
Compressing BMC Encodings with QBF

Toni Jussila 1 Armin Biere 2

Institute for Formal Models and Verification
Johannes Kepler University, Linz, Austria

Abstract

Symbolic model checking is PSPACE complete. Since QBF is the standard PSPACE
complete problem, it is most natural to encode symbolic model checking problems
as QBF formulas and then use QBF decision procedures to solve them. We dis-
cuss alternative encodings for unbounded and bounded safety checking into SAT
and QBF. One contribution is a linear encoding of simple path constraints, which
usually are necessary to make k-induction complete. Our experimental results show
that indeed a large reduction in the size of the generated formulas can be obtained.
However, current QBF solvers seem not to be able to take advantage of these com-
pact formulations. Despite these mostly negative results the availability of these
benchmarks will help improve the state of the art of QBF solvers and make QBF
based symbolic model checking a viable alternative.

Key words: Bounded Model Checking, Encoding, QBF, SAT.

1 Introduction

Bounded Model Checking (BMC) [3] has the motivation to improve on BDD
based symbolic model checking by using SAT procedures. Already in the
original paper the use of QBF decisions procedures was suggested as a tool
to make BMC complete without using BDDs. Completeness means that an
LTL property can also be shown to hold as opposed to just being able to
find counter examples. In this paper we focus on simple safety properties,
for which we want to prove that a bad state is not reachable. More general
properties can be handled for instance through techniques from [14].

The completeness result of [3] uses the fact that the diameter of the system,
which is the length of the longest shortest path between two states, is an upper
bound on the length of potential counter examples. The question is how the

1 Email: toni.jussila@jku.at
2 Email: armin.biere@jku.at

Preprint submitted to Elsevier Preprint 9 October 2006

diameter can be calculated. In [3] a QBF formula is presented parameterized
by d, which is satisfiable resp. true, iff d is an upper bound on the diameter.
Nevertheless this formulation was not used in the experiments, since efficient
QBF solvers did not exist at that time.

In graph theory the notion of diameter is also known as eccentricity. To
determine the eccentricity of the state transition graph of sequential circuits
has been investigated in [10]. The authors used a dedicated QBF solver for
quantifier elimination. However, the examples that could be handled are tiny.
An argument why DPLL style QBF solvers can not handle this kind of prob-
lems well is given in [17]: in essence DPLL style QBF solvers need to perform
an explicit state space search to determine the diameter.

However, it is possible to generate a purely propositional SAT formula
without quantifiers for almost the same problem [3]. If it is unsatisfiable, it
constitutes an upper bound on the diameter. This formula is parameterized
by r and is unsatisfiable iff there is no cycle free path of length r. In graph ter-
minology a cycle free path is also called simple path, while in [3] the maximal
length of a simple path is called reoccurrence diameter.

These concepts can be refined in two ways [15]: first the diameter and the
reoccurrence diameter can be initialized. The paths, both in the QBF and in
the SAT case, can be forced to fulfill the additional constraint that exactly
the first state is an initial state. Furthermore, instead of looking for maximal
simple paths starting from an initial state in a forward manner, one can work
backward from a bad state. In particular the maximal length of a simple path
for which exactly its last state is a bad state is also an upper bound on the
maximal length of counter examples that need to be searched. We call such
paths terminal.

In the special case k = 1 this technique amounts to check that the good
states are an inductive invariant of the transition relation. Therefore the tech-
nique is also known as k-induction [15]. It seems to be much more successful
in practice than forward checking, since it can utilize locality of properties,
even if it is just implicitly through the SAT solver, while a forward formulation
will need to take all state bits into account.

However, simple paths can be exponentially larger than their corresponding
diameters, both in forward and backward reasonings. Therefore the question
still remains, whether an approach using QBF reasoning would not allow to
terminate the search for counter examples much earlier. Also the state of the
art in QBF solver technology improved considerably in recent years [11].

To our knowledge, there are no published results on using QBF for back-
ward reasoning yet. Unfortunately our experimental results for backward
reasoning provide a strong indication that similar to the forward reasoning
results of [10,17] QBF based fixpoint algorithms can not yet really compete
with BDD based or other complete model checking algorithms using SAT as

2

discussed for instance in [1]. Not a single instance was solved that could not
be solved with k-induction as well.

On the positive side we provide new compact formulations of bounded
model checking problems and also show that in certain cases QBF based rea-
soning can outperform SAT based reasoning. Our benchmarks will be made
publicly available. They will help to improve the state of the art of QBF
solvers and hopefully lead to efficient QBF based model checking algorithms.

Finally, we experimented with functional and relational unrollings of the
next state logic. The experiments clearly show that a functional unrolling is
much more compact. The generated CNF is much smaller when using syntac-
tic substitution for next state functions instead of conjoining the transition
relations. The run times of the SAT solver also decreases considerably.

2 Background

Quantified boolean formulas (QBF) form a propositional logic with quanti-
fiers over boolean variables. The QBF solvers we use only accept QBF in
conjunctive normal form (CNF) in prenex form. The standard algorithm [18]
for producing CNF for SAT can also be used for QBF after pulling out the
quantifiers. The additional variables will be existentially quantified in the
innermost scope. In the rest of the paper we do not require prenex CNF.

Our system model is the standard relational model used in symbolic model
checking. It is a flat boolean encoded Kripke structure K with initial state
constraint I(s), transition relation T (s, s′), bad state constraint B(s) and
good state constraints G(s) with G(s) ≡ ¬B(s). Evaluations σ ∈ 2n of state
variable vectors s, s′, . . . act as states. A state variable vector, in the following
just short state variable, is made up of n individual state bits, which are just
boolean variables. Individual state bits and equalities over state variables
serve as atomic propositions.

A valid path of length k in K is an evaluation of state variables s0, . . . sk

that satisfies the path constraint T (s0, s1) ∧ T (s1, s2) ∧ · · · ∧ T (sk−1, sk). An
initialized path constraint requires in addition that I(s0) holds, while a ter-
minal path constraint requires that B(sk) holds. A bad state is reachable iff
there is a satisfiable path constraint for some k, which at the same time is
initial and terminal. In this paper we only consider the problem of checking,
whether a bad state is reachable.

3 Fixpoints

The algorithm of Fig. 1 is the standard BFS algorithm for checking simple
safety properties with BDDs. The sets C and N as well as the relations I,
T , and B are represented symbolically. The algorithm implements a fixpoint

3

model-checkµ
forward (I, T , B)

C = false; N = I;

while N 6⇒ C do

if B ∧N satisfiable then

return “bad state reachable”;

C = N ;

N = C ∨ Img(C);

done;

return “no bad state reachable”;

Fig. 1. On-the-fly forward model checking algorithm for safety properties.

computation starting from the initial states, adding the next states N reach-
able in one step, with Img(C)(s′) ≡ ∃s[T (s, s′)∧C(s)], from the current states
reached so far C until either a bad state B is found or the loop terminates.
The focus of BMC is the former while in this paper we concentrate on checking
the loop condition.

The loop condition is invalid initially, and the loop is not even entered,
iff I = false, or equivalently if I(s) is unsatisfiable. This can be checked by
a SAT solver. The validity of the loop condition, after the first iteration can
also be checked by a SAT solver, since it is equivalent to the satisfiability of
∃s, s′[I(s) ∧ T (s, s′) ∧ ¬I(s′)]. If this formula is unsatisfiable then I actually
turns out to be an inductive invariant of the transition relation.

However, after the second iteration the loop condition is equivalent to the
satisfiability of

∃s0, s1, s2[I(s0) ∧ T (s0, s1) ∧ T (s1, s2) ∧

∀t0, t1[I(t0) ∧ T (t0, t1) → (s2 6= t0 ∧ s2 6= t1)]]

which is a proper QBF formula with one alternation. 3 In general, the loop
condition is fulfilled after k iterations iff the following formula is satisfiable:

∃s0, s1, . . . , sk[I(s0) ∧ T (s0, s1) ∧ · · · ∧ T (sk−1, sk) ∧

∀t0, t1, . . . , tk−1[I(t0) ∧ T (t0, t1) ∧ · · · ∧ T (tk−2, tk−1) →

(sk 6= t0 ∧ · · · ∧ sk 6= tk−1)]]

Variations of this formulation, were also used in [10,17]. Their practical usage
is rather restricted. There was not a single instance in our experiments, where
initialized diameter checking, was doable this way, if it involved any alternation
of quantifiers. Clearly much stronger QBF solvers are required.

3 Here we need the common assumption that the transition relation T is total, which we
will assume for the rest of the paper.

4

Initial experiments in using the reoccurrence diameter were also unsuc-
cessful. The instances are solvable for small k, but the reoccurrence diameter
turns out to be too large for these examples and the SAT instances also be-
come intractable very soon. This is in contrast to the experience with simple
path constraints in k-induction. Therefore we suggest to represent the ter-
mination check for symbolic backward fixpoint computation as QBF decision
problem as well:

∃s0, s1, . . . , sk[T (s0, s1) ∧ · · · ∧ T (sk−1, sk) ∧B(sk) ∧

∀t0, t1, . . . , tk−1[T (t0, t1) ∧ · · · ∧ T (tk−2, tk−1) ∧B(tk−1) →

(s0 6= t0 ∧ · · · ∧ s0 6= tk−1)]]

In our experiments it turns out that in this case two instances for k = 2 could
be solved, for which also k-induction determined termination easily. Never-
theless, this negative result still shows that even when using QBF, backward
computation may be superior to forward computation as it is the case with
checking reoccurrence diameters versus k-induction.

For backward fixpoint calculations we actually used a slightly different
formulation, as also used in SAT based k-induction [15], where T is replaced
by TG with TG(s, s′) ≡ G(s)∧T (s, s′). If the formula is unsatisfiable then k is
a bound on the maximum length of paths that have to be searched in order
find a path to a bad state, which only traverses good states except for the
last state. This optimization may reduce the bounds that have to be checked
considerably.

4 Non-Copying Iterative Squaring

Following the classical proof of PSPACE hardness of QBF [13,16] we can use
non-copying iterative squaring to compute symbolically the transitive closure
of the transition relation as follows:

T 2·i(s, s′) ≡ ∃ m [∀c [∃ l, r [(c → (l = s ∧ r = m)) ∧

(c → (l = m ∧ r = s′)) ∧ T i(l, r)]]]

The universal “choice variable” c just instantiates the formal parameters (l, r)
of T i(l, r) with either the actual parameters (s, m) in the positive case or
(m, s′) in the negative case. This is simply a compact QBF reformulation of
copying iterative squaring

T 2·i(s, s′) ≡ ∃ m [T i(s, m) ∧ T i(m, s′)]

which doubles the size of the formula with every application, while the non-
copying formulation just adds some state variable equalities each time.

A similar formulation was discussed in [12] and has also been used in [2] to
perform bounded model checking of very simple counter circuits. In the latter

5

paper it has been observed that current state-of-the-art QBF solvers can barely
keep up with SAT based bounded model checking on these examples. However,
the QBF formula is linear in the model and logarithmic in the number of steps,
which gives an at most quadratic formula in the number of state bits. The
worst case only occurs if the sequential depth, e.g. the initialized diameter,
really turns out to be 2n.

5 Simple Path Constraints

In [3,15] the concept of simple path constraints was introduced∧
0≤i<j≤k

si 6= sj(1)

Note that the size of this formula is quadratic in k and each si 6= sj involves
the comparison of n state bits. By sorting the si symbolically as in [9] an
O(k · log(k)) size bound can be obtained. In practice, due to large constants,
simpler sorting networks with size O(k ·(log(k))2) are preferred, such as bitonic
sort or odd-even mergesort. In our experiments we used the latter, since it
requires slightly less comparisons than the bitonic sorting network used in [9].

If these constraints are conjoined with path constraints, they allow to
obtain a complete model checking procedure. If the path constraints are ini-
tialized and the result becomes unsatisfiable, then k is a bound on the reoc-
currence diameter [3]. If no counter example up to this length exists, no bad
state is reachable. Similarly, if the simple path constraints are conjoined with
a terminal path constraint, as in k-induction [15], then the unsatisfiability of
the result, again shows that k is an upper bound on the maximal length of
counter examples that need to be considered. The formula that is checked in
k-induction is the following:

k−1∧
i=0

T (si, si+1) ∧
k−1∧
i=0

G(si) ∧ B(sk) ∧
∧

0≤i<j<k

si 6= sj(2)

Note, that the last state sk as a “good state” can never be equal to one of the
previous “bad states”. Therefore, from Eqn. 1 we can remove comparisons
with the last state in k-induction. A similar argument could be used for
computing the reoccurrence diameter.

5.1 Compact Simple Path Constraints in QBF

One of our contribution of this paper is a reformulation of the simple path
constraints of Eqn. 1 in QBF as follows:

∀l0, . . . , lk [∃s [|
k∑

i=0

li| = 1 →
k∧

i=0

(li ↔ (s = si))](3)

6

The resulting formula needs one alternation of quantifiers and is linear in
k as opposed to quadratic complexity of the original formula. Note that
the state variables of the corresponding path constraints are free variables of
this formula and are quantified existentially in the outermost scope for our
applications.

In order to obtain linear complexity the cardinality constraint |Σk
i=0li|,

which simply states that exactly one of the li is true, has to be encoded with
a linear sized circuit. This is easily possible, since for instance the ROBDD
for this cardinality constraint for any variable order has linear size in k.

The additional “bits” l0, . . . , lk provide a one-hot encoding of the index of
a reference vector, which is saved in s and is enforced to be different from all
the other state vectors, e.g. li saves si as s and forces s to be different from
all other sj with i 6= j. A binary encoding of the index of the reference vector
is also possible and requires only dlog2ke additional universal variables.

This example already shows some of the modelling power of QBF, which,
we believe, is hardly used in practice yet. But we can go one step further
by sharing the transition relation across time frames as in [6]. Our QBF
reformulation following [6] of path constraints is as follows:

∀l0, . . . , lk [∃s, s′ [T (s, s′) ∧

(|
∑k

i=0 li| = 1 →∧k−1
i=0 (li → (s = si ∧ s′ = si+1)))]]

(4)

Putting both together we obtain a compact reformulation of simple path con-
straints in QBF with transition relation sharing:

∀l0, . . . , lk [∃s, s′ [T (s, s′) ∧

(|
∑k

i=0 li| = 1 →∧k−1
i=0 (li → (s = si ∧ s′ = si+1)) ∧∧k
i=0(li ↔ (s = si)))]]

(5)

Initial respectively terminal constraints can be added as needed. In the context
of k-induction practical experience shows that adding good state constraints to
the current state of the transition relation, as in Eqn. 2, improves performance
and particularly decreases the bound k considerably. We can achieve the same
effect in the QBF formulation by just adding G(s) to the innermost existential
scope, thus, actually sharing G across time frames as well. In the experiments
we used the latter version.

7

6 Transition Functions and Relations

SMV [5] allows two ways to specify the transitions that a system can make. We
refer to these as functional and relational part. In the functional part (inside
an ASSIGN section of the SMV file) the value of a variable in the next state
is defined as a boolean function of the variable values in the current state.
The relational part is simply a boolean formula where the atomic formulas
are current and next state variables and this formula (given in the TRANS

section of the SMV file) has to hold between any two states. An SMV file
can contain both a relational and functional part to describe the system’s
transition relation.

A functional transition relation allows an optimization in the translation
to SAT/QBF when the transition relation (or the simple path constraint) is
unrolled. Namely, for a functional state variable, it is possible to substitute
its next state function in any state after the initial state. Thereafter, the
representation can be simplified by propagating information from the initial
state to subsequent states. Consider for instance variables x0 and x1 and let
the SMV file contain the definitions init(x0) := 0 and next(x1) := !x0.
Then it is obviously possible to infer that the value of x1 after the transition
relation is unrolled once is 1 etc. We refer to this optimization as functional
substitution. Notice that this substitution is not possible if QBFs are used to
share the transition relation and the simple state constraint. In our experi-
ments, we compare this optimized translation to a translation where functional
substitution is disabled (considering the model be purely relational). Our ex-
perimental results show that in some cases the optimization that functionality
allows plays an important role.

7 Experiments

We have implemented our approach in a tool called smv2qbf. It reads flat
SMV specifications with simple safety properties as input and translates them
to QBFs. The tool has several switches corresponding to different model
checking problems. It is possible to perform standard BMC, compute diameter
and reoccurrence diameter, compute fixpoint, and do k-induction proofs [8].
For most of these problems, there are two or more encodings, the standard
propositional one and one using more compact QBFs.

We present two sets of results, first of problems where it is possible to prove
that the safety property holds using k-induction (the induction step eventually
becomes unsatisfiable). Second, we have examples where a counterexample is
found using standard BMC.

For the experiments we used a cluster of Pentium IV 3.0 GHz PCs with
2GB of main memory running Debian Sarge Linux. The time limit was set to

8

1000 seconds and the memory limit to 1GB of main memory. The examples
that we use are from the TIP tool by Eén and Sörensson [8]. We use quan-
tor (version 2.13) [2] as the QBF solver. quantor uses a SAT solver as a
back end and for this purpose we use picosat (version 1.251). We also com-
pare quantor to another state-of-the-art QBF solver, qube (version 1.3) [7].
For every instance we tried, quantor performed better.

The results for the examples where the property is proven are shown in
Tables 1 and 2. The columns of the tables are as follows. In both tables, the
two leftmost columns give the name of the example and the bound needed to
prove the property. Thereafter are 6 columns of the form s(x) (Table 1) and
t(x) (Table 2), where x is the type of encoding, s(x) stands for size and t(x)
for time. We use the following encodings for k-induction step:

(i) i is the standard fully propositional encoding (Eqn. 2),

(ii) ir is i without functional substitution (see Sect. 6),

(iii) is implements simple state constraints with sorting networks,

(iv) isr is is without functional substitution,

(v) l is an encoding where the transition relation is unrolled but the simple
path constraints are encoded as given in Eqn. 3,

(vi) lr is l without functional substitution,

(vii) L is an encoding using Eqn. 5 using a one-hot index encoding, and

(viii) B is a modification of Eqn. 5 with binary index encoding.

A column of the form s(x) gives the size in kilobytes of the (SAT/QBF)
formula for encoding x and the bound given in column k. The running time
given in column t(x) is the time required to solve the single instance of en-
coding x corresponding to the depth given in the column k. If the entry is of
the form N/A then the memory limit was exceeded (we experienced no time
outs).

Tables 3 and 4 follow the same conventions as Tables 1 and 2, however, this
time k is the smallest depth needed to find a counterexample. The encodings
are as follows:

(i) b, the standard propositional BMC encoding,

(ii) br is b without functional substitution,

(iii) C, a compact BMC encoding with a single copy of the transition relation
(see Eqn. 4), and

(iv) S, a BMC encoding with noncopying iterative squaring (see Sect. 4).

Tables 1–4 seem to warrant the following conclusions. Applying QBF
representations yields in many cases smaller formulas and the difference seems
to grow with larger bounds. This is especially so when the model is fully

9

name k s(i) s(ir) s(is) s(isr) s(l) s(lr) s(L) s(B)

cmu.periodic.N 96 41372 41416 27996 28096 9832 9844 2100 2112

eijk.S208.S 258 146728 170828 49772 72808 3232 26864 3656 3696

eijk.S208c.S 258 148840 186168 51332 82716 3212 33792 3884 3924

eijk.S208o.S 258 129788 164740 44240 77480 3048 37516 2920 2956

eijk.S298.S 58 13868 19752 10740 16584 1136 6812 1668 1672

eijk.S510.S 10 656 2504 1268 3068 372 2404 632 636

eijk.S820.S 11 844 3468 1300 3904 584 3500 664 664

eijk.S832.S 11 900 3592 1400 4072 628 3704 700 700

eijk.S953.S 7 448 2612 748 2912 360 2748 776 776

ken.oop1.C 29 3204 4204 3536 4504 1116 2184 608 608

nusmv.guid*1.C 10 1360 2564 2192 3320 1112 2224 752 752

nusmv.guid*7.C 27 8208 11996 9520 13316 2712 6172 1728 1732

nusmv.tcas2.B 6 1176 3936 1820 4584 1016 4364 1284 1288

nusmv.tcas3.B 5 892 2964 1420 3704 836 3640 1172 1172

texas.par*2.E 2 36 480 44 488 44 548 356 356

vis.prodc*12.E 29 10612 65488 11352 66272 6008 68328 3320 3320

vis.prodc*13.E 8 1556 16112 1884 16488 1472 18792 2444 2444

vis.prodc*14.E 16 4112 33700 4776 34440 3164 37312 2776 2776

vis.prodc*15.E 23 7260 49808 8496 51024 4664 53496 3068 3068

vis.prodc*16.E 5 800 9752 1004 9980 824 11740 2320 2320

vis.prodc*17.E 27 9444 60076 10392 61092 5528 59872 3236 3236

vis.prodc*18.E 13 3036 26284 3708 27044 2500 28616 2652 2652

vis.prodc*19.E 22 6772 47484 8012 48712 4468 51204 3028 3028

vis.prodc*24.E 37 15832 87760 16888 88900 7924 89092 3652 3656

Table 1
k-induction sizes

relational. This conclusion is rather obvious, though, since the QBF grows
linearly and in the propositional case a new copy of the transition relation is
needed when the bound is incremented.

10

name k t(i) t(ir) t(is) t(isr) t(l) t(lr) t(L) t(B)

cmu.periodic.N 96 144.7 144.6 178.4 173.3 162.5 162.3 345.1 153.5

eijk.S208.S 258 N/A N/A N/A N/A N/A N/A N/A N/A

eijk.S208c.S 258 N/A N/A N/A N/A N/A N/A N/A N/A

eijk.S208o.S 258 N/A N/A N/A N/A N/A N/A N/A N/A

eijk.S298.S 58 66.0 61.5 N/A N/A N/A 207.7 195.1 132.2

eijk.S510.S 10 1.9 2.4 163.7 174.8 N/A 5.4 5.7 5.9

eijk.S820.S 11 2.2 3.4 93.8 82.1 N/A 5.3 3.6 3.4

eijk.S832.S 11 2.3 3.5 95.5 84.9 N/A 6.0 3.9 3.6

eijk.S953.S 7 0.8 1.7 8.6 8.3 38.4 2.8 3.1 2.8

ken.oop1.C 29 23.0 18.3 N/A N/A 30.4 30.9 50.3 37.8

nusmv.guid*1.C 10 1.4 2.0 1.5 2.1 6.3 6.2 7.6 6.2

nusmv.guid*7.C 27 61.7 60.2 173.7 85.8 87.5 92.6 116.5 116.7

nusmv.tcas2.B 6 1.2 2.5 1.3 2.6 3.9 4.9 11.1 6.4

nusmv.tcas3.B 5 0.5 1.4 1.0 2.0 3.2 3.4 6.5 4.9

texas.par*2.E 2 0.0 0.2 0.0 0.2 0.1 0.2 0.4 0.2

vis.prodc*12.E 29 30.3 197.9 25.0 173.1 N/A 245.8 74.3 57.0

vis.prodc*13.E 8 1.4 13.3 1.6 12.6 5.0 16.8 8.6 8.1

vis.prodc*14.E 16 5.6 46.6 4.6 44.4 23.7 64.6 20.2 17.6

vis.prodc*15.E 23 15.3 113.5 17.3 100.5 85.0 146.2 43.8 34.4

vis.prodc*16.E 5 0.8 6.2 0.9 6.2 2.1 8.6 7.4 6.9

vis.prodc*17.E 27 32.1 163.7 25.2 145.6 N/A 200.2 64.6 52.1

vis.prodc*18.E 13 3.6 28.7 3.7 29.6 13.9 37.9 14.5 12.7

vis.prodc*19.E 22 12.6 97.6 12.3 94.4 70.6 130.1 36.7 32.0

vis.prodc*24.E 37 59.8 N/A 49.4 N/A N/A N/A 125.0 103.9

Table 2
k-induction running times

A perhaps more interesting observation is that the running times of the
optimized version of the propositional encodings (columns t(i) and t(b)) are
always lower than the encodings using more compact formulas. We identify
two reasons for this. First, propositional encoding allows one to perform opti-

11

name k s(b) s(br) s(C) s(S)

nusmv.tcas1.B 10 960 5580 4512 1524

nusmv.tcas4.B 14 1604 9256 6496 1516

nusmv.tcas5.B 23 2688 13104 9796 1668

nusmv.tcas6.B 16 2816 14900 10188 1668

texas.parsesys1.E 9 140 2392 2140 568

texas.parsesys3.E 8 100 2088 1812 516

texas.twoproc2.E 15 48 13832 9676 1636

texas.twoproc4.E 19 224 19004 12408 1676

vis.eisenberg.E 19 632 19644 12172 1580

Table 3
BMC sizes

name k t(b) t(br) t(C) t(S)

nusmv.tcas1.B 10 0.9 42.3 364.6 56.7

nusmv.tcas4.B 14 1.6 46.8 558.0 56.7

nusmv.tcas5.B 23 3.3 51.4 N/A 81.9

nusmv.tcas6.B 16 3.2 46.9 N/A 76.1

texas.parsesys1.E 9 0.1 10.2 86.4 10.8

texas.parsesys3.E 8 0.1 9.1 69.0 8.8

texas.twoproc2.E 15 0.0 133.4 N/A 141.8

texas.twoproc4.E 19 0.3 147.4 N/A 213.3

vis.eisenberg.E 19 1.1 80.9 N/A 117.5

Table 4
BMC running times

mizations (preprocessing steps), like functional substitution (see Sect. 6) but
also bounded cone of influence [4] in an efficient manner. 4 Indeed, it should
be noted that for some test cases (like the examples vis.prodcell.*), when the
SMV model is made fully relational and thus no functional substitutions are
possible, QBF encodings sharing the transition relation (columns t(L) and

4 Notice that we always reduce the model by cone of influence reduction in every encoding,
particularly for the transition relation and comparing state variables. In addition, we only
compare state variables that occur in both current and next states [8].

12

t(B)) perform better than the SAT encoding (column t(ir)).

Second, the research community has invested much more effort to imple-
ment efficient SAT solvers than is the case for QBFs. We expect more efficient
QBF solvers in the future.

8 Conclusion

This paper on one hand again provides negative results on using QBF for
unbounded model checking and less negative for bounded model checking.
On the other hand we were able to show that in practice QBF formulations
can be much more compact than SAT instances and sometimes solved faster
for relational encodings. Our results clearly show that much more research
in QBF is needed to be able to use QBF as alternative to SAT based model
checking, even in the bounded case.

The tool smv2qbf and the benchmarks in DIMACS format are available at
http://fmv.jku.at/smv2qbf. We are currently working on producing structural
benchmarks as well, in the form of and-inverter-graphs (AIGs).

References

[1] Amla, N., X. Du, A. Kuehlmann, R. P. Kurshan and K. L. McMillan, An
analysis of SAT-based model checking techniques in an industrial environment,
in: Proc. CHARME’05, LNCS 3725.

[2] Biere, A., Resolve and expand, in: Proc. SAT’04, LNCS 3542.

[3] Biere, A., A. Cimatti, E. Clarke and Y. Zhu, Symbolic model checking without
BDDs, in: Proc. TACAS’99, LNCS 1579.

[4] Biere, A., E. Clarke, R. Raimi and Y. Zhu, Verifying safety properties of
a PowerPC microprocessor using symbolic model checking without BDDs, in:
Proc. CAV’99, LNCS 1633.

[5] Cimatti, A., E. M. Clarke, E. Giunchiglia, F. Giunchiglia, M. Pistore, M. Roveri,
R. Sebastiani and A. Tacchella, NuSMV 2: An opensource tool for symbolic
model checking, in: Proc. CAV’02, LNCS 2404.

[6] Dershowitz, N., Z. Hanna and J. Katz, Bounded model checking with QBF, in:
Proc. SAT’05, LNCS 3569.

[7] E. Giunchiglia, M. Narizzano, A. T., System description: QuBE A system for
deciding quantified boolean formulas satisfiability, in: Proc IJCAR’01, LNCS
2083.

[8] Eén, N. and N. Sörensson, Temporal induction by incremental SAT solving, in:
Proc. BMC’03, ENTCS 89.

13

http://fmv.jku.at/smv2qbf

[9] Kröning, D. and O. Strichman, Efficient computation of recurrence diameters,
in: Proc. VMCAI’03, LNCS 2575.

[10] Mneimneh, M. and K. Sakallah, Computing vertex eccentricity in exponentially
large graphs: QBF formulation and solution, in: Proc. SAT’03, LNCS 2919.

[11] Narizzano, M., L. Pulina and A. Tacchella, Report of the third QBF solvers
evaluation, Journal on Satisfiability, Boolean Modeling and Computation 2
(2006).

[12] Rintanen, J., Partial implicit unfolding in the Davis-Putnam procedure
for quantified boolean formulae, in: International Conference on Logic for
Programming, Artificial Intelligence and Reasoning (LPAR’01), 2001.

[13] Savitch, W. J., Relation between nondeterministic and deterministic tape
complexity, Journal of Computer and System Sciences 4 (1970).

[14] Schuppan, V. and A. Biere, Efficient reduction of finite state model checking to
reachability analysis, Software Tools for Technology Transfer (STTT) 5 (2004),
pp. 185–204.

[15] Sheeran, M., S. Singh and G. St̊almarck, Checking safety properties using
induction and a SAT-solver, in: Proc. FMCAD’00, LNCS 1954.

[16] Stockmeyer, L. J. and A. R. Meyer, Word problems requiring exponential time,
in: 5th Annual ACM Symposium on the Theory of Computing, 1973.

[17] Tang, D., Y. Yu, D. Ranjan and S. Malik, Analysis of search based algorithms
for satisfiability of quantified boolean formulas arising from circuit state space
diameter problems, in: Proc. SAT’04, LNCS 3542.

[18] Tseitin, G. S., On the Complexity of Derivation in Propositional Calculus, in:
Studies in Constructive Mathematics and Mathematical Logic, Part II, Seminars
in Mathematics 8 (1968).

14

	Introduction
	Background
	Fixpoints
	Non-Copying Iterative Squaring
	Simple Path Constraints
	Compact Simple Path Constraints in QBF

	Transition Functions and Relations
	Experiments
	Conclusion
	References

