
Reconstructing Solutions after
Blocked Clause Elimination?

Matti Järvisalo1 and Armin Biere2

1 Department of Computer Science, University of Helsinki, Finland
2 Institute for Formal Models and Verification, Johannes Kepler University Linz, Austria

Abstract. Preprocessing has proven important in enabling efficient Boolean sat-
isfiability (SAT) solving. For many real application scenarios of SAT it is im-
portant to be able to extract a full satisfying assignment for original SAT in-
stances from a satisfying assignment for the instances after preprocessing. We
show how such full solutions can be efficiently reconstructed from solutions to
the conjunctive normal form (CNF) formulas resulting from applying a combi-
nation of various CNF preprocessing techniques implemented in the PrecoSAT
solver—especially, blocked clause elimination combined with SatElite-style vari-
able elimination and equivalence reasoning.

1 Introduction

CNF-level preprocessing has proven important in enabling efficient SAT solving. This
is highlighted for instance by PrecoSAT 3—one of the most successful SAT solvers
in the 2009 SAT Competition—that applies a combination of different preprocessing
techniques both before and during search. On the other hand, for many real applications
scenarios it is important to be able to extract a full satisfying assignment for the original
instances from satisfying assignments for preprocessed instances. However, CNF-level
preprocessing/simplification techniques, such as SatElite-style variable elimination [1]
and blocked clause elimination [2], often preserve only satisfiability, not the set of sat-
isfying assignments. Especially, reconstruction of an original solution becomes non-
straightforward when applying combinations of preprocessing techniques.

In this paper we show how such full satisfying assignments can be efficiently recon-
structed from solutions to the CNFs resulting from applying combinations of various
preprocessing techniques. Especially, we concentrate on the non-trivial case of com-
bining blocked clause elimination [2] (BCE)—which has proven surprisingly power-
ful, being able to achieve the same level of simplification as the Plaisted-Greenbaum
polarity-based CNF encoding and a combination of specific circuit-level simplification
techniques— with SatElite-style variable elimination and equivalence reasoning [3–5].
We explain how solution reconstruction is done in practice in PrecoSAT, and formally
justify the correctness of this process. The presented reconstruction techniques are both
time and space wise linear, and hence have no real overhead w.r.t. solving.
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2 Preliminaries

CNF. For a Boolean variable x, there are two literals, the positive literal, denoted by
x, and the negative literal, denoted by x̄, the negation of x. A clause is a disjunction
of distinct literals and a CNF formula is a conjunction of clauses. When convenient, a
clause is seen as a finite set of literals and a CNF formula as a finite set of clauses. A
clause is a tautology if it contains both x and x̄ for some variable x. A truth assignment
for a CNF formula F is a function τ that maps variables in F to {t, f}. If τ(x) = v, then
τ(x̄) = ¬v, where ¬t = f and ¬f = t. A clause is satisfied by τ if it contains at least
one literal l such that τ(l) = t. An assignment τ satisfies F if it satisfies every clause
in F . Finally, given an assignment τ , let τx (resp., τx̄) denote the assignment for which
τx(x) = t (resp., τx̄(x) = f) and which otherwise is identical to τ .

Resolution. The resolution rule states that, given two clauses C1 = {x, a1, . . . , an}
and C2 = {x̄, b2, . . . , bm}, the implied clause C = {a1, . . . , an, b1, . . . , bm}, called
the resolvent of C1 and C2, can be inferred by resolving on the variable x. We write
C = C1 ⊗x C2. A sequence of clauses (C0, C1, . . . , Cn) is a resolution derivation
of the clause C from a CNF formula F if (i) Cn = C, and (ii) each Ci, where 0 ≤
i < n, is either a clause in F (in this case Ci is called an input clause), or Ci is the
resolvent of two clauses Cj and Ck, where j, k < i. We denote by F ` C the fact
that there is a resolution derivation of the clause C from the CNF formula F . A well-
known refinement of resolution is tree-like resolution, where derivations have to be
representable as trees.

Variable Elimination as SatElite-style Preprocessing. Following the Davis-Putnam
procedure [6] (DP), a preprocessing technique VE, referred to as variable elimination
by clause distribution in [1], can be defined. For a CNF formula F , let Sx ⊆ F and
Sx̄ ⊆ F consist of all the clauses in F that contain the literal x and x̄, respectively. The
elimination of a variable x in the whole CNF can be computed by pair-wise resolving
each clause in Sx with every clause in Sx̄. Formally, the resolution operator ⊗ can be
lifted to sets of clauses:

Sx ⊗x Sx̄ = {C1 ⊗x C2 | C1 ∈ Sx, C2 ∈ Sx̄, and C1 ⊗x C2 is not a tautology}.

Now, replacing the original clauses in Sx ∪ Sx̄ with the set S = Sx ⊗x Sx̄ of non-
tautological resolvents gives the CNF (F \ (Sx ∪ Sx̄)) ∪ S which is satisfiability-
equivalent to F . Since DP is a complete proof procedure for CNFs, with exponential
worst-case space complexity, for practical applications as a preprocessing technique,
variable elimination needs to be bounded; e.g., SatElite eliminates a considered vari-
able only when the resulting CNF formula (F \ (Sx ∪ Sx̄)) ∪ S will not contain more
clauses as the original formula F . For the following, let VE(F, x) denote the result of
applying variable elimination to F w.r.t x.

Blocked Clause Elimination (BCE) is a satisfiability-preserving CNF preprocessing
techniques which removes so called blocked clauses [7] from CNF formulas.

Definition 1. A literal l in a clause C of a CNF F blocks C w.r.t. F if for every clause
C ′ ∈ F with l̄ ∈ C ′, the resolvent (C \{l})∪ (C ′ \{l̄}) obtained from resolving C and
C ′ on l is a tautology.



With respect to a fixed CNF and its clauses we have:

Definition 2. A clause is blocked if it has a literal that blocks it.

Example 1. Consider the formula Fblocked = (a∨b)∧(a∨ b̄∨ c̄)∧(ā∨c). Only the first
clause of Fblocked is not blocked. The second clause contains two blocked literals: a and
c̄. Also literal c in the last clause is blocked. Notice that after removing either (a∨ b̄∨ c̄)
or (ā∨c), the clause (a∨b) becomes blocked. This is actually an extreme case in which
BCE can remove all clauses of a formula, resulting in a trivially satisfiable formula. �

In the example, notice that although BCE alone can show that the original formula is
satisfiable, a solution to the original CNF is not directly available.

Recent work [2] shows that, although a simple technique, BCE is surprisingly pow-
erful. For example, without any circuit-level information, on the standard Tseitin CNF
encoding BCE can achieve at least the same level of simplification as the Plaisted-
Greenbaum polarity-based CNF encoding and a combination of specific circuit-level
simplification techniques. Moreover, as shown in [2], BCE and SatElite-style variable
elimination are to some extend orthogonal preprocessing techniques, which justifies
combining these techniques for even more effective preprocessing. Notice also that, in
contrast to variable elimination, BCE has a unique fixpoint for any CNF formula, i.e.,
BCE is confluent. This is due to the following.

Proposition 1 ([7]). Given a CNF formula F , let clauseC ∈ F be blocked with respect
to F . Any clause C ′ ∈ F , where C ′ 6= C, that is blocked with respect to F is also
blocked with respect to F \ {C}.

Exploiting Equivalent Literals. For two literals l1 and l2, let l1 ≡ l2 denote the
CNF formula {{l1, l̄2}, {l̄1, l2}}. For a given CNF formula F , if F ` l1 ≡ l2, the
equivalent literals l1 and l2 can be exploited by the equivalence reduction in which all
occurrences of l2 are substituted by l1 (or vice versa), eliminating the variable of l2 (or
l1). For example, hyper binary resolution, in which the clause {l, l′} can be derived in
one step from the clauses {l, l1, . . . , ln} and {l̄i, l′} where 1 ≤ i ≤ n, can be used to
derive new binary clauses [3–5].

For detecting and exploiting equivalent literals in preprocessing/simplification, Pre-
coSAT implements a lazy version of hyper binary resolution. It also finds equivalent
literals during failed literal probing. Equivalences are represented with a union find
data structure. During garbage collection, not only top-level satisfied clauses are re-
moved but all their literals are mapped to their representatives of the union find data
structure. This essentially removes equivalent literals from the CNF; afterwards, only
the representatives remain.

3 Solution Reconstruction for Individual Techniques

In this section we describe how to reconstruct solutions for each of the considered
preprocessing techniques separately. We start with variable elimination for which re-
construction can be seen as part of the completeness proof of DP.



Proposition 2. Let τ be a satisfying assignment for VE(F, x). Either τx or τx̄ satisfies
Sx ∪ Sx̄, and, the one that does, also satisfies F = VE(F, x) ∪ (Sx ∪ Sx̄).

To reconstruct a solution after VE has been applied repeatedly for the variables
x1, . . . , xm, it is enough to save (remember) the clauses (Sx1

∪Sx̄1
), . . . , (Sxm

∪Sx̄m
).

Assume that τ satisfies VE(· · ·VE(VE(F, x1), x2) · · · , xm). Let τm+1 = τ , and, it-
eratively from i = m to 1, define τ i as the one of τ i+1

xi
and τ i+1

x̄i
which satisfies

(Sxm
∪Sx̄m

). Proposition 2 guarantees that τ1 is a satisfying assignment for the original
formula F .

If the application only requires to reconstruct one solution, then in practice4 it is
enough to only save either Sxi or Sx̄i . W.l.o.g. assume Sxi is saved. Then, if τ i+1

x̄i
sat-

isfies the saved Sxi
, we pick τ i = τ i+1

x̄i
, since this truth assignment obviously satisfies

Sx̄i
as well. Otherwise xi is forced to be t and we must set τ i = τ i+1

xi
. This case occurs

if and only if there is a clause in Sxi for which τ i+1 assigns all literals except xi to f.
In an actual implementation only the smaller of the two sets is saved. Thus this

technique is also efficient in the case where VE is used for pure literal elimination as
discussed in [2]. In addition to plain VE, it also works for functional substitution [1] as
in the SatElite preprocessor. The only difference between VE and functional substitu-
tion is that the latter removes some redundant clauses from Sx⊗xSx̄ while maintaining
the set of satisfying assignments.

Equivalent literals are substituted by their representatives during preprocessing. Clau-
ses used to derive equivalent literals become trivial and are removed during garbage
collection. However, the relation between original literals and their representatives is
maintained. If a satisfying assignment for the remaining clauses is found, the truth
value of a substituted literal is defined to be the value of its representative. This ex-
tends the satisfying assignment for the remaining clauses to a satisfying assignment for
the original formula.

Finally, consider BCE. In analogy to the case of VE, the proof [7] which shows
that removal of a blocked clause does not turn an unsatisfiable formula into a satisfiable
formula, gives us grounds to reconstruct solutions for BCE.

Proposition 3. Assume that literal l blocks C w.r.t. F . Let τ be a satisfying assignment
for F \ {C}. If τ does not satisfy C, then τl satisfies both F \ {C} and C and thus F .

In practice it is enough to save all removed blocked clauses C1, . . . , Cm together
with their blocking literals l1, . . . , lm.5 Let τm be a satisfying assignment for Fm, where
Fi = F \ ∪ij=1{Cj} for i = 1 . . .m and F0 = F . If τ i satisfies Ci, we pick τ i−1 = τ i,
and otherwise τ i−1 = τ ili . Using Proposition 3, one can show by induction that τ i

satisfies Fi, and thus τ0 is a satisfying assignment for F .

4 Combined Solution Reconstruction

First, BCE and VE can be combined by saving clauses for reconstructing solutions after
BCE resp. VE on the same reconstruction stack. Reconstruction works in reverse order

4 By private communication with Niklas Sörensson.
5 A space efficient way to save this information is to maintain li as the first literal in the saved

clause Ci. This also allows to keep track of eliminated variables in VE.



in which these clauses have been saved. This also works nicely if BCE is applied on-
the-fly during VE: while counting the non-trivial resolvents of Sx ⊗x Sx̄ to determine
whether VE is applied to x, it may occur that a clause C ∈ (Sx ∪ Sx̄) has only trivial
resolvents w.r.t. x, even though the overall number of non-trivial resolvents exceeds
|Sx ∪Sx̄|, which prevents x from being eliminated. Yet C can be removed as a blocked
clause and is saved on the reconstruction stack.

In order to combine VE and equivalent reasoning it is enough to make sure that
VE is only attempted after all equivalent literals have been first substituted. Enforcing
this order of using equivalent literal reasoning and VE makes sure that variables elim-
inated with VE are always representatives and the only remaining variables of their
equivalence class. Eliminating a representative through VE will eliminate its whole
equivalence class, and after this it is not possible that further equivalent literals could
be added to the equivalence class of an eliminated variable.

When combining BCE with equivalent literal reasoning, however, the situation is
different: at some point after removing a blocked clause C, a literal l which blocked C
may become equivalent to another literal and may even become a representative of its
equivalence class. On the other hand, one may be forced to flip the value of l during
solution reconstruction since BCE removed C (recall Sect. 3). Hence the values of all
the literals in the equivalence class should be flipped, which appears not to be sound
since this could make some other clause unsatisfied. However, as we show in the next
section, the value of l will never have to be flipped in such a situation.

5 Equivalent Literals and Blocked Clause Satisfiability

Equivalent literals detected and applied in simplifying a CNF after removing blocked
clauses cannot make the removed blocked clauses to not to be satisfied under a satisfy-
ing assignment for the rest of the formula.

Theorem 1. Assume a CNF formula F , a clause C ∈ F which is blocked for l ∈ C
w.r.t. F , and a literal l′. If F \ {C} ` l ≡ l′ , then (F \ {C}) ∪ (l ≡ l′) |= C.

In other words, any satisfying assignment for (F \ {C})∪ (l ≡ l′) also satisfies the
blocked clause C. This means that binary equivalences detected during preprocessing
can be exploited when applying BCE, at the same time guaranteeing all the blocked
clauses removed by BCE will be satisfied by any satisfying assignment for the resulting
preprocessed CNF formula. Notice that this lemma is independent of the techniques
used for deriving the clauses in l ≡ l′.

Proof (of Theorem 1). Assume a CNF formula F , a clause C = {l, l1, . . . , lk} ∈ F
which is blocked for l ∈ C w.r.t. F . Denote by B ⊂ F the set of clauses which contain
the literal l̄. Hence each clause in B contains at least one of the literals l̄1, . . . , l̄k.
Assume that F \ {C} ` l ≡ l′ for some literal l′, and hence there is a resolution
derivation of {l, l̄′} and {l̄, l′} from F \ {C}.

If F is unsatisfiable, F \ {C} is also unsatisfiable since C is blocked, and hence
trivially (F \{C})∪(l ≡ l′) |= C. Now consider the case that F and (thus) also F \{C}



and (F \ {C}) ∪ (l ≡ l′) are satisfiable. Take an arbitrary satisfying assignment τ for
(F \ {C}) ∪ (l ≡ l′). We will show that any such τ also satisfies C.

The case in which τ(l) = t (that is, τ satisfies l) is trivial. Now assume τ(l) = f.
Then τ(l′) = f since τ satisfies l ≡ l′. Consider an arbitrary resolution derivation
π = (C1, . . . , Cm) of Cm = {l̄, l′} from F \ {C}. Assume w.l.o.g. that π is tree-like.
We claim that there is an input clause C ′ = {l̄, l′1, . . . , l′k} ∈ B in π such that τ(l′i) = f
for all i. Since C ′ ∈ B, it then follows that one of the l′is is one of the literals l̄1, . . . , l̄k,
and hence τ satisfies C (recall that C = {l, l1, . . . , lk}).

To prove the claim, we show that there is a path P1, . . . , Pn of clauses in π (seen as
a tree) from the root of the tree (P1 = Cm) to a leaf (Pn is an input clause of π), such
that each clause Pi on the path contains l̄ and τ assigns all literals in Pi except l̄ to f.

First notice that for P1 = Cm we know that τ(l̄) = t and τ(l′) = f. Now assume
that Pi = {l̄} ∪D, where D is a set of literals such that τ assigns every literal in D to
f, was directly derived from clauses Ca and Cb in π resolving on the variable x. Notice
that at least one of Ca and Cb must contain l̄. First consider the case that Ca contains l̄
and Cb does not. Since τ assigns all literals in D to f, τ must satisfy the literal for x in
Cb. (Otherwise τ does not satisfy Cb which would imply that τ does not satisfy an input
clause in π and hence τ cannot be a satisfying truth assignment for (F \{C})∪(l ≡ l′),
in contradiction to our assumption.) Hence τ assigns all literals in Ca apart from l̄ to f.
In this case let Pi+1 = Ca. The case that Cb contains l̄ and Ca does not is identical.

Now consider the case that both Ca and Cb contain l̄. Since τ assigns a unique truth
value to x, τ assigns all literals in either Ca or Cb apart from l̄ to f. In this case let Pi+1

be this particular clause. �

6 Conclusions

We showed how and why—in theory and in practice—full solutions to CNF formulas
can be reconstructed from solutions to the CNF after applying both individual and com-
binations of preprocessing techniques, including blocked clause elimination, SatElite-
style variable elimination and equivalence reasoning.
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