula, then a complete solver has
to be consolidated. Such a solver probably produces proofs in a different proof sys-
tem. For understanding how proofs of different proof systems can be translated or
combined, it has to be investigated how our new QRAT-based proof systems com-
pares to other proof systems like Q-resolution (the clause and its dual cube variant),
sequent calculi for QBF, or proof systems which provide explicit rules for universal
expansion [26]. Based on these results it will become possible to integrate orthogonal
solving techniques as it is done in [39] and to obtain Skolem and Herbrand functions
for the original input QBF.

A third direction of future work concerns the integration of advanced dependency
schemes into our new proof system (like in [43] for Q-resolution) including other
variants of expansion [[12]). Further, it would be interesting to investigate how QRAT
can be used for symmetry breaking as it is successfully done in SAT [21]].

29

References

1.

10.

11.

12.

13.

15.

Ayari A, Basin DA (2002) QUBOS: Deciding Quantified Boolean Logic Us-
ing Propositional Satisfiability Solvers. In: Proc. of the 5th Int. Conf. on Formal
Methods in Computer-Aided Design (FMCAD 2002), Springer, LNCS, vol 2517,
pp 187-201

. Balabanov V, Jiang JR (2011) Resolution Proofs and Skolem Functions in QBF

Evaluation and Applications. In: Proc. of the 23rd Conf. on Computer Aided
Verification (CAV 2011), Springer, LNCS, vol 6806, pp 149-164

. Balabanov V, Jiang JR (2012) Unified QBF certification and its applications.

Formal Methods in System Design 41(1):45-65

. Balabanov V, Jiang JR, Janota M, Widl M (2015) Efficient extraction of QBF

(counter)models from long-distance resolution proofs. In: Proc. of the 29th Conf.
on Artificial Intelligence, (AAAI 2015), AAAI Press, pp 3694-3701

. Benedetti M (2005) Extracting Certificates from Quantified Boolean Formulas.

In: Proc. of the 19th Int. Joint Conf. on Artificial Intelligence (IICAI 2005),
Professional Book Center, pp 47-53

Benedetti M (2005) sKizzo: A Suite to Evaluate and Certify QBFs. In: Proc. of
the 20th Int. Conf. on Automated Deduction (CADE 2005), LNCS, vol 3632,
Springer, pp 369-376

Benedetti M, Mangassarian H (2008) QBF-Based Formal Verification: Experi-
ence and Perspectives. Journal on Satisfiability, Boolean Modeling and Compu-
tation 5(1-4):133-191

Biere A (2005) Resolve and expand. In: Proc. of the 7th Int. Conf. on Theory and
Applications of Satisfiability Testing (SAT 2004), Springer, LNCS, vol 3542, pp
59-70

Biere A (2013) Lingeling, Plingeling and Treengeling entering the SAT compe-
tition 2013. In: Proc. of SAT Competition 2013

Biere A, Lonsing F, Seidl M (2011) Blocked clause elimination for QBF. In:
Proc. of the 23th Int. Conf. on Automated Deduction (CADE 2011), Springer,
LNCS, vol 6803, pp 101-115

Bloem R, Konighofer R, Seidl M (2014) SAT-Based Synthesis Methods for
Safety Specs. In: Proc. of the 15th Int. Conf. on Verification, Model Checking,
and Abstract Interpretation (VMCAI 2014), Springer, LNCS, vol 8318, pp 1-20
Bubeck U, Kleine Biining H (2007) Bounded universal expansion for prepro-
cessing QBF. In: Proc. of the 10th Int. Conf. on Theory and Applications of
Satisfiability Testing (SAT 2007), Springer, LNCS, vol 4501, pp 244-257
Cadoli M, Giovanardi A, Schaerf M (1998) An algorithm to evaluate quantified
boolean formulae. In: Proc. of the 15th National Conf. on Artificial Intelligence
and 10th Innovative Applications of Artificial Intelligence Conf., (AAAI 98/I-
AAI 98), AAAI Press / The MIT Press, pp 262-267

Davis M, Putnam H (1960) A computing procedure for quantification theory.
Journal of the ACM 7(3):201-215

Giunchiglia E, Marin P, Narizzano M (2010) sQueezeBF: An Effective Prepro-
cessor for QBFs Based on Equivalence Reasoning. In: Proc. of the 13th Int.
Conf. on Theory and Applications of Satisfiability Testing (SAT 2010), Springer,

30

16.

17.

18.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

LNCS, vol 6175, pp 85-98

Goldberg EI, Novikov Y (2003) Verification of proofs of unsatisfiability for CNF
formulas. In: Proc. of the Design, Automation and Test in Europe Conf. and
Exposition (DATE 2003), IEEE, pp 10,886-10,891

Heule M, Jarvisalo M, Biere A (2013) Covered clause elimination. In: Proc. of
the 17th Int. Conf. on Logic for Programming, Artificial Intelligence and Rea-
soning (LPAR 2013), EasyChair Proc. in Computing, vol 13, pp 41-46

Heule M, Seidl M, Biere A (2014) Efficient extraction of Skolem functions from
QRAT proofs. In: Proc. of the 17th Int. Conf. on Formal Methods in Computer-
Aided Design (FMCAD 2014), IEEE, pp 107-114

. Heule M, Seidl M, Biere A (2014) A unified proof system for QBF preprocess-

ing. In: Proc. of the 7th Int. Joint Conf. on Automated Reasoning (IJCAR 2014),
Springer, LNCS, vol 8562, pp 91-106

Heule M, Jarvisalo M, Lonsing F, Seidl M, Biere A (2015) Clause elimination for
SAT and QSAT. Journal on Artificial Intelligence Research (JAIR) 53:127-168
Heule M, Jr WAH, Wetzler N (2015) Expressing symmetry breaking in DRAT
proofs. In: Proc. of the 25th Int. Conf. on Automated Deduction (CADE 2015),
Springer, LNCS, vol 9195, pp 591-606

Heule M, Seidl M, Biere A (2015) Blocked literals are universal. In: Proc. of the
7th Int. Symposium on NASA Formal Methods (NFM 2015), Springer, LNCS,
vol 9058, pp 436442

Heule MJH, Jarvisalo M, Biere A (2010) Clause elimination procedures for CNF
formulas. In: Proc. 14th Int. Conf. on Logic for Programming, Artificial Intelli-
gence and Reasoning (LPAR 2010), Springer, LNCS, vol 6397, pp 357-371
Heule MJH, Hunt WA, Wetzler N (2013) Verifying refutations with extended res-
olution. In: Proc. of the 24th Int. Conf. on Automated Deduction (CADE 2013),
Springer, LNAI, vol 7898, pp 345-359

Heule MJH, Hunt, Jr WA, Wetzler N (2013) Trimming while checking clausal
proofs. In: Proc. of the 16th Int. Conf. on Formal Methods in Computer-Aided
Design (FMCAD 2013), IEEE, pp 181-188

Janota M, Marques-Silva J (2015) Expansion-based QBF solving versus Q-
resolution. Theor Comput Sci 577:25-42

Janota M, Grigore R, Marques-Silva J (2012) On Checking of Skolem-based
Models of QBF. In: Proc. of the Int. Workshop on Experimental Evaluation of
Algorithms for solving problems with combinatorial explosion

Janota M, Grigore R, Marques-Silva J (2013) On QBF Proofs and Preprocessing.
In: Proc. of the 17th Int. Conf. on Logic for Programming, Artificial Intelligence
and Reasoning (LPAR 2013), Springer, LNCS, vol 8312, pp 473—489

Jarvisalo M, Heule MJH, Biere A (2012) Inprocessing rules. In: Proc. of the 6th
Int. Joint Conf. on Automated Reasoning (IICAR 2012), Springer, LNCS, vol
7364, pp 355-370

Jordan C, Seidl M (2014) The QBF Gallery 2014. http://qbf.
satisfiability.org/gallery/

Jussila T, Sinz C, Biere A (2006) Extended resolution proofs for symbolic sat
solving with quantification. In: Proc. of the 9th Int. Conf. on Theory and Appli-
cations of Satisfiability Testing (SAT 2006), Springer, vol 4121, pp 54-60

http://qbf.satisfiability.org/gallery/
http://qbf.satisfiability.org/gallery/

31

32.

33.

34.

35.

36.

37.

38.

39.

40.

41.

42.

43.

44.

45.

46.

47.

Jussila T, Biere A, Sinz C, Kroning D, Wintersteiger CM (2007) A first step
towards a unified proof checker for QBF. In: Proc. of the 7th Int. Conf. Theory
and Applications of Satisfiability Testing (SAT 2007), LNCS, vol 4501, Springer,
pp 201-214

Kleine Biining H, Karpinski M, Flogel A (1995) Resolution for quantified
boolean formulas. Information and Computation 117(1):12-18

Kleine Biining H, Subramani K, Zhao X (2007) Boolean Functions as Models
for Quantified Boolean Formulas. Journal of Automated Reasoning 39(1):49-75
Kleine Biining H, Subramani K, Zhao X (2007) Boolean functions as models for
quantified boolean formulas. Journal of Automated Reasoning 39(1)
Konighofer R, Seidl M (2014) Partial witnesses from preprocessed quantified
boolean formulas. In: Proc. of Design, Automation & Test in Europe Conf. &
Exhibition, (DATE 2014), IEEE, pp 1-6

Lonsing F, Biere A (2010) DepQBF: A Dependency-Aware QBF Solver. Journal
on Satisfiability, Boolean Modeling and Computation 7(2-3):71-76

Lonsing F, Seidl M, Van Gelder A (2013) The QBF Gallery: Behind the Scenes.
CoRR abs/1508.01045, URL http://arxiv.org/abs/1508.01045

Lonsing F, Bacchus F, Biere A, Egly U, Seidl M (2015) Enhancing search-based
QBF solving by dynamic blocked clause elimination. In: Proc. of the 20th Int.
Conf. on Logic for Programming, Artificial Intelligence, and Reasoning (LPAR
2015), Springer, LNCS, vol 9450, pp 418-433

Narizzano M, Peschiera C, Pulina L, Tacchella A (2009) Evaluating and certify-
ing gbfs: A comparison of state-of-the-art tools. AI Com 22(4):191-210
Niemetz A, Preiner M, Lonsing F, Seidl M, Biere A (2012) Resolution-based cer-
tificate extraction for QBF - (tool presentation). In: Proc. of the 15th Int. Conf. on
Theory and Applications of Satisfiability Testing (SAT 2012), Springer, LNCS,
vol 7317, pp 430435

Samulowitz H, Davies J, Bacchus F (2006) Preprocessing QBF. In: Proc. of the
12th Int. Conf. on Principles and Practice of Constraint Programming (CP 2006),
Springer, LNCS, vol 4204, pp 514-529

Slivovsky F, Szeider S (2016) Soundness of Q-resolution with dependency
schemes. Theor Comput Sci 612:83-101

Van Gelder A (2011) Variable Independence and Resolution Paths for Quantified
Boolean Formulas. In: Proc. of the 17th Int. Conf. on Principles and Practice of
Constraint Programming (CP 2011), Springer, LNCS, vol 6876, pp 789-803
Van Gelder A (2013) Certificate Extraction from Variable-Elimination QBF Pre-
processors. In: Proc. of the 1st Int. Workshop on Quantified Boolean Formulas
(QBF 2013), pp 35-39

Wetzler N, Heule MJH, Hunt WA (2014) DRAT-trim: Efficient Checking and
Trimming Using Expressive Clausal Proofs. In: Proc. of the 17th Int. Conf. on
Theory and Applications of Satisfiability Testing (SAT 2014), LNCS, vol 8561,
Springer, pp 422429

Yu 'Y, Malik S (2005) Validating the result of a quantified boolean formula (QBF)
solver: theory and practice. In: Proc. of the Conf. on Asia South Pacific Design
Automation, (ASP-DAC 2005), ACM Press, pp 1047-1051

http://arxiv.org/abs/1508.01045

