
Blocked Literals are Universal?

Marijn J.H. Heule1, Martina Seidl2, and Armin Biere2

1 Department of Computer Science, The University of Texas at Austin, USA
marijn@cs.utexas.edu

2 Institute for Formal Models and Verification, JKU Linz, Austria
martina.seidl@jku.at biere@jku.at

Abstract. We recently introduced a new proof system for Quantified
Boolean Formulas (QBF), called QRAT, that opened up a variety of
new preprocessing techniques. This paper presents a concept that fol-
lows from the QRAT proof system: blocked literals. Blocked literals are
redundant universal literals that can be removed or added to clauses. We
show that blocked literal elimination (BLE) and blocked literal addition
are not confluent. We implemented BLE in the state-of-the-art preproces-
sor bloqqer. Our experimental results illustrate that the BLE extension
improves solver performance on the 2014 QBF evaluation benchmarks.

1 Introduction

Preprocessing a quantified Boolean formula (QBF) is crucial to effective QBF
solving, but often tricky to implement. That motivated us to develop a new proof
system for QBF [1], called QRAT, which facilitates expressing all state-of-the-
art QBF preprocessing techniques in a uniform manner. By these means, the
correctness of the output of a preprocessor can be checked efficiently. Moreover,
the QRAT proof system opened up a variety of new preprocessing techniques.
In this paper, we study two of such new preprocessing techniques.

Universal pure literal elimination [2] and blocked clause elimination (BCE) [3]
are important QBF preprocessing techniques. The QRAT proof system revealed
that universal pure literals can be generalized in a similar way as existential pure
literal elimination, i.e, via BCE. We call this new generalized concept blocked
literals. We study two new QBF preprocessing techniques: blocked literal elim-
ination (BLE) and blocked literal addition (BLA). BLE is the dual of BCE. We
show that neither BLE nor BLA are confluent, in contrast to BCE.

Additionally, this paper presents the first implementation and evaluation of
a new preprocessing technique that originated from the QRAT proof system.
The general rules in the QRAT proof system are very expensive to implement.
However, by focusing on BLE, a restricted version of the one of the QRAT rules,
we were able to extend the state-of-the-art preprocessor bloqqer [3] is such a way
that its performance is clearly improved.

? This work was supported by the Austrian Science Fund (FWF) through the na-
tional research network RiSE (S11408-N23), Vienna Science and Technology Fund
(WWTF) under grant ICT10-018, DARPA contract number N66001-10-2-4087, and
the National Science Foundation under grant number CCF-1153558.



2 Preliminaries

The language of QBF extends the language of propositional logic by existential
and universal quantifiers over the propositional variables. As usual, we assume
a QBF to be in prenex conjunctive normal form (PCNF). Note that any QBF
of arbitrary structure can be efficiently transformed to a satisfiability equivalent
formula in PCNF [4]. A QBF in PCNF has the structure Π.ψ where the prefix Π
has the form Q1X1Q2X2 . . . QnXn with disjoint variable sets Xi and Qi ∈ {∀,∃}.
The matrix ψ is a propositional formula in conjunctive normal form, i.e., a
conjunction of clauses. A clause is a disjunction of literals and a literal is either
a variable x (positive literal) or a negated variable x̄ (negative literal). The
variable of a literal is denoted by var(l) where var(l) = x if l = x or l = x̄.
The negation of a literal l is denoted by l̄. The quantifier Q(Π, l) of a literal
l is Qi if var(l) ∈ Xi. Let Q(Π, l) = Qi and Q(Π, k) = Qj , then l ≤Π k
iff i ≤ j. We consider only closed QBFs, so ψ contains only variables which
occur in the prefix. For a clause C, we denote by C the assignment that falsifies
all literals in C, i.e., C = {(l̄) | l ∈ C}. By > and ⊥ we denote the truth
constants true and false. QBFs are interpreted as follows: a QBF ∀xΠ.ψ is
false iff Π.ψ[x/>] or Π.ψ[x/⊥] is false where Π.ψ[x/t] is the QBF obtained by
replacing all occurrences of variable x by t. Respectively, a QBF ∃xΠ.ψ is false
iff both Π.ψ[x/>] and Π.ψ[x/⊥] are false. If the matrix ψ of a QBF φ contains
the empty clause after eliminating the truth constants, then φ is false as usual.
Accordingly, if the matrix ψ of QBF φ is empty, then φ is true. Two QBFs φ1
and φ2 are satisfiability equivalent (written as φ1 ∼ φ2) iff they have the same
truth value.

3 Universal Blocked Literals

This section presents the new concept of blocked literals; redundant universal
literals that can be removed or added to clauses. Removing blocked literals from
clauses is a generalization of universal pure literal elimination, which removes
universal literals that are pure, i.e., occur either only positively or only negatively
in the formula. In the popular game-based view of QBF [5]3, the optimal strategy
for the universal player is to assign pure literals to false. Such a move will only
shrink clauses and not satisfy clauses. The preprocessing techniques presented
here will have the same property, but it is literal-based instead of variable-based.
We explain the new concept of blocked literal using the previous concepts of
blocked clauses, outer clauses, and outer formulas. These previous concepts are
defined slightly differently (i.e., simplified) compared to earlier work [1] to make
them easier to understand for readers that are less familiar with QBF.

3 The evaluation of a QBF is described as a game between the existential player
who owns the existential variables and the universal player who owns the universal
variables of the formula. The existential player wants to satisfy the formula, while
the universal player wants to falsify the formula.



Definition 1 (Outer Clause [1]): Let C be a clause occurring in QBF Π.ψ.
The outer clause of C on literal l ∈ C, denoted by OC(Π,C, l), is given by the
clause {k | k ∈ C, k ≤Π l, k 6= l}.
Definition 2 (Outer Formula [6]): Let l be a literal occurring in QBF Π.ψ.
The outer formula of Π.ψ on l, denoted by OF(Π,ψ, l), is given by the unquan-
tified formula {OC(Π,C, l) | l ∈ C,C ∈ ψ}.
Definition 3 (Blocking Literal and Blocked Clause, see also [3]): Let
C be a clause occurring in QBF Π.ψ. An existential literal l ∈ C is called a
blocking literal with respect to Π.ψ if and only if C satisfies OF(Π,ψ, l̄). Clause
C is called a blocked clause if and only if there exists a blocking literal l ∈ C.

Definition 4 (Blocked Literal, instance of [1]): Let C be a clause occurring
in QBF Π.ψ. Universal literal l is called a blocked literal with respect to C and
Π.ψ if and only if C satisfies OF(Π,ψ, l̄).

Notice the subtle difference in the names of the concepts: the new blocked
literals are always universal literals, while blocking literals are always existential
literals. This naming convention is motivated as follows: blocked literals are
redundant –like blocked clauses– while blocking literals [3] are not redundant, but
the reason why the clauses, in which they occur, are blocked and thus redundant.

3.1 Blocked Literal Elimination

We refer to blocked literal elimination (BLE) as removing blocked literals in a
formula until fixpoint. For the formal proof of the soundness of (a generalization
of) BLE, we refer to Theorem 2 of our IJCAR’14 paper [1]. From that theorem it
follows that BLE preserves satisfiability, but not logical equivalence. In the game-
based view of QBF, blocked literals can be ignored by the universal player, so it
makes sense to remove them to simplify the formula at hand.

Theorem 1. Blocked literal elimination is not confluent.

Proof. Consider the true QBF Π.ψSAT := ∀a, b∃x.(a ∨ b ∨ x) ∧ (ā ∨ b̄ ∨ x̄).
The outer formula OF(Π,ψSAT, ā) = (b̄) and OF(Π,ψSAT, b) = (a). BLE can
remove literal a from (a ∨ b ∨ x) because (a ∨ b ∨ x) = (ā) ∧ (b̄) ∧ (x̄) satisfies
OF(Π,ψSAT, ā). Similarly, BLE can remove literal b̄ from (ā ∨ b̄ ∨ x̄) because

(ā ∨ b̄ ∨ x̄) = (a) ∧ (b) ∧ (x) satisfies OF(Π,ψSAT, b). None of the other literals
in ψSAT is blocked (although all x and x̄ literals are blocking). BLE can remove
either a from (a∨ b∨x) or b̄ from (ā∨ b̄∨ x̄), but not both. Notice that removing
both is also unsound as the resulting formula is unsatisfiable.

3.2 Blocked Literal Addition

Apart from eliminating blocked literals, one might also extend clauses by adding
blocked literals in a similar fashion as adding hidden literals [7] or covered liter-
als [8]. We will refer to blocked literal addition (BLA) as a procedure that adds
blocked literals until fixpoint to a given formula.



We expect that BLA will be less useful in practice compared to BLE, because
it weakens the formula. Weakening a formula is typically only useful when the
formula is reduced in size. This is not the case for BLA. However, one could use
BLA in combination with hidden literal and covered literal addition to check
whether a clause is redundant.

Theorem 2. Blocked literal addition is not confluent.

Proof. LetΠ.ψUNSAT := ∃x, y ∀a ∃z.(x∨a)∧(y∨ā)∧(x̄∨z)∧(ȳ∨z̄) be a false QBF.
Further let ψCUNSAT be ψUNSAT with (x̄∨z) replaced by C = (ā∨x̄∨z), ψDUNSAT be
ψUNSAT with (ȳ∨z̄) replace byD = (a∨ȳ∨z̄). ThenOF(Π,ψCUNSAT, a) = (x) and
OF(Π,ψDUNSAT, ā) = (y). Then C = (a) ∧ (x) ∧ (z̄) satisfies OF(Π,ψCUNSAT, a).
So BLA can add literal ā to (x̄∨ z) in ψUNSAT. Further BLA can add literal a to
(ȳ∨ z̄), since D = (ā)∧ (y)∧ (z̄) satisfies OF(Π,ψDUNSAT, ā). Adding one of these
blocked literals changes the other outer formula and unblocks the other literal.

Adding one literal does not only unblock the other, but adding both ā to
(x̄ ∨ z) and a to (ȳ ∨ z̄) is unsound as it results in a satisfiable formula.

3.3 Universal Expansion

In general, we expect that BLE is more effective than BLA. However, in the con-
text of universal expansion, an effective preprocessing technique [9], the opposite
is true. Universal expansion eliminates the innermost universal variable by du-
plicating some clauses containing innermost existential literals. More formally,
universal expansion applies the following rule [1,9]:

Π∀x∃Y.ψ,C1 ∨ x̄, . . . , Cn ∨ x̄, D1 ∨ x, . . . ,Dm ∨ x,E1, . . . , Ep
Π∃Y Y ′.ψ, C1, . . . , Cn, E1, . . . , Ep, D′

1, . . . , D
′
m, E

′
1, . . . , E

′
p

A copy Y ′ of the set of innermost existential variables Y is introduced. In the
primed clauses, variables from Y are replaced by variables from Y ′. For applying
universal expansion on variable x, the clauses of the formula are partitioned into
four groups: (i) those that contain literal x; (ii) those that contain literal x̄; (iii)
clauses that contain at least one innermost existential literal (i.e., from Y ), but
not x nor x̄; and (iv) the others. Notice that only the clauses in the third group
are duplicated, so one would like to have that group as small as possible. Yet
BLE may remove x (or x̄) literals from clauses, thereby moving them from the
first group (or second group) to the third group. BLA on the other hand will
add literals x (or x̄), thereby moving clauses from the third group to the first
(or second group). Therefore, applying BLA to add x and x̄ literals to clauses is
a useful pre-step before universal expansion.

4 Evaluation

We extended our state-of-the-art preprocessor bloqqer v354 with blocked literal
elimination such that BLE complements bloqqer’s preprocessing techniques.

4 http://fmv.jku.at/bloqqer

http://fmv.jku.at/bloqqer


 0

 100

 200

 300

 400

 500

 600

 700

 800

 900

 0  50  100  150  200

R
u
n
ti

m
e
s 

(s
e
c)

Number of solved formulas

BCE+BLE
BCE, no BLE
no BCE+BLE

no bloqqer

 1

 10

 100

 1000

 1  10  100  1000

R
u
n
ti

m
e
s 

(s
e
c)

 b
lo

q
q
e
r 

w
it

h
 B

LE

Runtimes (sec) bloqqer without BLE

Fig. 1. Runtimes on Formulas from QBFLib Benchmark Set 2014.

We evaluated the impact of BLE on the QBFLib 2014 Benchmarks5 which
were used in the QBF Gallery 2014, the competition of the QBF solving com-
munity. This benchmark set consists of 345 formulas stemming from various
problem families mainly encoding verification and planning problems. The var-
ious problem families differ strongly in their formula structure, in particular in
the number of quantifier alternations. Our experiments were run on a cluster of
31 nodes with Intel Q9550 CPUs and 8 GB of memory. The memory limit was
never reached. We set an overall timeout of 900 seconds for preprocessing and
solving, and we limited the memory consumption to 7 GB. The formulas, which
could not be solved directly by bloqqer, were handed over to DepQBF 3.046, one
of the most successful solvers of the QBF Gallery 2014.

We considered different configurations of bloqqer to evaluate if and how BLE
influences the solving runtime. We ran DepQBF alone and with the following
configurations of bloqqer: (i) all options enabled, (ii) BLE disabled, and (iii)
BCE and BLE disabled. The results of our experiments are summarized in the
left diagram of Fig. 1. Combining BLE and BCE leads to the best results, i.e.,
solving 202 formulas (102 true, 100 false). When BLE is disabled, 194 formu-
las are solved (98 true, 96 false). A detailed comparison is given by the scat-
ter plot of Fig. 1. Whereas the majority of the formulas remains unaffected
by BLE, for some formulas the runtime improves noticeably. Only one formula
(test4 quant squaring2) could be solved with BLE disabled, but not without. The
average preprocessing time is 42 seconds without BLE and BCE, and 44 seconds
if they are enabled. Table 1 shows statistics on formulas which can only be solved
if BLE is turned on. With BLE, bloqqer itself (i.e., without DepQBF) solves 78
formulas (37 true, 41 false), compared to 68 formula (33 true, 35 false) without
BLE. The truth value of these formulas is certified by our checking tool [1].

5 http://qbf.satisfiability.org/gallery/
6 http://lonsing.github.io/depqbf/

http://qbf.satisfiability.org/gallery/
http://lonsing.github.io/depqbf/


Table 1. Formulas solved exclusively due to BLE. The columns show the number of
variables (#vars), clauses (#cl), quantifier alternations (#Q), blocked literals (#bl).

original formula preprocessing solving

formula #vars #cl #Q #bl #vars #cl #Q time time val

adder-6-sat 1727 1259 4 1278 2157 5401 2 0.74 0.36 T
C88020 0 0 inp 1046 2644 21 3 1306 3466 15 0.2 874.32 F
cache-coh-2-fixp-5 9604 28198 2 3599 – – – 9.32 – F∗

ethernet-fixpoint-3 12514 33884 2 3879 – – – 9.76 – F∗

k branch n-14 7068 33865 33 389 – – – 5.09 – T∗

k branch n-20 13821 78949 44 1397 – – – 12.45 – T∗

k branch p-15 8035 39595 34 239 – – – 6.12 – F∗

k branch p-21 15161 88627 46 1532 – – – 15.12 – F∗

s820 d7 s 24757 26960 3 5365 25115 12869 3 54.7 11.44 T
∗ solved directly by bloqqer

5 Conclusion

We showed that blocked literal elimination—a special case of a rule in the QRAT
proof system—can be applied as preprocessing technique for QBFs. We inte-
grated BLE in our preprocessor bloqqer. Experiments showed the impact of this
technique. We further proposed and motivated a technique called blocked literal
addition where blocked literals are introduced to the formulas. However, the im-
plementation of BLA is more involved because its application bears the danger
of annihilating the effects of other preprocessing techniques. Further, we did not
investigate the impact of the asymmetric variant of BLE yet nor the application
of the general QRAT rules. Both will be subject to future work.

References

1. Heule, M.J.H., Seidl, M., Biere, A.: A Unified Proof System for QBF Preprocessing.
In: IJCAR 2014. Volume 8562 of LNCS., Springer (2014) 91–106

2. Cadoli, M., Schaerf, M., Giovanardi, M., Giovanardi, M.: An algorithm to eval-
uate quantified boolean formulae and its experimental evaluation. In: Journal of
Automated Reasoning, AAAI Press (1999) 262–267

3. Biere, A., Lonsing, F., Seidl, M.: Blocked clause elimination for QBF. In: CADE
2011. Volume 6803 of LNCS., Springer (2011) 101–115

4. Tseitin, G.S.: On the complexity of derivation in propositional calculus. In: Au-
tomation of Reasoning 2. Springer (1983) 466–483

5. Ansótegui, C., Gomes, C.P., Selman, B.: The Achilles’ Heel of QBF. In: AAAI 2005,
AAAI Press / The MIT Press (2005) 275–281

6. Heule, M.J.H., Seidl, M., Biere, A.: Efficient Extraction of Skolem Functions from
QRAT Proofs. In: FMCAD 2014, IEEE (2014) 107–114

7. Heule, M.J.H., Järvisalo, M., Biere, A.: Clause elimination procedures for CNF
formulas. In: LPAR-17. Volume 6397 of LNCS., Springer (2010) 357–371

8. Heule, M.J.H., Järvisalo, M., Biere, A.: Covered clause elimination. In: LPAR-17-
short. Volume 13 of EPiC Series., EasyChair (2013) 41–46

9. Biere, A.: Resolve and expand. In: SAT 2004. Volume 3542 of LNCS. (2004) 59–70


	Blocked Literals are Universal

