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Abstract. Symbolic SAT solving is an approach where the clauses of a CNF formula are
represented using BDDs. These BDDs are then conjoined, and finally checking satisfiabil-
ity is reduced to the question of whether the final BDD is identical to false. We present a
method combining symbolic SAT solving with BDD quantification (variable elimination)
and generation of extended resolution proofs. Proofs are fundamental to many applications,
and our results allow the use of BDDs instead of—or in combination with—established
proof generation techniques like clause learning. We have implemented a symbolic SAT
solver with variable elimination that produces extended resolution proofs. We present de-
tails of our implementation, called EBDDRES, which is an extension of the system pre-
sented in [1], and also report on experimental results.

1 Introduction

Propositional logic decision procedures [2–6] lie at the heart of many applications in hard- and
software verification, artificial intelligence and automatic theorem proving [7–11], and have
been used to successfully solve problems of considerable size. In many practical applications
it is not sufficient to obtain a yes/no answer from the decision procedure, however. Either a
model, representing a sample solution, or a justification why the formula possesses none is
required. In the context of model checking proofs are used, e.g., for abstraction refinement [11]
or approximative image computations through interpolants [12]. Proofs are also important for
certification by proof checking [13], in declarative modeling [9], or product configuration [10].

Using BDDs for SAT is an active research area [14–19]. It turns out that BDD and search
based techniques are complementary [20–22]. There are instances for which one works better
than the other. Therefore, combinations have been proposed [15, 16, 19] to obtain the benefits
of both, usually in the form of using BDDs for preprocessing. However, in all these approaches
where BDDs have been used, proof generation has not been possible so far.

In [1], we presented a method for symbolic SAT solving that produces extended resolu-
tion proofs. However, in that paper the only BDD operation considered is conjunction. Here,
we address the problem of existential quantification left open in [1]. In particular, we demon-
strate how BDD quantification can be combined with the construction of extended resolution
proofs for unsatisfiable instances. Using quantification allows to build algorithms that have an
exponential run-time only in the width of the elimination order used [17, 21]. It can therefore
lead to much faster results on appropriate instances and hence produce shorter proofs, which is
also confirmed by our experiments. For instance, we can now generate proofs for some of the
Urquhart problems [23].
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2 Theoretical Background

We assume that we are given a formula in CNF that we want to refute by an extended resolution
proof. In what follows, we largely use an abbreviated notation for clauses, where we write
(l1 . . . lk) for the clausel1 ∨ · · · ∨ lk.

We assume that the reader is familiar with the resolution calculus [24]. Extended resolution
[25] enhances the ordinary resolution calculus by anextension rule, which allows introduction
of definitions (in the form of additional clauses) and new (defined) variables into the proof.
Additional clauses must stem out of the CNF conversion of definitions of the formx ↔ F ,
whereF is an arbitrary formula andx is a new variable, i.e. a variable neither occurring in the
formula we want to refute nor in previous definitions nor in F. In this paper—besides introducing
variables for the Boolean constants true and false—we only define new variables for if-then-
else (ITE) constructs.ITE(x, a, b) is the same asx ? a : b (for variablesx, a, b), which is an
abbreviation for(x → a) ∧ (¬x → b). So introducing a new variablew as an abbreviation
for ITE (x, a, b) results in the additional clauses(w̄x̄a), (w̄xb), (wx̄ā) and(wxb̄), which may
then be used in subsequent resolution steps. Extended resolution is among the strongest proof
systems available and equivalent in strength to extended Frege systems [26].

Binary Decision Diagrams (BDDs) [27] are used to compactly represent Boolean functions
as directed acyclic graphs. In their most common form as reduced ordered BDDs (that we also
adhere to in this paper) they offer the advantage that each Boolean function is uniquely repre-
sented by a BDD, and thus all semantically equivalent formulae share the same BDD. BDDs are
based on the Shannon expansionf = ITE (x, f1, f0), decomposingf into its co-factorsf0 and
f1 (w.r.t variablex). The co-factorf0 (resp.f1) is obtained by setting variablex to false (resp.
true) in formulaf and subsequent simplification.

In [1], we presented a symbolic SAT solver that conjoins all the BDDs representing the
clauses. This approach has the potential hurdle that the intermediate BDDs may grow too large.
If memory consumption is not a problem, however, the BDD approach can be orders of mag-
nitude faster than DPLL-style implementations [17, 18, 20]. Using existential quantification can
speed up satisfiability checking even more and, moreover, improve memory consumption con-
siderably by eliminating variables from the formula and thus produce smaller BDDs.

If the formula is a conjunction, rules of quantified logic allow existential quantification of
variablex to be restricted to those conjuncts wherex actually appears, formally:

∃x(f(x, Y ) ∧ g(Z)) = (∃xf(x, Y )) ∧ g(Z)

whereY andZ are sets of variables not containingx. This suggests the following satisfiability
algorithm [17]. First, choose a total orderπ = (x1, . . . , xn) of the variablesX of formulaF .
Then, build for each variablexi a bucket. The bucketBi for xi initially contains the BDD rep-
resentations of all the clauses wherexi is the first variable according toπ. Start from bucketB1

and build the conjunction BDDb of all its elements. Then, compute∃x1b and put the resulting
BDD to the bucket of its first variable according toπ. Then, the computation proceeds toB2

and continues until all buckets have been processed. If for any bucket, the conjunction of its
elements is the constant false, we know thatF is unsatisfiable. If the instance is satisfiable we
get the true BDD after processing all the buckets.
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3 Proof Construction

As above, we assume that we are given a formulaF in CNF and thatF contains the variables
{x1, . . . , xn}. Furthermore, we assume a given variable orderingπ and that the BDD represen-
tation of clauses are initially divided into bucketsB1, . . . , Bn according toπ and that variables
in the BDDs are ordered according toπ (the first variable ofπ is the root etc.). The details of
how clauses are converted to BDDs are given in [1].

Our computation builds intermediate BDDs for the buckets one by one in the order mandated
by π. Assume that we process a bucket that contains the BDDsb1, . . . , bm. We construct inter-
mediate BDDshi corresponding to partial conjunctions ofb1 ∧ · · · ∧ bi until, by computinghm,
we have computed a BDD for the entire bucket. Finally, we compute a BDD∃hm corresponding
to hm where its root variable has been existentially quantified, and add the BDD∃hm to the (so
far unprocessed) bucket of its root variable. Assuming that the children ofhm are calledhm0

andhm1, respectively, these intermediate BDDs can be computed recursively by the equations:

h2 ↔ b1 ∧ b2, hi ↔ hi−1 ∧ bi for 3 ≤ i ≤ m and ∃hm ↔ hm0 ∨ hm1

If it turns out thathm is the false BDD,F is unsatisfiable and the construction of the proof
can start. For this construction, we introduce new variables (using the extension rule) for each
BDD node that is generated during the BDD computation, i.e. for allbi, hi, and∃hm as well
as for the nodes of the BDDs of the original clauses. Letf be such an internal node with the
childrenf0 andf1 (leaf nodes are handled according to [1]). Then we introduce a variable (also
calledf ) based on Shannon expansion as follows:

f ↔ (x ? f1 : f0) (f̄ x̄f1)(f̄xf0)(fx̄f̄1)(fxf̄0)

On the right, we have also given the clausal representation of the definition. In order to prove
F , we have to construct proofs of the following formulas for all buckets:

F ` bi for all 1 ≤ i ≤ m (ER-1)

F ` b1 ∧ b2 → h2 (ER-2a)

F ` hi−1 ∧ bi → hi for all 3 ≤ i ≤ m (ER-2b)

F ` hm0 ∨ hm1 → ∃hm (ER-3a)

F ` hm → ∃hm (ER-3b)

F ` ∃hm (ER-4)

Here, the elementsbi can either be (initially present) clauses or results of an existential
quantification. For clauses, the proof is straightforward (see [1]). For non-clauses, the proof
is ER-4 (shown below). The proofs of ER-2a, and ER-2b are also given in [1] and we now
concentrate on proving ER-3a, ER-3b, and ER-4. For the proof of ER-3a, we use the fact that
∃hm is the disjunction of the children (we call themhm0 andhm1) of hm. We first prove that
hm0 ∨ hm1 → ∃hm, in clausal form(h̄m0∃hm)(h̄m1∃hm). For representational purposes, as-
sumehm0 = f , hm1 = g, and∃hm = h, and that the root variable off , g andh is x. We know
that:

f ↔ (x ? f1 : f0) (f̄ x̄f1)(f̄xf0)(fx̄f̄1)(fxf̄0)
g ↔ (x ? g1 : g0) (ḡx̄g1)(ḡxg0)(gx̄ḡ1)(gxḡ0)
h ↔ (x ? h1 : h0) (h̄x̄h1)(h̄xh0)(hx̄h̄1)(hxh̄0) .
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We now recursively construct an ER proof forf ∨ g → h, where in the recursive step we
assume that proofs for bothf0 ∨ g0 → h0 andf1 ∨ g1 → h1 are already given. We prove
f ∨ g → h by generating separate proofs for(f̄h) and(ḡh). The proof for(f̄h) is as follows.

(hxh̄0)
(f̄xf0)

...
(f̄0h0)

(f̄xh0)
(f̄xh)

...
(f̄1h1) (f̄ x̄f1)

(f̄ x̄h1) (hx̄h̄1)
(f̄ x̄h)

(f̄h)

The recursive process stops when we arrive at the leaf nodes resp. the base case of the
recursiveBDD-or algorithm. The proof for(ḡh) is the same, except thatf , f0, andf1 are
replaced withg, g0, andg1, respectively.

The case ER-3b, in clausal form(h̄m∃hm), is not recursive but consists of just three simple
steps. The proof uses the results of ER-3a, i.e.(h̄m0∃hm) and(h̄m1∃hm). The root variables of
hm and∃hm are different. To illustrate this we usew instead ofx.

(h̄mwhm0) (h̄m0∃hm)
(h̄mw∃hm)

(h̄m1∃hm) (h̄mw̄hm1)
(h̄mw̄∃hm)

(h̄m∃hm)

The proof of ER-4 is just a combination of parts one to three. First, having unit clausesb1

andb2, we resolveh2 (using ER-2a), then all thehi up tohm (using ER-2b) and finally∃hm

(using ER-3b). The so-produced proofs may contain tautological clauses. As stated in [1] for
the case of conjunction, careful analysis is needed in order to remove them, but it is clearly
possible, also in case of existential quantification (disjunction). The full details will be given in
an extended version.

4 Implementation and Experimental Result

We have implemented our approach in the SAT solver EBDDRES. It takes as input a CNF
formula in DIMACS format and computes the bucket elimination algorithm. The result is either
the false BDD or the true BDD. In the latter case, a satisfying assignment is created by traversing
the intermediate BDDs right before existential quantification (calledhm above) from the last
eliminated variable to the first. For the last eliminated variable, a truth value is chosen based on
which branch of the BDD leads to the sink true. For all the previous BDDs, the value for the
root variable is chosen based on seeking from its children a path to the sink true. Notice that
for all the variables below the root, the truth value is already fixed. Therefore, at maximum two
paths have to be traversed for each roothm. The length of the traversed paths grow from one to
the number of variables in the worst case. Thus, the algorithm to find a satisfiable valuation is
quadratic in the number of variables. In practise with our test cases, this has not been a problem.
Finally, for unsatisfiable cases a proof trace (deduction of the empty clause) can be generated.

For the experiments we used a cluster of Pentium IV 3.0 GHz PCs with 2GB of main mem-
ory running Debian Sarge Linux. The time limit was set to 1000 seconds and the memory limit
to 1GB main memory. No limit was imposed on the generated traces. The experimental results
are presented in Table 1.
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Table 1.Comparison of Trace generation with MINISAT and with EBDDRES.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
MINISAT EBDDRES EBDDRES, quantification
solve trace solve trace bdd solve trace bdd

resourcessize resourcesgen ASCII bin chknodes resourcesgen ASCII bin chknodes
sec MB MB sec MB sec MB MB sec ×103 sec MB sec MB MB sec ×103

ph7 0 0 0 0 0 0 1 0 0 3 0 5 0 12 4 1 60
ph8 0 4 1 0 0 0 3 1 0 15 1 14 1 49 15 4 236
ph9 6 4 11 0 0 0 3 1 0 8 6 52 4 186 59 14 864

ph10 44 4 63 1 17 1 30 10 2 136 20 214 16 683 * * 2974
ph11 884 6 929 1 13 1 21 8 2 35 - * - - - - -
ph12 * - - 2 22 1 33 12 3 31 - * - - - - -
ph13 * - - 10 126 7 260 92 20 850 - * - - - - -
ph14 * - - 9 111 7 204 74 18 166 - * - - - - -

mutcb8 0 0 0 0 0 0 2 1 0 10 0 0 0 3 1 0 16
mutcb9 0 4 0 0 5 0 5 2 0 27 0 4 0 6 2 0 35

mutcb10 0 4 1 0 8 0 11 4 1 58 0 5 0 11 4 1 59
mutcb11 1 4 4 1 17 1 31 10 2 153 1 8 1 23 7 2 123
mutcb12 8 4 22 2 32 2 69 22 5 320 1 13 1 38 12 3 198
mutcb13 112 5 244 7 126 5 181 61 13 817 2 24 2 70 22 5 347
mutcb14 488 8 972 14 250 10 393 132 271694 4 37 3 127 40 8 621
mutcb15 * - - 36 498 26 1009 * * 4191 6 52 5 211 67 14 1012
mutcb16 * - - - * - - - - - 12 104 9 391 126 261821

urq35 95 4 218 2 22 1 37 13 3 24 0 0 0 1 0 0 5
urq45 * - - - * - - - - - 0 0 0 1 0 0 10
urq55 * - - - * - - - - - 0 0 0 2 1 0 15
urq65 * - - - * - - - - - 0 4 0 6 2 0 34
urq75 * - - - * - - - - - 0 4 0 7 2 0 39
urq85 * - - - * - - - - - 0 5 0 10 3 1 59

fpga108 0 2 6 47 4 135 47 11 186 8 92 6 239 77 18 1088
fpga109 0 0 3 44 2 70 24 6 83 10 114 8 323 105 9 1434

fpga1211 0 0 53 874 37 1214 * * 1312 - * - - - - -
add16 0 0 0 0 4 0 6 2 0 30 0 3 0 4 2 0 26
add32 0 0 0 1 9 1 24 8 2 122 1 7 0 19 6 1 106
add64 0 0 0 12 146 9 338 112 231393 12 95 9 393 127 261839

add128 0 4 0 - * - - - - - - * - - - - -

The first column lists the name of the instance (see [1] for descriptions of the instances). Columns 2-4
contain data for MINISAT, first the time taken to solve the instance including the time to produce the
trace, then the memory used, and in column 4 the size of the generated trace. The data for EBDDRES
takes up the rest of the table, columns 5-11 for the approach only conjoining BDDs [1] and 12-18 for
variable elimination. Column 5 (12) shows the time taken to solve the instance with EBDDRES including
the time to generate and dump the trace. The latter is shown separately in column 7 (14). The memory
used by EBDDRES, column 6 (13), is linearly related to the number of BDD nodes shown in column
11 (18). Column 8 (15) shows the size of the trace files in ASCII format. Column 9 (16) shows the size
in a binary format comparable to that used by MINISAT (column 4). Finally, column 10 (17) shows the
time needed to check that the trace is correct. The * denotes eithertime out(> 1000 seconds) orout of
memory(> 1GB of main memory). The table shows that quantification performs worse than conjoining on
pigeonhole formulas (ph*). We assume that this could be improved if we used separate variable orderings
for BDDs and elimination. On the other hand, quantification is faster on the mutilated checker board
instances (mutcb*) and Urquhart formulas (urq*).
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5 Conclusions

Resolution proofs are used in many practical applications. Our results enable the use of BDDs
for these purposes instead—or in combination with—already established methods based on
DPLL with clause learning. This paper extends work in [1] by presenting a practical method
to obtain extended resolution proofs for symbolic SAT solving with existential quantification.
Our experiments confirm that on appropriate instances we are able to outperform both a fast
search based approach as well as our symbolic approach only conjoining BDDs.
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