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Abstract
Digital circuits are extensively used in computers and digital systems because they are
able to represent models for various digital components and arithmetic operations. A
subclass of digital circuits are arithmetic circuits, which are used in computer circuits to
perform Boolean algebra. It is of high importance to guarantee that these circuits are
correct in order to prevent issues like the famous Pentium FDIV bug.

Formal verification can be used to derive the correctness of a given circuit with respect
to a certain specification. However, arithmetic circuits, and most prominently gate-level
multipliers, impose a challenge for existing verification techniques and in practice still
require substantial manual effort. Approaches based on satisfiability checking (SAT) or
on decision diagrams seem to be unable to solve this problem in a reasonable amount of
time. In principle, theorem provers in combination with SAT are able to verify industrial
multipliers, but this approach cannot be applied fully automated. Currently, the most
effective automated reasoning technique relies on computer algebra. In this approach
the word-level specification, modeled as a polynomial, is reduced by a Gröbner basis,
which is implied by the gate-level representation of the circuit. The reduction returns
zero if and only if the circuit is correct.

In this thesis we give a rigorous formalization of this reasoning method including
soundness and completeness arguments, first for polynomial rings, where the coefficient
domain is a field and later for more general polynomial rings. As a consequence we are
able to verify not only large unsigned and signed integer multipliers very efficiently, but
are also able to verify truncated multipliers. We further improve the algebraic verification
approach and present a new incremental column-wise verification algorithm, which
splits the verification problem into smaller more manageable sub-problems and thus
does not require to consider a full word-level specification. We present preprocessing
approaches based on variable elimination in order to rewrite and hence simplify the
implied Gröbner basis. However, certain parts of a multiplier, namely final-stage adders,
are hard to verify using computer algebra. In our approach we use SAT to replace
complex adders by equivalent adders, which can be verified using computer algebra.
We develop a dedicated reduction engine, which is able to apply adder substitution and
verifies large multipliers of input bit-width 2048 fully automated.

Nonetheless, the verification process might not be error-free. Generating and automat-
ically checking proofs independently increases confidence in the results of automated
reasoning tools. We show how the polynomial calculus can be instantiated to yield a
practical algebraic calculus (PAC). Proofs in this format can be obtained as a by-product
of verifying multiplier circuits in our reduction engine and can be checked with our
independent proof checking tools.
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Zusammenfassung
Digitale Schaltungen modellieren digitale Komponenten und arithmetische Operatio-
nen und sind daher ein essenzieller Bestandteil in Computern und digitalen Systemen.
Arithmetische Schaltungen sind ein Spezialfall von digitalen Schaltungen und wer-
den in Computern genutzt um Boole’sche Algebra zu implementieren. Es ist äußerst
wichtig, dass diese Schaltungen korrekt sind, um Fehler wie zum Beispiel den berühmten
Pentium-FDIV-Bug zu vermeiden.

Mithilfe von formaler Verifikation kann man feststellen, ob eine gegebene Schaltung
ihrer Spezifikation entspricht. Jedoch sind arithmetische Schaltungen, insbesondere
Multiplizierer auf Gatterebene, eine Herausforderung für bestehende Verfikationstech-
niken. Techniken basierend auf dem Entscheidungsproblem der Aussagenlogik (SAT)
oder auf Entscheidungsdiagrammen sind nicht der Lage Multiplizerer effizient zu veri-
fizieren. Theorem Prover in Kombination mit SAT können die Korrektheit komplexer
Multiplizerer beweisen, allerdings ist diese Methode nicht vollautomatisch anwendbar.

Die zurzeit erfolgreichste Beweistechnik basiert auf Computeralgebra. In dieser
Methode wird die Schaltung mithilfe von Polynomen als eine Gröbner Basis model-
liert. Die Spezifikation, ebenfalls als Polynom kodiert, wird mittels der Gröbner Basis
reduziert. Diese Reduktion liefert das Ergebnis null genau dann, wenn die Schaltung
ihrer Spezifikation entspricht.

In dieser Thesis wird dieses Problem einfach, aber präzise formalisiert und Korrektheit
und Vollständigkeit wird zuerst für Polynomringe über Körper und nachfolgend für
allgemeinere Ringe bewiesen. Dadurch sind wir in der Lage nicht nur vorzeichenlose
und -behaftete Integer-Multiplizierer, sondern auch abgeschnittene Multiplizierer zu
verifizieren. Wir verbessern diese algebraische Beweistechnik und präsentieren einen
neuen inkrementellen Algorithmus, der es erlaubt, das Verifikationsproblem in kleinere
Teilprobleme aufzuspalten. Weiters präsentieren wir Vorbearbeitungstechniken, welche
Variablen von der Gröbner Basis eliminieren und daher die Polynomdarstellung der
Schaltung vereinfachen. Jedoch können gewisse Bestandteile von Multiplizierern,
genauer gesagt Addierer, nicht sehr effizient mit Computeralgebra verifiziert werden.
Wir nutzen SAT, um diese komplexen Addierer mit einfachen äquivalenten Addierern zu
ersetzen. Wir implementieren ein dediziertes Verifikationstool und können Multiplizierer
mit Bitbreite 2048 vollautomatisch verifizieren.

Nichtsdestotrotz kann das Verifikationsprogramm Fehler enthalten. Daher werden
Beweiszertifikate generiert, welche von eigenständigen Beweischeckern auf Richtigkeit
überprüft werden. Wir instanziieren den abstrakten “Polynomial Calculus” und for-
malisieren das Beweiskalkül PAC. PAC Beweise können in unserem Verifikationstool
erzeugt und mit unseren eigenständigen Beweischeckern überprüft werden.
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Prologue
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Chapter 1

Introduction

“I would hope that computers and computer analysis would lose
some of the aura of invincibility with which they have been treated.
Computer generated results need to be treated with some enlightened
skepticism. No system or microprocessor can be expected to produce
results which are absolutely reliable. ”

–Thomas R. Nicely

Digital circuits carry out logical operations, which makes them an important element
in computers and digital systems because they represent models for various digital
components and arithmetic operations. The basic function of a digital circuit is to
compute binary digital values for the logical function it implements, given binary
values at the input. The computation is usually realized by logic gates, which represent
simple Boolean functions, such as negation (NOT), conjunction (AND), or disjunction
(OR). These logic gates can be combined to build more complex logical operations.
A subclass of digital circuits are combinational logic circuits where the output is a
function of the present input only, i.e., the output does not depend on previous input
values. Combinational logic is used in computer circuits to perform Boolean algebra.
For example, the part of an arithmetic logic unit (ALU) in a CPU, which is responsible
for mathematical calculations, is constructed using combinational logic. If a circuit
implements an arithmetic operation, it is called an arithmetic circuit.

Formal verification is used to prove or disprove the correctness of a given software or
hardware system with respect to a predefined specification. To this end the system is
translated into a mathematical model and automated decision processes are applied to
derive the desired correctness properties. The different formal verification approaches
are distinguished by the mathematical formalisms used in the verification process.

Formal verification of arithmetic circuits is important to help to prevent issues like
the famous Pentium FDIV bug that was detected by Thomas R. Nicely in 1994. This
bug affected the floating point unit of early Intel Pentium processors. The division
algorithm for floating points used a lookup table to calculate the intermediate quotients.
Due to a programming error, five entries of the lookup table contained zero instead of
+2. Thus the result was incorrect and in the worst case the error could affect the fourth
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Chapter 1. Introduction

significant digit of a decimal number. Even more than 25 years after detecting this bug,
the problem of formally verifying arithmetic circuits, and especially multiplier circuits,
is still considered to be hard.

Up to now several solving techniques have been developed for multiplier verification.
A common approach models the problem as a satisfiability (SAT) problem, where the
circuit is translated into a formula in conjunctive normal form (CNF). A large set of
such encodings was submitted to the SAT Competition 2016 [12]. However, the results
indicated that verifying miters of multipliers and other ring properties after encoding
them into CNF needs exponential sized resolution proofs [14], which implies exponential
run-time of CDCL SAT solvers. This conjecture is neglected in theory in [7], where it
was shown that ring properties do admit polynomial sized resolution proofs. However,
this theoretical result still needs to be transferred into practice.

Another approach is based on the usage of theorem provers, such as ACL2 [68].
Theorem provers in combination with SAT are able to certify industrial multipliers [54],
however, this technique is not fully automated and requires a lot of domain knowledge,
since the underlying proof system is based on a problem-specific set of axioms and
inference rules. Methods based on term rewriting [97] require domain knowledge too
and thus are not fully automated either.

Approaches based on bit-level reverse engineering [86, 95] use arithmetic bit-level
representations, which are extracted from the given gate-level netlists. This technique is
able to verify simple multipliers, but fails to verify non-trivial multiplier architectures.

The first technique that was shown to detect the Pentium bug is based on binary
decision diagrams [22], more precisely on binary moment diagrams (BMDs) [29] and
variants [30], since their size remains linear in the number of input bits of a multiplier.
However, this approach requires structural knowledge of the multipliers [24, 29]. It is
important to determine the order in which BMDs are built, because it has tremendous
influence on the size and thus performance.

The currently most effective technique for fully automated verification of multipliers
is based on computer algebra, e.g., [31,62,80]. In this method all logic gates of the circuit
and the specification are represented by polynomials. If the gate polynomials are ordered
according to their reverse topological appearance in the circuit, they automatically form
a Gröbner basis [25]. As a consequence, the question whether a circuit implements
a correct multiplier can be answered by reducing the specification polynomial by the
Gröbner basis. The multiplier is correct if and only if the reduction returns zero. The
main issue of the algebraic approach is that without preprocessing the size of intermediate
reduction results increases drastically.

The aim of this thesis is to investigate and improve formal verification of multiplier
circuits using computer algebra to make it practically applicable for non-trivial and opti-
mized multiplier designs. We propose a simple and precise mathematical formalization
of the algebraic approach for arithmetic circuit verification, including rigorous proofs of
soundness and completeness. We first assume that the coefficient domain is a field in
order to use the Gröbner basis theory over fields [25]. In the following, we generalize
the approach of circuit verification to be applicable in more general polynomial rings
that allow modular reasoning. Modular reasoning allows us to verify not only signed and
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unsigned integer multipliers, but also truncated multipliers, where the most significant
output bits are discarded. These multipliers are used for example in SMT-LIB [5].

Furthermore, we investigate possible reasons of the monomial blow-up in intermediate
reduction results. Based on these results we develop reasoning techniques that overcome
this issue. One of our technical contributions is a new incremental column-based
verification approach for multipliers. In this method the multiplier circuit is divided into
several slices and the correctness of the circuit is shown by incrementally verifying the
correctness of each slice. The main advantage of this approach is that only one small
part of the global specification is used for reduction, which helps to reduce the size of
the intermediate results.

We further develop techniques based on variable elimination, which rewrite and sim-
plify the Gröbner basis. In the first version of our rewriting techniques we extract certain
subcircuits from the circuit and eliminate the internal variables of these subcircuits from
the Gröbner basis. For this optimization we introduce the necessary theory and present
a technical theorem that allows us to rewrite only local parts of the Gröbner basis in
such a way that the result is again a Gröbner basis. Based on these results we are able
to formalize a more general version of variable elimination, which does not require to
identify syntactic patterns in the circuits.

However, certain parts of the multiplier, more precisely particular final stage adders,
are hard to verify using computer algebra. These adders usually contain sequences of
OR-gates, which lead to an explosion of the intermediate reduction results. On the other
hand, equivalence checking of adders is easy for SAT. Based on this observation we
combine SAT and computer algebra in our verification technique. We detect whether a
multiplier contains a complex final stage adder. If necessary, we replace the complex
adder by a simple ripple-carry adder. The correctness of the replacement step is verified
by SAT solvers and the rewritten multiplier is verified by computer algebra techniques.

Initially, we use existing computer algebra systems (CAS) to apply Gröbner basis
reduction, but these systems are designed for general purposes and thus are slow for
our application. Hence, we implement a dedicated reduction engine AMULET, which
is tailored to the specific structure of the problem. Implementing our own tool gives a
speed-up of three orders of magnitude compared to CAS, cf. Chapter 9.

After applying all these sophisticated techniques, we are able to verify the correctness
of multipliers. However, the result of automated reasoning tools might not be error-
free. A common approach to increase confidence in the verification results consists
of generating proofs, which are checked by independent proof checkers. In order to
validate verification techniques based on computer algebra, we show how the abstract
polynomial calculus [34] can be instantiated to yield a practical algebraic calculus (PAC),
which can be checked efficiently. Proofs in this format can be obtained as by-products in
AMULET. We implement independent proof checking tools PACTRIM and PACHECK,
where PACHECK is an extension of PACTRIM and supports an extended version of PAC.

Combining SAT and computer algebra has the effect that two proof certificates in
different proof formats (DRUP [47] and PAC) are generated. We also investigate how
these proof systems can be merged in order to derive one single proof certificate.
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Chapter 1. Introduction

1.1 Outline

This thesis is structured as a cumulative dissertation and consists of two parts, which
allows us to present our work as it was accepted at international conferences and work-
shops without changing the exposition. The new content of this thesis, contained in
Part I, is clearly separated from already published work, which is contained in Part II.

In Part I of the thesis we discuss the contributions of the published Papers A–F,
which are included in Part II of this thesis. At first we introduce the background and
related work in Chap. 2. In Chap. 3–8 we revisit and reflect on the ideas of Papers A–F.
We put our work into context and summarize and analyze the contributions of each
paper. We highlight the advantages, but also reflect on downsides, which we noticed
in retrospective and lead to new research ideas in later work. In Chap. 9 we give a
comprehensive evaluation of our developed techniques that shows the improvement over
time. Furthermore, we compare our tools to the current state of the art of related work.

Part II of the thesis, i.e., Paper A–F, consists of six papers [61, 62, 63, 64, 66, 90],
where the author of this thesis is the main author 1. Papers [61, 62, 63, 90] are peer-
reviewed, [64] is an invited paper published in post-proceedings and [66] is currently
under review. The status of the papers is clearly indicated at the beginning of each
chapter in Part II. The included papers contain small modifications compared to the
original publications such as fixed typos and layout changes to evolve a consistent layout
and bibliography. Fixes are clearly stated at the beginning of each chapter. The content
of the papers is not modified.

1.2 Contributions

The author of this thesis is the main author of Papers A–F. However, none of the work
would have been possible without the help of others. In the following paragraphs we
clearly point out the contributions of the author of this thesis.

Paper A. [61] Incremental Column-Wise Verification of Arithmetic Circuits Using
Computer Algebra with Armin Biere and Manuel Kauers. To be published in the Special
Issue on Formal Methods in Computer-Aided Design of the International Journal on
Formal Methods in System Design (FMSD) and is currently available as “Online First”
article. This paper summarizes and extends work presented in [17, 89, 91].

In Paper A, we give a rigorous formalization of the algebraic verification approach.
We include a new incremental column-wise verification approach and further improve
this algorithm by adding rewriting techniques based on variable elimination.

The formalization was the contribution of all authors and was described by D. Kauf-
mann. The incremental algorithm was a result of discussions between A. Biere and
D. Kaufmann. The rewriting techniques were developed by D. Kaufmann and described
with contributions from M. Kauers. The implementation in Mathematica [102] and

1Please note, some of the work is published under the author’s maiden name “Ritirc”.
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1.2 Contributions

Singular [38] was developed by D. Kaufmann. The first version of the tool AIG-
MULTOPOLY, as it is published in [89] was implemented by A. Biere and is since
then [17, 61, 91] extended and maintained by D. Kaufmann. The experimental analysis
was performed by D. Kaufmann. The co-authors further contributed with discussions
and proofreading Paper A.

Paper B. [90] A Practical Polynomial Calculus for Artihmetic Circuit Verification
with Armin Biere and Manuel Kauers. In Proceedings of the 3rd Workshop on Satisfi-
ability Checking and Symbolic Computation (SC’2) co-located with Federated Logic
Conference (FLOC 2018), pages 61–76, Oxford, United Kingdom, 2018.

Paper B presents an algebraic proof calculus (PAC), based on the polynomial calculus,
which allows derivation of proof certificates. Proofs in this format can be checked by a
CAS or our independent proof checker PACTRIM.

The formalization of the calculus was the result of discussions of all authors and
was described by D. Kaufmann. Generating and checking PAC proofs using a CAS
was implemented by D. Kaufmann. The first version of PACTRIM, as it is published
in Paper B was implemented by A. Biere and is since then extended and maintained
by D. Kaufmann. The experimental analysis was performed by D. Kaufmann. The
co-authors further contributed with discussions and proofreading Paper B.

Paper C. [62] Verifying Large Multipliers by Combining SAT and Computer Algebra
with Armin Biere and Manuel Kauers. In Proceedings of the 19th International Confer-
ence on Formal Methods in Computer Aided Design (FMCAD 2019), pages 28–36, San
Jose, CA, USA, 2019.

In Paper C we generalize the algebraic verification approach to be applicable in
more general polynomial rings. We combine SAT and computer algebra to substantially
improve automated reasoning for circuit verification. Furthermore, we present a rewriting
technique that does not involve syntactic pattern matching and implement our dedicated
reduction engine AMULET.

The method for combining SAT and computer algebra was developed by D. Kauf-
mann. The incentive to model circuits in more general polynomial ring was given by
D. Kaufmann and was described by all authors. The rewriting technique was established
by D. Kaufmann. AMULET was implemented and is maintained by D. Kaufmann.
The experimental analysis was performed by D. Kaufmann. The co-authors further
contributed with discussions and proofreading Paper C.

Paper D. [64] SAT, Computer Algebra, Multipliers with Armin Biere and Manuel
Kauers. Invited paper in the Post-Proceedings of the 5th and 6th Vampire Workshops,
Vampire 2018 and Vampire 2019, pages 1–18, Lisbon, Portugal, 2019.

Paper D extends Paper C and gives a rigorous system description of our tool AMULET.
We discuss the algorithms and present how proof certificates are generated in AMULET.
Furthermore, we examine the proof size of certain multiplier benchmarks.
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The system description and the discussion on proof size were performed by D. Kauf-
mann. The co-authors further contributed with discussions and proofreading Paper D.

Paper E. [63] From DRUP to PAC and Back with Armin Biere and Manuel Kauers.
To be published in Proceedings of the Design, Automation & Test in Europe Conference
(DATE 2020), 4 pages, Grenoble, France, 2020.

In the work of Paper C, two proof certificates in different proof formats are generated.
For SAT a DRUP proof is generated and for the algebraic approach a PAC proof is
generated. In Paper E we investigate how the proof formats can me merged in order to
generate only one single proof certificate.

The incentive for translating PAC proofs into DRUP proofs was given by A. Biere.
The translation of DRUP proofs into PAC proofs was developed by D. Kaufmann. The
techniques in Paper E were described by D. Kaufmann. All developed tools in Paper E
were implemented by D. Kaufmann. The experimental analysis was performed by
D. Kaufmann. The co-authors further contributed with discussions and proofreading
Paper E.

Paper F. [66] The Proof Checkers Pacheck and Pastèque for the Practical Algebraic
Calculus with Mathias Fleury and Armin Biere. Submitted.

In Paper F we present our proof checkers PACHECK and PASTÈQUE. The checker
PACHECK checks algebraic proofs more efficiently than PASTÈQUE, which is formally
verified using the proof assistant Isabelle/HOL. Furthermore, we extend the practical
algebraic calculus of Paper B by adding deletion and extension rules and introduce a
more compact syntax.

The incentive for extending the practical algebraic calculus was given by D. Kauf-
mann. The calculus was described by D. Kaufmann. PACHECK was implemented by
D. Kaufmann. PASTÈQUE was implemented and verified in Isabelle/ HOL by M. Fleury.
The experimental evaluation was performed by D. Kaufmann. The co-authors further
contributed with discussions and proofreading Paper F.
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Chapter 2

Background
This section provides an overview of the background of this thesis. We present the
basic structure of multiplier circuits (Sect. 2.1) and give an introduction of computer
algebra (Sect. 2.2) and arithmetic circuit verification using computer algebra (Sect. 2.3).
Furthermore, we outline SAT (Sect. 2.4) and algebraic proof systems (Sect. 2.5) and
conclude this section by discussing related work (Sect. 2.6).

2.1 Multiplier Circuits

A digital circuit implements a logical function and computes binary digital values,
given binary values at the input. The computation of the function is usually realized by
logic gates, such as NOT, AND, and OR. The specification of a circuit is the desired
relation between its inputs and outputs. A circuit fulfills a specification if for all inputs it
produces outputs that match this desired relation. The goal of verification is to formally
prove that the circuit fulfills its specification.

In this thesis, we consider gate-level integer multipliers with input bits a0, . . . , an−1,
b0, . . . , bn−1 ∈ {0, 1} and 2n output bits s0, . . . , s2n−1 ∈ {0, 1}. If the circuit repre-
sents multiplication of unsigned integers, the multiplier is correct if and only if for all
possible inputs the following specification holds:

L = −
2n−1∑
i=0

2isi +
(n−1∑
i=0

2iai
)(n−1∑

i=0
2ibi

)
= 0 (2.1)

Example 2.1. Figure 2.1a shows the gate-level representation of a 2-bit unsigned integer
multiplier. The variables a1, a0, b1, b0 represent the input bits of the multiplier and
s3, s2, s1, s0 are the binary outputs of the multiplier. The word-level specification of
this circuit is −8s3 − 4s2 − 2s1 − s0 + (2b1 + b0)(2a1 + a0) = 0.

A common representation of combinational circuits is the encoding as an And-
Inverter-Graph (AIG) [70]. An AIG is a special case of a directed acyclic graph, and
consists only of two-input nodes representing logical conjunction. The edges of an AIG
may contain a marking that indicates logical negation. The AIG representation of a
circuit is usually larger, i.e., contains more nodes, than the gate-level representation, but
is very efficient to manipulate. In this thesis all circuits are given as AIGs. Figure 2.1b
shows the AIG representation of the multiplier depicted in Fig. 2.1a.
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(a) Gate-level representation of 2-bit multiplier.
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(b) AIG representation of 2-bit multiplier.

Figure 2.1: Graph representation of 2-bit multipliers.

The space and time complexity of a multiplier circuit depends highly on its architecture.
Multiplier circuits can generally be decomposed into three components [85]. In the first
component, partial product generation (PPG), the partial products aibj for 0 ≤ i < n,
0 ≤ j < n, as contained in the specification, are generated. This can for example be
achieved by using simple AND-gates or using a more complex Booth encoding [85].

In the second component, partial product accumulation (PPA), multi-operand addition
is performed using full- and half-adders to reduce the partial products to two layers.
Well-known accumulation structures are array accumulation, diagonal accumulation,
Wallace trees, or compressor trees [85].

In the final-stage adder (FSA) the output of the circuit is computed using an adder
circuit. Generally, adder circuits can be split into two groups: either the carries are
computed alongside the sum bits or they are calculated before the sums. Adders of
the first group consist of a sequence of half- and full-adders, giving them a simple but
inefficient structure. Examples are ripple-carry adders or carry-select adders. In order
to decrease the latency of carry computation, the adder circuits of the second group
precompute the carry bits of the adder. They are called generate-and-propagate (GP)
adders. Examples are carry look-ahead adders and Kogge-Stone adders [85].

We call multipliers, that can be fully decomposed into full- and half-adders simple
multipliers, all other architectures are called complex multipliers.

Example 2.2. Figure 2.2 shows two simple multiplier architectures with input bit-
width 4. In both circuits the PPG uses AND-gates, i.e., pij = ai ∧ bj . In “btor”-
multipliers [83], which are shown on the left side, the partial products are accumulated
using an array structure. The “sp-ar-rc”-multipliers [53] (also called “sparrc” in this
thesis), which are depicted on the right side, use a diagonal structure. In both multipliers,
the FSA is a ripple-carry adder, which is highlighted in red.
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Figure 2.2: Architecture of “btor” (left) and “sp-ar-rc” (right) multipliers.

2.2 Algebra

In this section we introduce algebraic concepts, following [35]. Throughout this section
let K[X] = K[x1, . . . , xn] denote the ring of polynomials in variables x1, . . . , xn with
coefficients in a field K.

• A term τ is a product of the form τ = xe1
1 · · ·xen

n for certain e1, . . . , en ∈ N. A
monomial m = ατ is a constant multiple of a term, with α ∈ K. A polynomial
p = m1 + · · ·+ms is a finite sum of monomials.

• On the set of terms an order ≤ is fixed such that for all terms τ, σ1, σ2 we have
1 ≤ τ and σ1 ≤ σ2 ⇒ τσ1 ≤ τσ2.

• A term order is called a lexicographic term order if for all terms σ1 = xu1
1 · · ·xun

n ,
σ2 = xv1

1 · · ·xvn
n we have σ1 < σ2 iff there exists an index i with uj = vj for all

j < i, and ui < vi.

• Every polynomial p 6= 0 contains only finitely many terms, the largest of which
(w.r.t. the chosen order ≤) is called the leading term and denoted by lt(p).

• If p = ατ + · · · and lt(p) = τ , then lc(p) = α is called the leading coefficient
and lm(p) = ατ is called the leading monomial of p. We call p− ατ the tail of p.

• For a given set of polynomials P = {p1, . . . , pm} ⊆ K[X], a model is a point u =
(u1, . . . , un) ∈ Kn such that for all pi ∈ P we conclude that pi(u1, . . . , un) = 0.

• A nonempty subset I ⊆ K[X] is called an ideal if ∀ p, q ∈ I : p + q ∈ I and
∀ p ∈ K[X] ∀ q ∈ I : pq ∈ I .

• If I ⊆ K[X] is an ideal, then a set P = {p1, . . . , pm} ⊆ K[X] is called a basis
of I if I = {q1p1 + · · ·+ qmpm | q1, . . . , qm ∈ K[X]}. We say I is generated by
P and write I = 〈P 〉.

• A basis P = {p1, . . . , pm} of an ideal I ⊆ K[X] is called a Gröbner basis (w.r.t.
the fixed order ≤) iff ∀q ∈ I∃pi ∈ P : lm(pi) | lm(q).

• Every ideal of K[X] has a Gröbner basis, and there is an algorithm which, given
an arbitrary basis of an ideal, computes a Gröbner basis of it [25].
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Chapter 2. Background

The theory of Gröbner bases offers a decision procedure for the so-called ideal
membership problem, i.e., given q ∈ K[X] and a basis P = {p1, . . . , pm} ⊆ K[X],
decide whether q belongs to the ideal generated by p1, . . . , pm. If {p1, . . . , pm} is
a Gröbner basis, then the question can be answered using a multivariate version of
polynomial division with remainder. The polynomial q belongs to 〈P 〉 if and only if the
remainder of division of q by P is zero. More facts of Gröbner bases are:

• Let q ∈ K[X] and P = {p1, . . . , pm} ⊆ K[X]. The remainder r of the division
of q by P is a polynomial such that q − r is contained in the ideal generated by
P and r is reduced w.r.t. P , which means it does not contain any term that is a
multiple of one of the leading terms lt(p1), . . . , lt(pm).

• Let P ⊆ K[X] \ {0}, and define

spol(p, q) := lcm(lt(p), lt(q))
(

p

lm(p) −
q

lm(q)

)
for all p, q ∈ K[X] \ {0}, with lcm the least common multiple. Then P is a
Gröbner basis if and only if the remainder of the division of spol(p, q) by P is
zero for all pairs (p, q) ∈ P × P .

• If p, q ∈ K[X]\{0} are such that their leading terms lt(p), lt(q) have no variables
in common, then the division of spol(p, q) with {p, q} has remainder zero. This
property is known as Buchberger’s product criterion.

In this section we restricted K to be a field. We present the algebraic background for
coefficient domains R, where R is a commutative ring with unity, in Paper C, where we
generalize the theory to be applicable in more general polynomial rings.

2.3 Circuit Verification using Computer Algebra

In this section we give a short introduction of circuit verification using computer al-
gebra, a rigorous formalization of this approach can be found in Paper A. We con-
sider circuits with 2n inputs a0, . . . , an−1 and b0, . . . , bn−1, 2n outputs s0, . . . , s2n−1,
and a number of logical gates, denoted by g1, . . . , gk. By R we denote the ring
K[a0, . . . , an−1, b0, . . . , bn−1, g1, . . . , gk, s0, . . . , s2n−1] = K[X].

The semantic of each circuit gate implies a polynomial relation among the input and
output variables, such as the following ones:

u = ¬v implies 0 = −u+ 1− v
u = v ∧ w implies 0 = −u+ vw
u = v ∨ w implies 0 = −u+ v + w − vw
u = v ⊕ w implies 0 = −u+ v + w − 2vw.

(2.2)

We call these polynomials gate polynomials or gate constraints. Let G ⊆ R be the
set of polynomials, which contains for each gate of the given circuit the corresponding
polynomial of Eqn. (2.2).

12



2.4 SAT

To enforce that our variables are Boolean and can have only the values 0 and 1, we
add for each variable x ∈ X the relation x(x− 1) = 0. In Papers A and B we call these
polynomials field polynomials. We renamed the definition in Paper C to Boolean value
constraints, because the term “field” may suggest a connection to the coefficient field K.

We order the set of terms according to a lexicographic term order, where the output
variable of a gate is always greater than the input variables of a gate. Such an ordering
is called reverse topological term order [78]. Because of Buchberger’s product criterion
and the structure of the gate polynomials, the gate polynomials together with the Boolean
value constraints define a Gröbner basis for the ideal generated by the gate polynomials
and Boolean value constraints. Thus the correctness of the circuit can be shown by
reducing the specification L by the gate polynomials using polynomial reduction and
checking whether the result is zero.

2.4 SAT

We briefly introduce the SAT problem, following [47].

• A literal l is either a positive Boolean variable x or its negation x.

• A clause C is a finite disjunction of literals. If a clause contains only one literal,
we call it a unit clause.

• A formula in conjunctive normal form (CNF) F is a finite conjunction of clauses.

• An assignment τ is a function that consistently maps the literals of F to v ∈ {t, f},
such that τ(x) = v ⇔ τ(x) = ¬v, where ¬t = f and ¬f = t.

A formula evaluates to t if and only if every clause in the formula evaluates to t. A
clause C evaluates to t if there exists a literal l ∈ C with τ(l) = t. Given a CNF formula
F , the SAT problem is to decide if there exists an assignment such that F evaluates to t.
If such an assignment exists, the formula is satisfiable, otherwise it is unsatisfiable.

A clause C is redundant w.r.t. a formula F , if F ∧ C is satisfiable iff F is satisfiable.
Redundant clauses are for example derived using resolution [92]: Given two clauses
C1 = (a ∨ x0 ∨ . . . ∨ xm) and C2 = (a ∨ y0 ∨ . . . ∨ yn) the clause C = (x0 ∨ . . . ∨
xm ∨ y0 ∨ . . . ∨ yn) can be resolved.

A common technique used in SAT solvers is called unit propagation: If a formula F
contains a unit clause C = l, remove all clauses containing l and all occurrences of l.

If a formula is satisfiable a satisfying assignment is a witness. However, if the formula is
unsatisfiable more involved reasoning is required to derive proofs of unsatisfiability, also
called refutation. This is done by showing that the empty clause is redundant. Providing
certificates of unsatisfiability is mandatory in the SAT Competitions since 2013.

Standard refutation proof formats are either resolution proofs or clausal proofs.
Clausal proofs are easier to generate and are more compact than resolution proofs.
The most basic clausal proof format is reverse unit propagation (RUP) [41]. Let C
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denote the negation of a clause C. If for example C = a ∨ b ∨ x then C = a ∧ b ∧ x.
We say C is a RUP clause if F ∧ C evaluates to f only by unit propagation. A RUP
proof is a sequence of RUP clauses containing the empty clause.

A delete reverse unit propagation (DRUP) [49] proof extends RUP by adding deletion
information to decrease the cost of proof validation [99]. Clausal DRUP proofs are
checked through unit propagation. As a side effect a resolution proof can be produced.

2.5 Algebraic Proof Systems

Algebraic proof systems reason over polynomials in K[X], where K is a field and the
variables X = {x1, . . . , xl} represent Boolean values. Thus it holds for each xi ∈ X ,
that x2

i − xi = 0. The aim of an algebraic proof is to derive a refutation, i.e., derive that
a given set of polynomials P = {p1, . . . , pm} ⊆ K[X] together with the Boolean value
constraints B(X) = {x2

i − xi | xi ∈ X} has no common roots. In algebraic terms this
means to show that the constant polynomial 1 ∈ 〈P ∪B(X)〉.

In the following we present two very common proof formats, which are able to derive
a refutation using algebraic reasoning methods.

2.5.1 Polynomial Calculus

The first proof system is the polynomial calculus (PC) [34]. A proof in PC is a sequence
of proof rules R = (r1, . . . , rn), which model the properties of an ideal. A PC proof
is a correct refutation when the constant polynomial 1 is derived. Each rule has the
following form:

Axiom
pi

pi ∈ P

Boolean Axiom
x2
j − xj

xj ∈ X

Linear combination
p q

αp+ βq

p, q appearing earlier in the proof
α, β ∈ K

Multiplication
p

τp

p appearing earlier in the proof
τ any term

The polynomial calculus with resolution (PCR) [3] extends PC by adding a negation
rule, which models that a new variable xj is the logical negation of xj .

Negation
xj + xj − 1

Since xj is a newly added variable, PCR operates in the ring K[x1, . . . , xl, xi, . . . , xl].
Adding new variables makes it possible to produce shorter proofs, as we will discuss

later in Sect. 7.1.2.
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2.5.2 Nullstellensatz

The second algebraic proof system we consider is Nullstellensatz [6]. A Nullstellensatz
refutation of a set of polynomials P = {p1, . . . , pm} ⊆ K[X] is an equality

m∑
i=1

qipi +
l∑

j=1
rj(x2

j − xj) = 1, (2.3)

with qi, rj ∈ K[X].

2.6 Related Work

In recent years great progress has been achieved on verifying (integer) multiplier circuits
using computer algebra. We consider the work of Sayed-Ahmed et al. [93,94], Mahzoon
et al. [79, 80] and, Yu et al. [31, 32, 103, 104, 106] the most related work, as their
research also focuses on verification of integer multipliers using computer algebra. The
work of Lv et al. [77, 78] focuses on Galois field multipliers. In contrast to word-level
verification the work of Brickenstein et al. [20] proposes bit-level equivalence checking
of multipliers.

Sayed-Ahmed et al. [93,94] The authors of [93] designed a dedicated polynomial reduc-
tion engine and also present various syntactic rewriting optimizations, which makes their
algebraic technique scale to large non-trivial multiplier designs of various architectures.
In follow-up work [94] they propose an algebraic variant of combinational equivalence
checking, also based on Gröbner basis theory. It is similar to SAT sweeping [70], and
compares circuits bit-wise, i.e., output by output. However, their tools of [93, 94] are
not available, nor are details about the experiments.

Mahzoon et al. [79, 80] Vanishing monomials are monomials that occur in intermediate
results and evaluate to zero during the reduction process. In [79] Mahzoon et al. discuss
why vanishing monomials occur and propose a method, which searches for converging
gate cones and allows local cancellation of the vanishing monomials before global
backward rewriting is applied in order to prevent an explosion of the intermediate
reduction results. In [80] the authors present a further optimization, which is able to
detect so-called “atomic blocks” in order to speed-up rewriting by reducing the search
space for finding converging gates. This approach is very successful in verifying a large
variety of multiplier architectures but is an order of magnitude slower than our approach
of Paper C, as we will show in Chap. 9.

Yu et al. [31, 32, 103, 104, 106] In [32, 103] the authors use function extraction, a
similar algebraic approach to Gröbner basis reduction. The word-level output of the
circuit is rewritten using the gate relations and the goal is to derive a unique polynomial
representation of the circuit inputs. In order to verify correctness of the circuit, this
polynomial is then compared to the circuit specification. In follow-up work [31, 106]
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full- and half-adders are identified and replaced by polynomials to simplify the set of
polynomials. Their technique is able to handle very large clean multipliers efficiently
but fails on slightly optimized multiplier architectures. The authors also extended their
work to Galois field multipliers [104].

Brickenstein et al. [20] The authors of [20] design a framework for Gröbner basis
computations with Boolean polynomials. They introduce a specialized data structure
based on zero-suppressed binary decision diagrams, which allows efficient manipulation
of Boolean polynomials. Their approach is able to apply bit-wise equivalence checking
of integer multiplier circuits, but handles only small-size multipliers.

Lv et al. [77,78] The authors of [77,78] use an algebraic approach to verify Galois field
multipliers. The multiplier circuit is modeled as a polynomial system in F2k [X] and
consequently Gröbner basis theory over Galois fields is used to derive the correctness of
the multiplier.
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Chapter 3

Paper A: Incremental Column-Wise
Verification of Arithmetic Circuits
Using Computer Algebra
In Paper A we first give a comprehensive formalization of arithmetic circuit verification
using computer algebra and prove soundness and completeness. The general idea of
arithmetic circuit verification using computer algebra is to model each gate by corre-
sponding polynomial equations, called gate constraints. Correctness of the circuit is
derived by showing that the specification L, like Eqn. (2.1), represented as a polynomial,
is contained in the ideal generated by the gate constraints. In this section we consider
circuits with 2n inputs a0, . . . , an−1, b0, . . . , bn−1 and 2n outputs s0, . . . , s2n−1.

In order to optimize the practical application of arithmetic circuit verification using
computer algebra, we present a novel incremental column-wise verification algorithm,
which allows us to split the verification problem into smaller, more manageable sub-
problems. The multiplier is partitioned into slices, such that each slice contains exactly
one output bit. For each slice we derive corresponding slice-wise specifications, which in
contrast to the word-level specification, only contain a linear number of partial products.
Correctness of the multiplier is derived by verifying each slice incrementally.

To further enhance the practical approach we present a preprocessing technique,
which rewrites the Gröbner basis implied by the gate constraints. We search and identify
certain structures, namely full- and half-adders, XOR-gates and gates with only one
parent, in the input AIG. Internal variables of these patterns are eliminated from the
Gröbner basis. We prove a technical theorem that allows us to rewrite only local parts of
the Gröbner basis without violating the Gröbner basis property. By eliminating internal
nodes of full- and half-adders and XOR-gates, we only represent the specification of
these structures in the Gröbner basis instead of the direct translation of all internal nodes.
For full- and half-adders these polynomials are linear and thus significantly reduce the
blow-up of the intermediate reduction results.

We implement a tool, called AIGMULTOPOLY, which translates multipliers given as
AIGs into a set of polynomials and applies the described preprocessing steps. The output
file is passed to the CAS Mathematica [102] or Singular [38] that apply the polynomial
reduction. Our experiments show that by using these techniques we are able to verify
simple multipliers but fail to verify complex multipliers.
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We furthermore present how the incremental verification algorithm can be generalized
to allow equivalence checking of circuits. In equivalence checking a circuit is compared
to a so-called golden model, which is a circuit that is known to be correct. The benefit
of equivalence checking, in comparison to circuit verification is that the specification of
the circuit does not need to be known. In our approach we apply equivalence checking
as follows. Let S =

∑n
i=0 2isi be the output bit-vector of the circuit whose correctness

is in question and let S′ =
∑n
i=0 2is′i be the output of the golden model. The gates

of both circuits are encoded as polynomials and we check whether the polynomial
S −S′ = 0 is contained in the ideal generated by the circuit constraints and the Boolean
value constraints. However, this has the effect that actually both circuits are verified
simultaneously. It can be seen in the experiments of Paper A that equivalence checking
of multipliers needs twice as much time than verifying one single multiplier. Since
we are able to define a specification for multipliers, we favor direct verification of
multiplier circuits over equivalence checking with the golden model and we do not apply
equivalence checking of circuits in follow-up work of circuit verification.

3.1 Polynomial Ring

Initially we wanted to work in the ring Z[X], because Z is the ring whose multiplication
we want to describe. However, Z is not a field and we cannot use the basic Gröbner bases
theory over fields [25]. Since Q is a field, which contains Z, we fixed the polynomial
ring to Q[X] in Paper A. Additionally, the reduction algorithms in Mathematica and
Singular are much slower for Z[X] than for Q[X]. Furthermore, we noticed that because
the leading coefficients of the polynomials are all −1, our whole computation stays in
the ring Z[X] anyhow.

In retrospective, modeling the verification problem in Q[X] is not optimal and limits
the power of our procedure. The reason is that certain multiplier architectures invoke
chains of XOR-gates to compute the most significant output bit s2n−1. For example,
this always happens in our benchmarks, when Booth encoding is used to generate the
partial products. The corresponding coefficient of s2n−1 in the word-level specification
is 22n−1. Hence, reduction by a polynomial, which encodes an XOR-gate generates
a monomial −22nvw, cf. Eqn. (2.2), where either v or w represents again the output
variable of an XOR-gate. Thus reducing s2n−1 by the polynomials encoding the XOR-
gates yields multiple monomials with coefficients that are multiples of 22n, which will
reduce to zero later in the verification procedure. However, these non-linear monomials
have to be rewritten first and thus increase the results of the intermediate reduction
results until they are canceled.

We discuss in Paper C that it is a better choice to select the ring Z2l [X], where l is the
number of output bits. This has the effect that any monomial, which is a multiple of 2l, is
directly eliminated. We prove that we maintain soundness and completeness by choosing
l as the number of output bits. Selecting Z2l [X] does not only make verification of
unsigned and signed integer multipliers much more efficient, but also allows verification
of truncated multipliers, were the n most significant bits are discarded.
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3.1 Polynomial Ring

polynomial ring sec max S7 S6 S5 S4 S3 S2 S1 S0

Q[X] 0.07 2 264 2 25 57 94 358 157 36 36
Z22n [X] 0.00 36 2 7 12 14 15 14 6 5

Table 3.1: Number of monomials in intermediate results for 4-bit “bp-ar-rc” multiplier.

We show in Paper C that the ideal membership problem in Z2l [X] for an ideal I
can be converted into an ideal membership problem in the ring Z[X]. Whenever we
want to decide whether a polynomial q ∈ I ⊆ Z2l [X] we can instead check whether
q ∈ I + 〈2l〉 ⊆ Z[X]. For the latter we can use the theory of D-Gröbner bases [9, 76].

Example 3.1. Consider a 4-bit “bp-ar-rc”-multiplier [53]. This multiplier is very
similar to the “sp-ar-rc”-multiplier shown in Fig. 2.2, except that the partial-products
are generated using a Booth encoding instead of simple AND-gates. We apply our
incremental column-wise verification algorithm in Q[X] and Z22n [X] using our tool
AMULET introduced in Paper C. Table 3.1 shows the total verification time and
the maximum size, i.e., number of monomials, of the intermediate reduction results.
Furthermore, we list the size of the incremental slice-wise specifications.

Circuits operate over binary values. Thus, it would theoretically be possible to model
the verification problem in the ring Z2[X]. The gate constraints in the ring Z2 have the
following form, which gives a linear representation for XOR-gates.

u = ¬v implies 0 = u+ 1 + v
u = v ∧ w implies 0 = u+ vw
u = v ∨ w implies 0 = u+ v + w + vw
u = v ⊕ w implies 0 = u+ v + w

(3.1)

Furthermore, there is no need to add the Boolean constraint equation because it auto-
matically follows in Z2[X] that x2

i = xi for xi ∈ X .
While modeling the gate constraints is straightforward, the problem is to model the

word-level specification, since the specification we want to describe contains coefficients
that are multiples of 2. Recall the specification of Eqn. 2.1 we consider is

L =
2n−1∑
i=0

2isi −
(n−1∑
i=0

2iai
)(n−1∑

i=0
2ibi

)
= 0.

Defining the specification in Z2[X] actually reduces reasoning from word-level to
reasoning on bit-level. A possibility would be to define a bit-level specification for each
output bit separately, that is, define for each output bit si a function fi over the input
bits, such that −si + fi(an−1, . . . , a0, bn−1, . . . , b0) = 0. We are able to experimentally
generate the bit-level specifications for 4-bit multipliers, but our approach already times
out for input bit-width 5.

Example 3.2. Consider “btor”-multipliers, cf. Fig. 2.2, of input bit-width 3 and 4.
Table 3.2 shows the number of monomials in the corresponding bit-level specifications.
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mult n s0 s1 s2 s3 s4 s5 s6 s7

btor 3 2 3 5 9 10 4
btor 4 2 3 5 11 25 38 42 20

Table 3.2: Length of bit-level specifications.

In favor of our observation, the works of [23, 33, 101] show that binary decision
diagrams representing the middle bit of multipliers have exponential size. On the
contrary, the authors of [19] are able to apply equivalence checking of multipliers on
bit-level for multipliers up to 16 bit. They have the conjecture that their experiments do
not admit exponential behavior, because two circuits are analyzed simultaneously, which
leads to internal cancellations. It remains an open question whether efficient verification
of arithmetic circuits in the ring Z2[X] is possible.

3.2 Incremental Algorithm

In our incremental algorithm, presented in Paper A we partition the multiplier into
column-wise slices. The reason to work on columns instead of rows is that the in-
cremental specifications can only be uniquely generated for a column-wise partition.
The partial products of a multiplier are uniquely assigned to columns, i.e., all partial
products, which have equal coefficients in L, belong to the same column. But partial
products are not uniquely assigned to rows, because they can be permuted arbitrarily
within a column without affecting the correctness of a multiplier.

Example 3.3. Fig. 3.1 shows binary multiplication of 13 · 15 = 195, as it is usually
calculated on paper. The order of the partial products differs, depending whether the
multiplication started with the most or least significant bit of the right bit-vector. In both
multipliers we marked the same partial product. It can be seen that it is contained in
different rows, but remains in the same column.

1 1 0 1 · 1 1 1 1
1 1 0 1

1 1 0 1
1 1 0 1

1 1 0 1
1 1 0 0 0 0 1 1

1 1 0 1 · 1 1 1 1
1 1 0 1

1 1 0 1
1 1 0 1

1 1 0 1
1 1 0 0 0 0 1 1

Figure 3.1: Multiplication of 13 · 15 = 195 with different orderings of partial products.

Even without assuming that partial products are allowed to be permuted in multipliers,
it is not possible to derive unique row-wise specifications for all multiplier architectures.
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(b) Column-wise Order.

Figure 3.2: Different orders of full- and half-adders, with pij = aibj .

Consider for example the “btor”- and “sp-ar-rc”-multipliers of Fig. 2.2. It can be seen
that the columns of both multipliers always contain the same partial products, but the
partial products in the rows differ. It is only possible to define incremental row-wise
specifications for individual architectures, such as “btor”-multipliers [24].

Furthermore, it is unclear how to define rows in more complex architectures, which
cannot be fully decomposed into full- and half-adders. On the other hand, defining
column-wise slices is easy. For each output bit si, we define the corresponding input
cone and slices are derived as the difference of consecutive cones.

3.3 Reduction Ordering

We discuss in Paper A that we fix a reverse topological term ordering on the set of terms
to automatically derive a Gröbner basis. The reduction order of the gate polynomials
should follow a reverse topological ordering too. This ensures that after a polynomial is
used for reduction it never has to be considered again [103]. Reverse topological term
orderings are not unique and we have to determine a “good” reduction order to keep the
size of the intermediate reduction results small.

However, a private discussion of A. Biere and A. Mishchenko lead to the conjecture
that the choice of the reverse topological reduction order does not make a difference,
as long as the full- and half-adders in the multipliers are identified and the internal
variables of these adders are eliminated before reduction is applied. We presented a
(non-published) paper at the student forum of FMCAD 2019, where we elaborated on this
conjecture. We summarize the results in this section. In the following experiments we
do not apply our incremental algorithm, but reduce the complete word-level specification
after preprocessing the gate constraints using our tool AMULET, presented in Paper C.

Given the shape of multipliers, two orderings seem natural, namely a column-wise and
a row-wise ordering. Both orderings are shown in Fig. 3.2 for a simple 4-bit “sp-ar-rc”
multiplier. The multipliers in Fig. 3.2 have been preprocessed, such that only full- and
half-adders remain. The reduction orderings are not limited to these two cases, circuits
support various arbitrary reverse topological orderings, e.g., in Fig. 3.2a the ordering
1 > 2 > 5 > 3 > 4 > 6 > 7 > 9 > 8 > 11 > 10 > 12 is also reverse topological.

In our experiments we compare row-wise and column-wise reduction orderings
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to arbitrary reverse topological reduction orderings on two different multipliers. We
perform preprocessing, such that the internal variables of the full- and half-adders are
eliminated and measure the size and time of the final reduction process.

In our first experiment we select a simple 32-bit “sp-ar-rc”-multiplier. The 4-bit
version of this architecture is depicted in Fig. 3.2. The results can be seen in Figs. 3.3
and 3.4. Figure 3.3 shows the time (in seconds) needed to verify the multiplier and the
maximum size of the intermediate reduction results of a row-wise (blue) and column-
wise (orange) order and 500 arbitrary reverse topological orderings (green). Additionally
we list the size and time of our incremental column-wise (red) approach.

It can be seen that the non-incremental approaches are in the same order of magnitude,
i.e., the sizes span a range of around 30 monomials. However the incremental column-
wise approach produces by far the smallest and fastest result, because it never considers
the complete global specification. Figure 3.4 shows the development of the size of the
intermediate results for a complete reduction run. We only show the results of one of
the 500 arbitrary orderings we considered. Again the non-incremental orders behave
similarly, but are out-rivaled by the incremental column-wise approach.

In our second experiment we consider the more complex 32-bit multiplier “bp-wt-rc”
that uses Booth-encoding for generating the partial products and where the full- and
half-adders are arranged in a Wallace-tree structure. Wallace-tree multipliers are faster
than simple carry-save-adder multipliers, but the arrangement of the full- and half-adders
is more involved. The results of this experiment can be seen in Fig. 3.5 and 3.6.

In contrast to the “sp-ar-rc”-multiplier, there is a gap of around 300 monomials
between the column-wise and row-wise ordering. The sizes of the arbitrary reverse
topological orderings are in between. Only the column-wise order has a linearly de-
creasing trend during reduction. Again our incremental approach outperforms the
non-incremental approaches. Interestingly in both experiments the row-wise ordering
caused the biggest intermediate results.

Our experiments show that the effect of reduction order highly depends on the circuit
architecture. For simple architectures there is almost no difference between the various
non-incremental orderings. On the other hand, the reduction order has a tremendous
impact for complex multipliers. Interestingly in both experiments the column-wise
ordering is very stable, and especially for complex multipliers, there is a clear trend to
select a column-wise ordering for polynomial reduction. However, all non-incremental
approaches are outperformed by our incremental column-wise approach. Thus these
experiments further support our observation that an incremental approach, where the
specification is divided into multiple polynomials helps to speed up reduction time.

3.4 Computer Algebra Systems

We used existing CAS to reduce the specification by the gate constraints in Paper A. Our
presented tool AIGMULTOPOLY translates multipliers given as AIGs into polynomials
and generates code, which can be executed by either Mathematica or Singular, where
the polynomial reduction is performed.
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3.4 Computer Algebra Systems

Figure 3.3: Maximum size of reduction results in 32-bit “sp-ar-rc”-multipliers.

Figure 3.4: Size of reduction results in 32-bit “sp-ar-rc”-multipliers.
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Figure 3.5: Maximum size of reduction results in 32-bit “bp-wt-rc”-multipliers.

Figure 3.6: Size of reduction results in 32-bit “bp-wt-rc”-multipliers.
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3.4 Computer Algebra Systems

Using CAS allowed us a simpler start, where we could focus on modeling and
preprocessing, rather than on the implementation of a reduction algorithm. However,
CAS are designed for general purposes, which made it hard to encode the verification
problem in such a way, that the specific structure of the given set of polynomials is used
to full capacity during polynomial reduction. We encountered several problems, which
we will discuss in the remainder of this section.

In both systems, Mathematica and Singular, the variable ordering <, a set of poly-
nomials G ⊆ Q[X] and a polynomial q ∈ Q[X] need to be provided. Both systems
include functions, which calculate whether q ∈ 〈G〉, provided G is a Gröbner basis w.r.t.
the given order <.

Singular treats the given polynomialsG as a set, which is internally ordered according
to the given variable order. On the other hand, it seems that Mathematica actually treats
the set of polynomials as a list. Therefore, it is necessary to provide the polynomials
in the desired order. We did not realize this fact in our initial work [89], where we
actually printed the polynomials in reverse order. We started by printing the polynomials
defining the partial products and ended by printing the polynomial representation of the
output bit of each slice. By adjusting the printing order of the polynomials such that the
leading terms of the polynomials are ordered according to the given variable order, we
were able to improve our computation results of [89] by a factor 2 in Paper A.

Since the reduction order of the polynomials is also fixed by the variable order <, it
is a big issue to apply polynomial reduction by the Boolean value constraints. To keep
the size of the intermediate reduction results small, we desire to immediately eliminate
all exponents greater than one. In a CAS, this means that after reduction by a gate
constraint, we always apply polynomial reduction by all Boolean value constraints.
However, this proved to be practically infeasible.

In Paper A we take a compromise and reduce by the Boolean value constraint of
the output variable of a gate, before reduction by the corresponding gate constraint
is applied. This turned out to be faster than always reducing by all Boolean value
constraints, but has the effect that exponents greater than one will be carried along.

A further issue occurred only in Singular. This CAS introduces a strict limit of 32 767
ring variables, which are already exceeded with 64-bit multipliers. Additionally, as can
be seen later in Paper B and as we will discuss in Chap. 4 generating proof certificates
in CAS is very slow. All of this issues motivated us to implement our own reduction
engine AMULET in Paper C, which is tailored towards reduction of our polynomials
and using the full potential of the Boolean value constraints.
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Chapter 4

Paper B: A Practical Polynomial
Calculus for Arithmetic Circuit
Verification
In Paper A we formalized the approach of arithmetic circuit verification using computer
algebra and presented how this solving technique can be implemented using existing
CAS. However, the verification process might not be error free and thus returns wrong
results. In order to increase the trust in reasoning tools, it is common to provide
proof certificates, which can be checked by standalone proof checkers to validate the
verification results. For algebraic reasoning we require a proof system, which is able
to reason about polynomial equations. In Paper B we define a proof calculus, called
practical algebraic calculus (PAC), which is able to capture low-level algebraic proofs.
Proofs in this format can be checked efficiently.

Let K be a field and X = {x1, . . . , xm} be a finite set of variables and further let
f ∈ K[X] and G ⊆ K[X]. The question we want to answer is, whether the zeroness of
G implies the zeroness of f , i.e., every model of G is also a model of f . In algebraic
terms this means to derive whether f ∈ 〈G〉. In our application G represents the set of
gate constraints and Boolean value constraints, and further K = Q and f = L. A proof
in the PAC format is a sequence of proof rules of the following form:

Addition + : gi, gj , q;
gi, gj appearing earlier in the proof
or are contained in G and
q = gi + gj

Multiplication ∗ : gi, p, q;

gi appearing earlier in the proof
or is contained in G
and p ∈ K[X] being arbitrary and
q = pgi

These rules model the properties of an ideal, as defined in Sect. 2.2. Consequently, we
can derive for each proof rule that q ∈ 〈G〉. In particular if it holds for one rule that
q = f , we derive that f ∈ 〈G〉.

In Paper B, we further show how proofs in this format can be generated by Mathemat-
ica in order to provide proof certificates of arithmetic circuit verification. These proofs
can either be checked by Singular or by our standalone proof checker, called PACTRIM.
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4.1 Comparison to Polynomial Calculus

PAC is highly related to the polynomial calculus (PC) [34], which is introduced in
Sect. 2.5.1. PC has been mostly used in proof complexity to obtain lower bounds for
the degree and size of proofs, e.g., [55, 75, 82]. Practical applications have not been
well-studied. We show in Paper B that we can instantiate the abstract PC in order to
gain a proof format, which can be applied in practice.

A major drawback of PC, as it is introduced in [34], is that PC proofs cannot be
checked efficiently. A PC proof is only a sequence of polynomials R = (r1, . . . , rn).
Thus it cannot automatically be determined how a certain polynomial ri was derived.
In order to check a PC proof, we would need to show for each polynomial ri that it is
contained in 〈r1, . . . , ri−1〉, which triggers an ideal membership test for each proof rule.

In contrast to PC, we include in PAC the antecedent polynomials gi, gj , and p in the
proof rules and accordingly keep the information how the conclusion polynomial q was
derived. Hence, checking the correctness of PAC proofs can be applied on the fly. For
each rule we check that the antecedents are already known (connection property) and
that the conclusion q is computed correctly (inference property).

A further difference of PC and PAC can be seen in the multiplication rules. PC only
allows multiplication with terms, whereas PAC permits multiplication by polynomials,
which allows shorter proofs. Contrarily PC is less restrictive in the addition rules, where
the summands can be multiplied by constants too.

Another significant difference is that PC includes a Boolean axiom encoding that
variables can only take values in {0, 1}. Adding this axiom has the effect that exponents
greater than one will be eliminated. However, this restricts models in PC to only be
Boolean models. In PAC we support models of K[X] and thus we do not include
these axioms. If we want to encode that certain variables can only take values in
{0, 1}, we have to add the corresponding Boolean value constraints to the set of given
polynomials G. We discuss in the following section that for our purpose of arithmetic
circuit verification, adding Boolean axioms actually helps to reduce the proof length
(number of generated proof rules) and proof size (total number of monomials in the
conclusion polynomials).

4.2 Boolean Value Constraints

We already discussed in the last section that we have to explicitly add the Boolean value
constraints for each variable to the given set of polynomials G in PAC to introduce
Boolean models.

Theoretically, when modeling the circuit, we can only assume that the input variables
of multipliers are binary, we cannot automatically derive from the circuit that all internal
variables are binary too. Consequently, we would only be allowed to add the Boolean
value constraints for the circuit inputs to the given set of polynomials and need to derive
the Boolean value constraints for all variables that represent internal AIG nodes.
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As can be seen in Ex. 4.1, deriving the Boolean value constraints for each AIG node
produces a lot of overhead.

Example 4.1. Let g be the output of an AIG node with two inputs a, b. From−a2 +a =
0, −b2 + b = 0 and −g + ab = 0 we can derive that −g2 + g = 0 using the following
PAC rules:

∗ : −g + ab, g + ab− 1, −g2 + g + a2b2 − ab;
∗ : −a2 + a, b2, −a2b2 + ab2;
∗ : −b2 + b, a, −ab2 + ab;

+ : −g2 + g + a2b2 − ab, −a2b2 + ab2, −g2 + g + ab2 − ab;
+ : −g2 + g + ab2 − ab, −ab2 + ab, −g2 + g;

Furthermore, nodes in an AIG that have correct syntax can only represent logical
conjunction and whenever the inputs a, b of AIG nodes are binary, the output g of the
node has to be binary too. Hence, instead of deriving this information each time, we
take the freedom to assume that all variables x ∈ X can only take values in {0, 1} and
we add the Boolean value constraints B(X) = {x2 − x | x ∈ X} to the constraint set.

The core of a PAC proof is the number of polynomials of the given set of polynomials
G that is used in the proof rules. As can be seen in the experiments of Paper B, the
percentage of the proof core is always around 60%. In our experiments we assume
correct multipliers that do not include redundant gates, thus all gate constraints have
to be used to derive the specification. Hence, the unused polynomials of G have to be
Boolean value constraints and the reason for the small core is that we always add all
Boolean value constraints to the given set of polynomials G.

The small core and the fact that we assume binary variables in our application, lead to
the decision in Paper C that we enable implicit handling of the Boolean value constraints
in PAC. We modify PACTRIM in such a way that exponents greater than one are
automatically eliminated. For example the following rule is valid:

∗ : x, x, x;

The effect of assuming Boolean models can be seen in Table 4.1 and Table 4.2, where
we repeat the experiments of Paper B. In Table 4.1 we generate proof certificates, which
validate the correctness of “btor” and “sp-ar-rc” multipliers. In the first block “Paper B”,
we generate proof certificates as described in Paper B, where we explicitly include the
Boolean value constraints. We list the time needed for proof checking (s), the proof
length (len), proof size (size) and the degree (d).

In the second block “Paper B + Bool. Model” we rewrite the proof certificates of
block “Paper B” and automatically normalize exponents. It can be seen that the proof
length decreases by ∼40% and the proof size decreases by 30% to 50%, depending on
the multiplier. The degree is smaller too. In the third block we present the corresponding
proof that is generated by our tool AMULET, which is introduced in Paper C.

Table 4.2 shows the same results for equivalence checking of multipliers. However, it
does not contain a block “Paper C”, because equivalence checking is not supported in
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mult n
Paper B Paper B + Bool. Model Paper C

s len size d s len size d s len size d

sparrc 4 0 764 8 156 8 0 542 4 701 5 0 382 2 281 4
sparrc 8 0 3 964 59 330 8 0 2 854 32 813 5 0 1 918 12 817 4
sparrc 16 1 17 804 317 874 8 0 12 950 174 301 5 0 8 446 59 189 4
sparrc 32 3 75 244 1 492 082 8 2 55 030 830 621 5 0 35 326 255 428 4
sparrc 64 15 309 164 6 727 026 8 8 226 742 3 894 685 5 1 144 382 1 071 354 4

btor 4 0 594 4 001 5 0 406 2 632 4 0 268 1 614 3
btor 8 0 2 914 21 915 5 0 1 962 14 314 4 0 1 304 8 715 3
btor 16 0 12 738 104 351 5 0 8 530 69 598 4 0 5 680 40 241 3
btor 32 1 53 122 487 911 5 1 35 490 340 102 4 0 23 648 175 082 3
btor 64 5 216 834 2 387 831 5 3 144 706 1 778 902 4 1 96 448 740 605 3

Table 4.1: Word-level proof checking.

mult n
Paper B Paper B + Bool. Model

s len size d s len size d

btor-btor 4 0 1 170 7 952 5 0 802 5 230 4
btor-btor 8 0 5 794 43 902 5 0 3 906 28 732 4
btor-btor 16 0 25 410 210 666 5 0 17 026 141 224 4
btor-btor 32 2 106 114 995 330 5 1 70 914 699 840 4
btor-btor 64 9 433 410 4 942 642 5 6 289 282 3 725 040 4

btor-sparrc 4 0 1 340 12 107 8 0 938 7 299 5
btor-sparrc 8 0 6 844 81 317 8 0 4 798 47 231 5
btor-sparrc 16 1 30 476 424 189 8 0 21 446 245 927 5
btor-sparrc 32 4 128 236 1 999 501 8 2 90 454 1 190 359 5

sparrc-sparrc 4 0 1 510 16 270 8 0 1 074 9 376 5
sparrc-sparrc 8 0 7 894 118 820 8 0 5 690 65 818 5
sparrc-sparrc 16 1 35 542 638 248 8 1 25 866 351 166 5
sparrc-sparrc 32 7 150 358 3 006 256 8 3 109 994 1 683 462 5

Table 4.2: Equivalence proof checking.
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Figure 4.1: Comparison of proof length of “btor-btor” commutativity check with original
data (blue, dash) and proofs without exponents (red, solid).
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Figure 4.2: Comparison of proof size of “btor-btor” commutativity check with original
data (blue, dash) and proofs without exponents (red, solid).
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AMULET. Figures 4.1 and 4.2 extend Fig. B.5 of Paper B by adding the proof length
and size of the proof certificates, where Boolean models are assumed.

A further effect of assuming Boolean models, despite shorter proofs, is that we do not
need the Rabinowitsch trick [35] to derive a complete calculus. We discuss in Paper B,
that we need to add a further radical rule, which allows us to reason about radical ideals,
in order to gain completeness of PAC. In algebra, the radical ideal

√
〈G〉 is defined as√

〈G〉 = {p ∈ K[X] | ∃α ∈ N : pα ∈ 〈G〉}

However, the Rabinowitsch trick, which says

f ∈
√
〈G〉 ⇔ 1 ∈ 〈G ∪ {1− yf}〉,

allows that we do not have to include a radical rule in PAC. Instead we add the polyno-
mial 1− yf with y /∈ X to the set of given polynomials G and aim to derive a correct
refutation. That is, we need to derive the constant polynomial 1 in the PAC proof.

Usually, we would derive the polynomial f first and add two further rules in order to
derive a refutation.

...
. . . : . . . , . . . , f ;
∗ : f, y, yf ;
+ : 1− yf, yf, 1;

Since we assume Boolean models in Paper C, we gain soundness and completeness
of PAC without using the Rabinowitsch trick and thus can directly stop whenever we
derived f . Furthermore, because of Thm. C.11 and Thm. C.15 the soundness and
completeness arguments can be generalized to polynomial rings over commutative rings
with unity.

4.3 Computer Algebra Systems

We used the CAS Mathematica and Singular as reduction engines in Paper A. Both
Mathematica and Singular provide additional information during reduction that allows
generating a PAC proof using CAS in Paper B.

We decided to only use Mathematica for generating the proofs, since Singular has a
limit on the number of variables. In Paper B we generate proofs in Mathematica, which
can be checked either by Singular or by our standalone proof checker PACTRIM. We
favor proof checking in PACTRIM, because Singular is orders of magnitude slower than
using PACTRIM.

In Mathematica, we use “PolynomialReduce” to generate the proof certificates,
which has the following functionality [102]:

PolynomialReduce[poly,{poly1,poly2,...},{x1,x2,...}]
yields a list representing a reduction of poly in terms of the polyi. The list has
the form {{a1, a2, ...}, b}, where a1 poly1 +a2 poly2 + · · ·+ b = poly and b
is minimal.
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For correct multipliers it holds that b = 0. We generate PAC proofs as follows:

∗ : poly1, a1, a1 poly1;
∗ : poly2, a2, a2 poly2;

...
+ : a1 poly1, a2 poly2, q1;
+ : q1, a3 poly3, q2;

...
+ : qk, am polym, poly;

It can be seen that the proof certificate of Mathematica, i.e., the list {a1, a2, . . . } is
actually very similar to a Nullstellensatz (NS) proof, cf. Sect. 2.5.2.

However, we apply preprocessing and rewrite the original gate constraints before
reducing the specification. For each polynomial that is rewritten in the preprocessing
step, we use PolynomialReduce to derive a proof certificate, which we translate into
PAC. After preprocessing we reduce the (incremental) specification by the simplified
Gröbner basis and derive proof certificates in terms of the rewritten polynomials. In
order to derive a complete NS proof, we would need to express the rewritten polynomials
as linear combinations of the given polynomials, which would increase the proof size.

Generating proof certificates in Mathematica has a very poor performance. For 64-bit
multipliers that can be verified within 2 minutes, the proof generation needs more than 6
hours. Furthermore, it is not possible to assume Boolean models in Mathematica. Thus,
it is required to include the Boolean value constraints in the given set of polynomials.

The limits of the CAS on the verification itself, as discussed in Chapter 3, and on
proof generation were a big motivation to develop our own reduction engine AMULET

that is presented in Paper C. AMULET considers Boolean models and generates proof
certificates on the fly, i.e., whenever the specification is reduced by a gate constraint, the
corresponding proof rules are generated.
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Chapter 5

Paper C: Verifying Large
Multipliers by Combining SAT and
Computer Algebra
In Paper C, we generalize the algebraic approach of Paper A to be applicable in more
general polynomial rings, which admit modular reasoning. In Paper A, we fixed the
coefficient domain to Q, in order to use Gröbner bases theory over fields. We already
discussed in Chap. 3 that modeling the circuits in the polynomial ring Q[X] allows
verification of simple multiplier architectures, but fails for more complex architectures,
where for example Booth encoding is used. Thus, we generalize our approach and model
circuits in polynomial rings Zl[X] with l ∈ N. Furthermore, modular reasoning enables
verification of truncated multipliers.

As a consequence, we are not able to use Gröbner bases theory over fields. However,
we show in Paper C that we can convert the ideal membership problem in Zl[X] to an
ideal membership problem in Z[X], and thus can apply D-Gröbner bases theory [9, 76],
which requires the coefficient domain to be a principal ideal domain (PID).

Additionally, we generalize the preprocessing techniques of Paper A, where we ap-
plied syntactic pattern matching to identify XOR-gates, full- and half-adders, and nodes
with only one parent in the circuit. Only small syntactic changes in the circuits make the
preprocessing techniques of Paper A fail to recognize the pattern. In Paper C, we present
a preprocessing technique that applies more general rules for variable elimination and
subsumes the methods “XOR-rewriting”, “Adder-Rewriting”, and “Common-Rewriting”
of Paper A. We will further discuss variable elimination in Sect. 5.1.

Nonetheless, parts of the multiplier, i.e., the final-stage adders (FSA) are hard to
verify using computer algebra. Certain adders, namely so-called generate-and-propagate
(GP) adders, lead to an exponential blow-up in the intermediate reduction results.

In a GP adder with inputs x0, . . . , xm, y0, . . . , ym, cin and outputs s′0, . . . , s
′
m, cout

the output bits s′i are calculated as s′i = pi ⊕ ci, with pi = xi ⊕ yi. The carries ci
are recursively generated using the equation ci = (xi−1 ∧ yi−1) ∨ (ci−1 ∧ pi−1) with
cm+1 = cout and c0 = cin. The precise derivation of the carries ci (recursively, unrolled,
or mixed) depends on the architecture of the adders, but is generally computed using
sequences of OR-gates, which are not shared internally. Rewriting these sequences leads
to exponentially sized polynomials, as can be seen in the following example.
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Example 5.1. Let o = o1 ∨ x0, o2 = o3 ∨ x1, o3 = x2 ∨ x3 represent a sequence of
three OR-gates, which can be combined to o = x0 ∨ x1 ∨ x2 ∨ x3. The corresponding
polynomial representation in Z[o, x0, x1, x2, x3] is o = x0 + x1 − x0x1 + x2 − x0x2 −
x1x2 +x0x1x2 +x3−x0x3−x1x3 +x0x1x3−x2x3 +x0x2x3 +x1x2x3−x0x1x2x3
and contains 24 − 1 monomials.

Our first attempt to overcome this issue, was to preprocess complex FSA in such
a way that the sequences of OR-gates are shared internally. We were successful for
multipliers where the FSA is a carry look-ahead adder. However, this approach relied
on syntactic pattern matching and we would have to define a new rewriting strategy for
each individual adder architecture.

While preparing benchmarks for the SAT Race 2019 [67], we noticed that checking
the equivalence of adder circuits is trivial for SAT solvers. Based on this observation
we combine SAT and computer algebra in our verification technique. When the FSA is
syntactically identified as a GP adder, we replace it by a simple ripple-carry adder. A
bit-level miter is generated and is given to SAT solvers in order to prove the equivalence
of the adders. The rewritten multiplier is verified using computer algebra.

We implement our own dedicated reduction engine AMULET in C, which is able
to apply adder substitution and verifies the (rewritten) multipliers. The polynomial
reduction algorithm in AMULET makes use of the specific shape of the circuit polyno-
mials, i.e., all leading coefficients of the gate constraints are −1 and the leading terms
contain only one unique variable. In Paper C we call this property UMLT property.
Consequently, polynomial reduction reduces to substitution of every occurrence of the
leading variable by the tail of the polynomial.

Furthermore, we handle the Boolean value constraints implicitly, i.e., we immediately
normalize exponents greater than one. As already discussed, CAS handle this reduc-
tion explicitly. Using the UMLT property and immediate reduction by Boolean value
constraints makes AMULET more time efficient than CAS, which can be seen in the
experiments of Paper C and in Chap. 9.

5.1 Variable Elimination

The rewriting techniques presented in Paper A and Paper C eliminate variables from the
set of gate constraints in order to rewrite and thus simplify the generated Gröbner basis.

First, we have to select a variable v, which represents an internal node in the AIG,
as elimination variable. All polynomials in the (D-)Gröbner basis are reduced by the
corresponding gate constraint with leading term v. This has the effect that only this
gate constraint will contain v and we eliminate this polynomial from the (D-)Gröbner
basis. We provide correctness theorems in Paper A for Gröbner bases and in Paper C for
D-Gröbner bases that prove that we are allowed to locally rewrite the (D-)Gröbner basis
and the result will again be a (D-)Gröbner basis for the elimination ideal.

The question is which variables v shall be eliminated from the set of gate constraints
in order to simplify reduction. In Paper A we apply syntactic pattern matching to
select the elimination variables v. First, we apply “Adder-Rewriting”, where we search
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Figure 5.1: Patterns considered in the rewriting technique of Paper A.

for sub-circuits representing full- and half-adders in the multipliers and eliminate the
corresponding internal variables. This has the effect that the linear adder specifications,
e.g.,−2c−s+x+y+z for full-adders, are included in the Gröbner basis. Subsequently,
we apply “XOR-Rewriting” and search for sub-circuits representing XOR-gates and
eliminate the internal variables. In our last rewriting technique “Common-Rewriting” we
identify nodes in the AIG that only have one parent node and eliminate them. However,
all our techniques are highly tailored to the selected benchmarks, generated by Boolector
(btor) [83], AOKI [53], and GenMul [81]. The covered rewriting patterns, except for
half-adders, can be seen in Fig. 5.1. If only small changes in the circuits, e.g., bit-flipping
or adding redundant nodes are applied, the rewriting approach fails.

In Paper C we propose a more general approach for variable selection that does not
rely on specific patterns in the AIG. In contrast to Paper A, we select the variables
directly in the D-Gröbner basis, after the column-wise slices are fixed. We search for
polynomials p in the sliced D-Gröbner bases, whose leading variable only occurs in the
tail of one other polynomial q that has to be contained in the same slice. The remainder
of reducing q by p is added to the D-Gröbner basis and both polynomials p and q are
removed from the D-Gröbner basis.
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Our approach is related to “Common-Rewriting” of Paper A. However, in “Common-
Rewriting” we iterate only once over the AIG to identify nodes that have only one
parent. In our new approach we iterate multiple times over the D-Gröbner basis until a
fix-point has been reached and all leading variables either occur in multiple polynomials
or in other slices too.

It can easily be seen in Figs. 5.1c and 5.1d that our approach of Paper C fully subsumes
“Common-Rewriting” and “XOR-Rewriting” of Paper A.

For “Adder-Rewriting”, this is not entirely true and depends on the selected bench-
marks. For the AOKI and GenMul benchmarks, depicted in Fig. 5.1b the variables g1,
g2, g4, g5, g6, g7, g8, g9 are eliminated in the first iteration over the D-Gröbner basis.
The node g3 will not be eliminated in the first iteration, because it occurs in the gate
constraints of g4 and g5. However, in the second iteration only the gate constraint with
leading term s contains the variable g3. Thus g3 will be eliminated in the second iteration
and hence all internal variables are eliminated and two polynomials with leading terms
s and c remain.

In “Adder-Rewriting” of Paper A we merge these two Polynomials to derive the linear
polynomial −2c− s+ x+ y + z and further keep the polynomial with leading term
s to maintain completeness. We do not generate the adder specification in Paper C,
because we do not want to generate a polynomial with leading coefficient −2. Since the
approach of Paper C is defined over Z, division by 2 is not possible in general.

Furthermore, we define the reduction order in AMULET in such a way that the carry
polynomial and the sum polynomial will always be considered for reduction directly
after another and thus the blow-up in the intermediate reduction results is very limited.

For “btor”-multipliers more polynomials remain when the full-adder is rewritten, as
only g1, g4 are eliminated in the first iteration and g3 is eliminated in the second iteration.
However, the remaining polynomials with leading terms s, c, g5, g2 are subsequently
considered for reduction.

5.2 Proof Certificates

AMULET generates PAC proofs as by-product of the polynomial reduction. The precise
algorithms for generating the proof certificates are presented in Paper D, where we give
a comprehensive tool description of AMULET.

Let G be the set of gate constraints and B(X) be the set of Boolean value constraints.
The syntax of the PAC rules is basically the same as presented in Paper B, except that we
add a deletion information in the prefix of each rule. Furthermore, we assume Boolean
models and thus automatically reduce exponents greater than one, which is indicated by
the side condition “q being reduced by B(X)”.

Addition d + : gi, gj , q;
gi, gj appearing earlier in the proof
or are contained in G and
q = gi + gj being reduced by B(X)
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Multiplication d ∗ : gi, p, q;

gi appearing earlier in the proof
or is contained in G
and p ∈ Z[X] being arbitrary and
q = pgi being reduced by B(X)

Adding the deletion information is similar to clause deletion for SAT proofs [49]
and helps to reduce the memory usage of our proof checker PACTRIM. Initially the
constraint set in PACTRIM consists of the given polynomials G. While checking the
proof rules for correctness, the conclusion polynomial q of each rule is added to the
constraint set. Thus, the constraint set increases with every proof rule, which leads to
memory exhaustion for large proof certificates.

We add a deletion information in the prefix of a proof rule whenever both antecedents
gi and gj of the current rule do not occur in subsequent proof rules anymore. This has
the effect that gi and gj will be removed from the constraint set, which decreases the
memory usage. However, adding a deletion information always affects both antecedents
of a proof rule. In Paper F we add standalone deletion rules that allow us to delete
individual polynomials from the constraint set. We provide experiments in Paper F that
show the positive effect of the deletion rules on the memory usage. Furthermore, we
extend PAC by adding extension rules and introduce indices to name polynomials.

In the experiments of Paper C, we generate and check DRUP and PAC proofs for 64-bit
multipliers, cf. Table C.1. We did not generate PAC proofs for multipliers with an input
bit-width larger than 64, which are presented in Table C.2.

We close this gap and these experiments are now included in Table 5.1 and Table 5.2
and follow the same structure as the experiments presented in Paper C.

Times are listed in seconds for Table 5.1 and in minutes for Table 5.2. In both tables
we first list the multiplier architecture and the input bit-width n. In the block “Verify”
we show the time needed for adder substitution (“sub”) and the time CADICAL needs
for equivalence checking (“cnf”). Column “aig” shows the time AMULET needs to
verify the rewritten multiplier. The computation times are summed up in column “tot”.

The second block “Certify” shows the time of the same tools when proof generation
is enabled. Proof generation does neither affect adder substitution nor the SAT solver,
but has an effect on the verification time of AMULET. The block “Check” shows the
time DRAT-TRIM [99] needs to validate the DRUP-proof generated by the SAT solver
(“cnf”) and the time PACTRIM needs to validate the PAC proof (“aig”). Note, that we
exclude the column “cnf” from Table 5.2, because the corresponding computation times
are always less than 30 seconds, and thus all entries in the respective column are zero.
Furthermore, we list the input size of the AIG, i.e., the number of nodes and the proof
length of the DRUP and PAC proofs.
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Verify Certify Check input proof len
architecture n sub cnf aig tot sub cnf aig tot cnf aig tot total aig cnf aig
btor 128 0 0 9 10 0 0 15 15 0 10 10 26 0.1 0 0.5
kjvnkv 128 0 0 9 9 0 0 14 14 0 15 15 29 0.2 0 0.8
sp-ar-rc 128 0 0 10 10 0 0 14 14 0 16 16 30 0.2 0 0.8
sp-dt-lf 128 0 2 13 15 0 2 19 21 1 17 18 40 0.2 0.1 0.8
sp-wt-bk 128 0 1 18 20 0 1 20 21 0 18 18 40 0.2 0.1 0.8
btor 256 1 0 119 120 1 0 160 160 0 60 61 222 0.5 0 2.0
kjvnkv 256 1 0 84 86 1 0 113 113 0 87 87 201 0.8 0 3.1
sp-ar-rc 256 1 0 84 86 1 0 114 114 0 92 92 207 0.8 0 3.1
sp-dt-lf 256 3 6 164 174 3 6 169 176 2 102 104 283 0.8 0.4 3.1
sp-wt-bk 256 3 3 170 177 3 3 176 180 1 105 106 289 0.8 0.3 3.1

Table 5.1: Certification Time (time in sec, input and proof length in 106).

Verify Certify Check input proof len
architecture n sub aig tot sub aig tot aig tot total aig cnf aig
btor 512 0 16 16 0 23 23 7 7 30 2.1 0 7.8
kjvnkv 512 0 13 13 0 15 15 9 9 25 3.1 0 12.3
sp-ar-rc 512 0 13 13 0 16 16 10 10 26 3.1 0 12.3
sp-dt-lf 512 1 25 26 1 25 26 11 11 37 3.1 1.0 12.3
sp-wt-bk 512 1 26 27 0 26 26 11 11 38 3.2 0.6 12.4
btor 1024 2 177 179 2 219 219 51 51 272 8.4 0 31.4
kjvnkv 1024 2 91 93 2 172 172 72 72 245 12.6 0 49.2
btor 2048 17 1 493 1 510 17 2 552 2 552 430 430 2 982 33.5 0 125.8
kjvnkv 2048 18 1 129 1 147 18 2 077 2 077 1 228 1 228 3 307 50.3 0 197.0

Table 5.2: Certification Time (time in min, input and proof length in 106).
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Chapter 6

Paper D: SAT, Computer Algebra,
Multipliers
Paper D is an extension of Paper C. In Paper C we combined SAT and computer algebra
to tackle verification of complex multiplier architectures. In our approach we identify
whether the multiplier circuit contains a complex FSA and, if necessary, substitute the
complex adder by a simpler adder circuit. The replacement is verified using a SAT solver
and the rewritten multiplier is verified using computer algebra techniques.

In Paper C we introduced our tool AMULET that applies adder substitution and
verification of integer multipliers fully automatically. We briefly described AMULET in
Paper C, however, the main focus in Paper C is on the theoretical aspects of combining
SAT and computer algebra.

In Paper D we give a rigorous system description of AMULET and present the
different options “substitution”, “verify”, and “certify”. In the “substitution”-phase, we
identify whether the FSA is a GP adder thanks to the specific structure that distinguishes
them from simple adders. If the FSA is a GP adder, we replace it by an equivalent
ripple-carry adder. A bit-level miter is generated in order to verify the equivalence of
the two adder circuits and a rewritten multiplier circuit in AIG format is returned.

We always apply “substitution” before the input multiplier is verified or certified. In
“verify”, AMULET reads the (rewritten) multiplier, applies the preprocessing steps as
presented in Paper C, and verifies the circuit using our incremental verification algorithm
presented in Paper A. The incremental verification algorithm of Paper A is tailored
towards the multiplier specification of unsigned integer multipliers. However, we also
generalized our incremental verification algorithm to signed and truncated multipliers
in Paper C. At that point we did not present how the incremental algorithm of Paper A
can be generalized to different multiplier specifications. We close this gap in Paper D,
where we present small adjustments that are necessary to make our algorithm applicable
for signed and truncated multipliers too.

The “certify”-phase extends “verify” and a proof certificate in the PAC format is
generated, which can be checked by our standalone proof checker PACTRIM. We treated
proof generation only on a high level in Paper C. In Paper D we discuss how the proof
rules are generated in AMULET and present the differences of proof generation during
preprocessing and when the incremental verification algorithm is applied.
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Figure 6.1: Addition of 4 polynomials in sequence (left) and tree-based (right).

6.1 Proof Generation

In the preprocessing steps we eliminate variables from the set of gate constraints to
rewrite and simplify the D-Gröbner basis. In order to eliminate a variable v from
the D-Gröbner basis, we reduce a polynomial p, which contains v in the tail, by the
gate constraint q, whose leading term is equal to v. Since both polynomials p and q
are contained in the ideal, we generate a multiplication and addition rule to cover the
rewriting step.

Example 6.1. Let p = 5x − 2y and q = −y + 3z such that I = 〈p, q〉 ⊆ Z[x, y, z]
and assume we want to eliminate y from I . Reduction of p by q yields the polynomial
r = 5x− 6z ∈ Z[x, z]. The corresponding PAC rules are

∗ : −y + 3z, −2, 2y − 6z;
+ : 5x− 2y, 2y − 6z, 5x− 6z;

In the incremental verification algorithm, we reduce the column-wise specifications
by the elements of the sliced D-Gröbner basis. In contrast to preprocessing, the column-
wise specifications are not contained in the D-Gröbner basis. If we would construct
the proof as in Ex. 6.1, checking the addition rule would yield an error, because the
column-wise specifications neither appear earlier in the proof nor are contained in the
set of given polynomials.

To overcome this issue we generate proofs similar to the approach in Paper B. We
generate the multiplication rules and push each conclusion polynomial of a multiplication
rule on a stack. When reduction of a slice-wise specification is completed, we generate
addition rules, which sum up the elements of the stack in order to derive the column-wise
specifications. Finally, the column-wise specifications are multiplied by constants and
are summed up to yield the full circuit specification L.

We do not sum up the polynomials in sequence, but use a tree-based addition approach,
cf. Fig. 6.1 in order to reduce the size of the intermediate polynomials.

Example 6.2. Let L = −8s3 − 4s2 − 2s1 − s0 + 4a1b1 + 2a0b1 + 2a1b0 + a0b0 be
the specification of a 2-bit multiplier and further let I = 〈−s3 + c1,−s2 − 2c1 + c0 +
a1b1,−s1− 2c0 + a1b0 + a0b1,−s0 + a0b0〉 ⊆ Z[s3, s2, s1, s0, c1, c0, a1, a0, b1, b0] be
the ideal generated by the column-wise specifications.
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mult n
tree sequence

factor
time size time size

sp-ar-rc 4 0.01 1 845 0.01 1 942 1.05
sp-ar-rc 8 0.02 10 537 0.01 11 938 1.13
sp-ar-rc 16 0.06 48 997 0.06 63 518 1.29
sp-ar-rc 32 0.28 212 516 0.34 346 774 1.63
sp-ar-rc 64 1.60 895 418 2.28 2 063 750 2.30

btor 4 0.01 1 291 0.01 1 362 1.05
btor 8 0.01 7 112 0.01 8 800 1.23
btor 16 0.05 33 198 0.05 54 252 1.63
btor 32 0.24 145 639 0.33 353 476 2.42
btor 64 1.54 620 282 2.70 2 473 332 3.98

Table 6.1: Proof size and checking time (in sec) for different addition approaches.

We show that L ∈ I and the corresponding PAC rules are

∗ : −s3 + c1, 8, −8s3 + 8c1;
∗ : −s2 − 2c1 + c0 + a1b1, 4, −4s2 − 8c1 + 4c0 + 4a1b1;
∗ : −s1 − 2c0 + a1b0 + a0b1, 2, −2s1 − 4c0 + 2a1b0 + 2a0b1;
+ : −8s3 + 8c1, −4s2 − 8c1 + 4c0 + 4a1b1, −8s3 − 4s2 + 4c0 + 4a1b1;
+ : −2s1 − 4c0 + 2a1b0 + 2a0b1, −s0 + a0b0, −2s1 − s0 − 4c0 + 2a1b0 + 2a0b1 + a0b0;
+ : −8s3 − 4s2 + 4c0 + 4a1b1, −2s1 − s0 − 4c0 + 2a1b0 + 2a0b1 + a0b0, L;

This example is very small, thus adding up the factors in sequence does not make a
difference in regard of the number of monomials in the conclusion polynomials:

+ : −8s3 + 8c1, −4s2 − 8c1 + 4c0 + 4a1b1, −8s3 − 4s2 + 4c0 + 4a1b1;
+ : −8s3 − 4s2 + 4c0 + 4a1b1, −2s1 − 4c0 + 2a1b0 + 2a0b1,

− 8s3 − 4s2 − 2s1 + 4a1b1 + 2a1b0 + 2a0b1;
+ : −8s3 − 4s2 − 2s1 + 4a1b1 + 2a1b0 + 2a0b1, −s0 + a0b0, L;

However, this example still shows the idea of our tree-based approach, which is to
avoid that we collect and carry along the n2 partial products. We run experiments
on “btor”- and “sp-ar-rc”-multipliers for different input bit-widths n and either add
the polynomials in sequence or in a tree-based scheme. The resulting proof sizes and
checking times are depicted in Table 6.1. It can be seen that adding the polynomials
in sequence leads to larger proof sizes and thus longer checking time and the factor
increases with the bit-width. For 64-bit “btor”-multipliers the proof size is four times
larger when the polynomials are added in sequence compared to a tree-based scheme.
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6.2 Proof Size

We elaborate on the proof metrics of “btor”-multipliers in Paper D. As already discussed,
this multiplier architecture is very simple and consists only of full- and half-adders,
which are arranged in a grid-like structure, cf. Fig. 2.2.

In Paper B we empirically examine proof length, size, and degree of these benchmarks
and derive a proof length in O(n2), proof size in O(n3) and a degree of 5. In Table 4.1
of Chap. 4, we give experimental evidence that the degree, proof length, and proof size
of the certificates generated by AMULET are smaller compared to the proof certificates
generated by the CAS Mathematica.

We derive formal proofs of these metrics in Paper D. We give a precise polynomial
bound of 16n2 − 20n− 1 for the proof length and prove that the degree is 3. We are
only able to derive an upper bound of O(n2 log(n)) for the proof size because of the
tree-based addition approach. Depending on the number of polynomials that are summed
up, different intermediate summands are generated.

In Paper D we measure degree, proof length, and size only for the addition and
multiplication rules. We do not consider the original constraint set in the proofs of
Thms. D.20, D.21, and D.22. In the following corollaries we adept the proof metrics to
also contain the set of given polynomials, i.e., the gate constraints G(C)∪ {l}. It can be
seen that the degree and the complexity of the proof sizes remain the same and only the
polynomial bound for the proof length changes.

Corollary 6.3. The degree of PAC proofs of “btor”-multipliers, including the set of
given polynomials, is 3.

Proof. We need to investigate whether G(C) ∪ {l} contains polynomials with a degree
higher than 3. The set G(C) contains only polynomials induced by AIG nodes. These
polynomials have degree 2, as can be seen in Fig. D.4. Since l has degree 0, the highest
degree in the PAC proof remains 3.

Corollary 6.4. The proof length of “btor”-multipliers, including the set of given poly-
nomials, is 24n2 − 9n.

Proof. We need to add the number of polynomials in G(C) ∪ {l} to the polynomial
bound 16n2 − 20n− 1, which is derived in Thm. D.20. Following from Lemma D.19
|G(C)| = 8n2 − 9n and thus the proof length is 16n2 − 20n− 1 + 8n2 − 9n+ 1 =
24n2 − 9n.

Corollary 6.5. The proof size of “btor”-multipliers, including the set of given polyno-
mials, is in O(n2 log(n)).

Proof. The size of each polynomial in G(C) is at most 5, see Fig. D.4. Thus the size of
G(C)∪ {l} is at most 5(8n2− 9n) + 1, which does not affect the complexity class.
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Chapter 7

Paper E: From DRUP to PAC and
Back
In Paper C we combined SAT and computer algebra to successfully verify large complex
multiplier architectures. If the FSA in a multiplier is a GP adder, we replace the
complex adder by an equivalent ripple-carry adder. A bit-level miter is generated,
which is translated into CNF and given to a SAT solver that verifies the correctness of
the substitution step. The rewritten multiplier is verified by our tool AMULET using
computer algebra techniques.

In both tools we generate proof certificates, which validate the verification results.
However, since two different verification techniques are involved, two proof certificates
in different formats are generated. The SAT solver generates proofs in DRUP [49]
format, which can be validated by DRAT-TRIM [99] and AMULET generates PAC
proofs, which can be checked by our proof checker PACTRIM.

The proofs are not connected, which leaves a hole in the certification argument. It
would be possible to apply compositional reasoning using interactive theorem prov-
ing [54], but that requires manual interaction.

In Paper E we show how to merge the two proof certificates in order to derive a single
proof certificate in one format. We show how DRUP proofs can be translated into PAC
proofs and vice versa. To translate the DRUP proof generated by the SAT solver into
PAC, we encode the CNF as a set of polynomials and generate PAC rules that model the
resolution steps used to derive the RUP clauses. Both PAC proofs are merged in order to
derive one single PAC proof.

To get from PAC rules to DRUP, we generate a SMT encoding of the PAC proof.
SMT solvers are able to translate SMT encodings into AIGs, which can be further
converted into CNF. The generated CNF is given to a SAT solver, where a DRUP proof
is generated. The DRUP proofs are combined in order to derive one single proof.

We demonstrate the abilities of translating one proof format into the other on our
use case of Paper C. However, the demonstrated techniques are not limited to this
application. It turns out that PAC proofs are complete, more compact and faster to check.
Due to the usage of SMT solvers gaps remain in the merged DRUP proof.
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7.1 DRUP to PAC

AMULET generates the bit-level miter as an AIG, which is then internally converted
into CNF. We convert DRUP proofs into the PAC format by first encoding each node of
the AIG as a polynomial. These polynomials are added to the original constraint set of
the PAC proof. Algebraic operations are applied to derive the polynomial representation
of the clauses of the corresponding CNF, cf. Ex. E.3. Second, we need to convert the
derived RUP clauses into PAC. We generate PAC rules, which model the resolution
steps needed to derive each RUP clause.

7.1.1 Traces

A DRUP proof only lists the RUP clauses and does not contain information how these
clauses are derived. Hence we decided in Paper E, to use the TraceCheck proof format
instead. The TraceCheck format is a compact proof format for resolution proofs and has
the format “idx clause 0 antecedents 0”, where the antecedents are the indices of the
clauses used to derive the conclusion clause using resolution. Lines with trailing double
zeros mark initial clauses.

Example 7.1, taken from Paper E, shows a DRUP proof and a TraceCheck proof for
the same SAT problem. It can be seen that the derived clauses in the DRUP format and
the TraceCheck format are the same. However, the TraceCheck format, contains the
information we need to generate PAC rules.

Example 7.1. This is an unsatisfiable CNF in DIMACS format (left) with a DRUP
(middle) and a TraceCheck (right) proof.

p cnf 3 5 -2 0 1 1 -2 -3 0 0
1 -2 -3 0 d 3 0 2 1 2 0 0
1 2 0 d 1 -2 -3 0 3 -1 -2 0 0
-1 -2 0 d -1 -2 0 4 -1 2 0 0
-1 2 0 0 5 3 0 0

3 0 6 -2 0 3 1 5 0
7 0 4 2 6 0

In Paper C we use the SAT solver CADICAL [15] to verify the bit-level miter.
However, CADICAL only produces DRUP proofs and does not provide TraceCheck
proof certificates. Thus we use the SAT solver PICOSAT [11] in Paper E.

The size of the corresponding PAC proof depends highly on the proof generated by
the SAT solver and it frequently happens that parts of the traces are equal. In Paper E
we do not identify whether sub-traces are shared and repeatedly generate the same proof
rules, which adds redundancy but reduces the amount of polynomials that the checker
has to consider at a given point of time, because we can apply deletion.

The experiments in Table 7.1 depict the amount of redundancy in our proofs. We use
the same benchmarks as in Paper E and show the time and memory needed to check the
PAC proof certificate. Furthermore, we list the number of proof rules and the percentage
of redundant proof rules. In column “max” we list the maximum number of repetitions
for one single proof line.

46



7.1 DRUP to PAC

architecture n
Paper E No redundancy

sec MB length red max sec MB length

sp-ar-cl 8 0 11 37 167 36% 35 0 8 19 230
sp-bd-ks 8 0 14 57 079 36% 53 0 14 31 175
sp-dt-lf 8 0 15 53 850 36% 47 0 13 28 464
bp-ct-bk 8 0 11 46 115 34% 42 0 9 24 976
bp-wt-cl 8 0 17 67 951 35% 37 0 18 37 002

sp-ar-cl 16 2 48 185 588 39% 128 1 47 93 095
sp-bd-ks 16 2 56 209 249 37% 85 1 53 113 016
sp-dt-lf 16 1 36 136 349 34% 45 1 33 76 734
bp-ct-bk 16 1 33 128 720 35% 53 1 29 69 685
bp-wt-cl 16 11 165 614 742 45% 256 9 202 267 246

sp-ar-cl 32 32 405 1 597 897 47% 511 26 568 628 053
sp-bd-ks 32 8 224 817 956 40% 230 6 215 421 014
sp-dt-lf 32 3 82 321 720 33% 69 2 75 184 096
bp-ct-bk 32 2 57 217 128 30% 46 2 50 133 490
bp-wt-cl 32 248 1 716 5 536 176 49% 884 212 3 687 2 096 071

sp-bd-ks 64 18 400 1 440 943 34% 145 15 395 861 254
sp-dt-lf 64 10 206 816 572 32% 95 8 179 479 951
bp-ct-bk 64 7 119 459 262 24% 56 6 107 311 302

Table 7.1: Proof Checking (in bold the fastest/most memory efficient version).

It can be seen that between 30% and 50% of the proof rules are redundant and for
example for “sp-ar-cl-32” the same proof rule is derived 511 times. We modify the tool
DRUP2PAC of Paper E to detect and remove repeated proof rules. The results are shown
in the second block of Table 7.1. It can be seen that proof checking time is around
25% faster and the proof length is significantly lower compared to proofs that include
redundant proof rules.

7.1.2 Extensions

To reduce the size of polynomials that model clauses, we add polynomials of the form
−fx + 1− x = 0 to the original constraint set, where x represents a variable that occurs
in the PAC proof and fx has to be a new variable. By adding the above equation we
model that fx represents the negation of the Boolean variable x.

In PCR, cf. Sect. 2.5.1, these polynomials are added as axioms to PC in order to
admit shorter polynomial representations of clauses. In PAC we do not automatically
assume these polynomials as axioms, but add them to the initial constraint set.
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Example 7.2. The clause x ∨ y ∨ z can be translated to x̄ ∧ ȳ ∧ z̄ = ⊥ using De
Morgan’s laws. The corresponding polynomial equation is (1− x)(1− y)(1− z) = 0,
which generates 23 monomials, when expanded. If on the other hand we introduce
−fx + 1 − x = 0, −fy + 1 − y = 0, −fz + 1 − z = 0, the same equation can be
depicted as fxfyfz = 0, consisting of one monomial.

However, extending the original constraint set with additional polynomials can change
the models. We do not check the original constraint set, thus it might happen that we
add a polynomial, which affects the models of the constraint set. For example, we could
simply add the constant polynomial 1 to our knowledge base, which makes any PAC
proof obsolete. Thus, we want to assume as few polynomials as possible, i.e., in our
application we only want to assume the gate constraints as original constraint set. We
address this issue in Paper F, where we add a proper extension rule to PAC.

7.2 PAC to DRUP

To convert PAC proofs into DRUP proofs, we encode each PAC rule in SMT format [5]
using the theory over quantifier-free fixed size bit-vectors.

Example 7.3. Consider the following PAC proof. We are given the polynomials 3x− z
and 2y − 3x and generate the following PAC rules

+ : 3x− z, 2y − 3x, 2y − z;
∗ : 2y − z, 2, 4y − 2z;

Checking the correctness of this rule can be encoded as:

(set-logic QF_BV)
(declare-fun x () (_ BitVec 1))
(declare-fun y () (_ BitVec 1))
(declare-fun z () (_ BitVec 1))
(assert
(let (($v0 (bvadd (bvand #b0011 ((_ sign_extend 3) x))

(bvand #b1111 ((_ sign_extend 3) z)))))
(let (($w0 (bvadd (bvand #b0010 ((_ sign_extend 3) y))

(bvand #b1101 ((_ sign_extend 3) x)))))
(let (($p0 (bvadd (bvand #b0010 ((_ sign_extend 3) y))

(bvand #b1111 ((_ sign_extend 3) z)))))
(let (($e0 (= (bvadd $v0 $w0) $p0)))

(let (($v1 (bvadd (bvand #b0010 ((_ sign_extend 3) y))
(bvand #b1111 ((_ sign_extend 3) z)))))

(let (($w1 #b0010))
(let (($p1 (bvadd (bvand #b0100 ((_ sign_extend 3) y))

(bvand #b1110 ((_ sign_extend 3) z)))))
(let (($e1 (= (bvmul $v1 $w1) $p1)))

(not (and $e0 $e1)))))))))))
(check-sat)
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For each PAC rule we define corresponding formulas vi, wi, pi, and ei. In a correct
PAC proof all ei are true, thus the SMT formula is unsatisfiable. We use the SMT solver
BOOLECTOR [83] to solve the SMT formula. Furthermore BOOLECTOR is able to
generate a corresponding AIG, which is translated into CNF using the tool AIG2CNF

from the AIGER library [16].
We state in Paper E, that this encoding leaves gaps in the certification arguments.

First of all, our modeling is not complete. For correct PAC proofs, three properties need
to hold. The first property is the inference property, i.e, that the conclusion polynomials
of each rule are computed correctly. The second property is the connection property,
which checks that the antecedent polynomials of the rules are already known. The third
property is that the target polynomial is inferred or that a correct refutation was derived.
The SMT encoding of Paper E only checks the inference property, which can also be
seen in Ex. 7.3. In order to check the connection property, we could introduce a naming
variable for each original constraint and use these names as antecedents in the proof
rules, cf. Ex. 7.4.

Example 7.4. Consider again the PAC proof from Ex. 7.3. We encode the SMT formula
as follows:

(set-logic QF_BV)
(declare-fun x () (_ BitVec 1))
(declare-fun y () (_ BitVec 1))
(declare-fun z () (_ BitVec 1))
(assert
(let (($g0 (bvadd (bvand #b0011 ((_ sign_extend 3) x))

(bvand #b1111 ((_ sign_extend 3) z)))))
(let (($g1 (bvadd (bvand #b0010 ((_ sign_extend 3) y))

(bvand #b1101 ((_ sign_extend 3) x)))))

(let (($p0 (bvadd (bvand #b0010 ((_ sign_extend 3) y))
(bvand #b1111 ((_ sign_extend 3) z)))))

(let (($e0 (= (bvadd $g0 $g1) $p0)))

(let (($w1 #b0010))
(let (($p1 (bvadd (bvand #b0100 ((_ sign_extend 3) y))

(bvand #b1110 ((_ sign_extend 3) z)))))
(let (($e1 (= (bvmul $p0 $w1) $p1)))

(not (and $e0 $e1))))))))))
(check-sat)

Checking that the target polynomial is inferred, is more involved and possibly requires
the usage of quantifiers, because we need to model polynomial equality for all possible
choices of input variables. This would close the gaps from the modeling side. However,
as discussed in Paper E, we are not able to track internals of SMT solving. Thus the
generated AIG contains simplifications that are not covered in the proof, which still
leaves a gap in the certificate. Closing this gap is an interesting future work.
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Chapter 8

Paper F: The Proof Checkers
Pacheck and Pastèque for the
Practical Algebraic Calculus
In Paper B we introduced the practical algebraic calculus (PAC), which is able to cover
proof certificates for algebraic reasoning. We extend this format in Paper F and present
our new proof checkers PACHECK and PASTÈQUE. PACHECK is implemented in C
and checks PAC proofs in the new syntax very efficiently. PASTÈQUE is verified in
Isabelle/HOL. As stated in Sect. 1.2, PACHECK is implemented by the author of this
thesis and PASTÈQUE is implemented and verified by one of the co-authors of Paper F.

PAC is based on the polynomial calculus (PC) [34]. PC is well-studied on the theory
side but has practical limits that are discussed in Chap. 4. PAC extends PC by adding
information of the antecedents, such that efficient proof checking is possible. However,
in PAC as defined in Paper B, the antecedent polynomials have to be provided explicitly.
To reduce the size of the proof file, we introduce indices to name polynomials, and
thus derive a more condensed proof format, because we don’t spell out the antecedent
polynomials again but access thems by their names.

Example 8.1. Consider the following PAC proof. The file <input> contains the given
set of polynomials and the PAC rules are contained in <proof>. The left side shows
the PAC proof in the format of Paper B, the right side shows the condensed format as
introduced in Paper F.

<input> <input>
x-y; 1 x-y;
xz+yz+z; 2 xz+yz+z;

<proof> <proof>

*: x-y, z, xz-yz; 3 * 1, z, xz-yz;
+: xz-yz, xz+yz+z, xz+z; 4 + 3, 2, xz+z;

Furthermore, we define a standalone deletion rule, which helps to reduce the memory
usage of our proof checkers. In Papers C and D we already presented a basic version
of a deletion rule, where we added “d” in the prefix of a proof rule to mark that the
antecedents of a corresponding rule can be deleted from the constraint set. In Paper F,
we introduce a deletion rule, which allows deleting individual rules, similar to clause
deletion in DRUP.
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multiplier length deg
PACHECK PASTÈQUE

no delete no index default uloop
(106) sec MB sec MB sec MB sec MB sec MB

sparcl-32 1.6 256 23 773 36 354 21 353 121 40 654 113 9 492
spdtlf-32 0.3 46 2 122 3 73 2 73 11 1 679 11 886
bpctbk-32 0.2 25 1 86 2 52 1 51 8 1 600 7 1 068
bpwtcl-32 5.6 764 193 4 324 302 1 430 181 1 428 786 58 867 774 64 404

Table 8.1: Proof Checking (in bold the fastest version).

As a further contribution, we discuss an extension rule. In Paper E we presented PAC
proofs, where we modified the original constraint set and added polynomials to derive
shorter proof rules. In PCR these polynomials are added as axioms [3]. However, as we
discussed in Chap. 7, adding new polynomials to the original constraint set may affect
the models of the original constraint set and thus introduce errors. Hence, we propose
an extension rule that checks that extensions do not change the models of the given set
of polynomials. In the experiments of Paper F, we modify the experiments of Paper E
and add all polynomials defining Boolean negation as extensions to the PAC proof. We
discuss in Sect. 8.1 that we can further enhance the experiments of Paper E, such that
only the gate constraints of the input multiplier are contained in the original constraint
set. All constraints, which are generated by adder substitution, are added as extensions,
which allows cleaner proof certificates.

8.1 Extensions

Recall our verification approach of Paper C, where we substitute complex FSAs in
multipliers by simple ripple-carry adders. A bit-level miter is generated, which is passed
on to a SAT solver to verify the equivalence of the adders. Computer algebra techniques
are used to verify the correctness of the rewritten multiplier, cf. Fig. D.3. Since two
different solving techniques are used, two proof certificates in different formats are
generated. SAT solvers generate a DRUP proof and computer algebra techniques produce
a PAC proof. In the experiments of Paper E, where we translate the DRUP proof into
PAC, all gate constraints of the given multiplier, the equivalent ripple-carry adder, and
the bit-level miter are assumed as original constraints in the PAC proof. We even added
polynomials that define Boolean negation to the original constraint set.

We are able to further modify our experiments and derive PAC proofs, which only
contain the gate constraints of the given multiplier as original constraints. All other
polynomials, which are induced by the ripple-carry adder and the bit-level miter are
added as extension rules to the PAC proof. Thus, the original constraint set of the PAC
proof only consists of the gate polynomials induced by the given multiplier. Table 8.1
contains the modified experiments, which will be included in the final version of Paper F.
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architecture length add add + sort

(106) sec MB sec MB

btor-128 0.4 5 90 5 90
btor-256 1.6 24 356 26 356
btor-512 6.3 137 1 420 144 1 421
sparrc-128 0.6 6 134 6 134
sparrc-256 2.3 27 532 28 532
sparrc-512 9.4 132 2 130 140 2 130

sparcl-32 1.6 21 352 21 352
spdtlf-32 0.3 2 73 2 73
bpctbk-32 0.2 1 51 1 51
bpwtcl-32 5.6 181 1 426 181 1 426

Table 8.2: Comparison of “add” and “add+sort” for the performance of PACHECK.

8.2 PACHECK

In Paper F we give a system description of our proof checker PACHECK, which validates
PAC proofs in the new syntax and is also backwards compatible to the original syntax
of PAC presented in Paper B.

8.2.1 Addition algorithm

In PACHECK we modify the polynomial-addition algorithm that is used in PACTRIM.
In our previous proof checker PACTRIM we add two polynomials by pushing the
monomials of both polynomials on a stack. The stack is sorted and monomials with
equal terms are merged.

However, polynomials are internally stored as ordered linked lists of monomials
in PACHECK. Thus, the monomials in the polynomials are already sorted and we
use this property while adding two polynomials. We iterate over both polynomials
simultaneously and always push the largest monomial on a stack. If both polynomials
contain a monomial with the same term, we merge the monomials by adding the
coefficients and push the merged monomial on the stack unless it is zero. The monomials
on the stack are automatically ordered and we do not have to sort the stack. Table 8.2
shows the effect of the addition algorithm on the benchmarks of Paper F. The columns
“add” show the time and memory needed of PACHECK. In the columns “add + sort”
PACHECK uses the addition algorithm of PACTRIM, where the stack needs to be sorted.
It can be seen that the effect is rather limited and only in proofs with more than a million
rules a small optimization of the computation time is visible.
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u x y

v

x u y

x y v

Figure 8.1: Term representation w.r.t. v > u > x > y (left) and x > u > y > v (right).

8.2.2 Sorting

Terms and polynomials are represented as ordered linked lists in PACHECK, which are
sorted based on a defined variable order. The terms are shared internally, hence it is
important to choose an appropriate order, because the variable order has an influence on
the number of generated terms and thus on the memory usage of PACHECK.

Example 8.2. Assume we want to represent the terms uxy and vxy. Figure 8.1 shows
the internal representation of these terms for two different variable orderings. For the
ordering v > u > x > y depicted on the left side, the internal sharing is maximal and
only 4 terms are allocated. For the ordering x > u > y > v depicted on the right side,
terms cannot be shared and thus 6 terms need to be allocated.

It is crucial to identify a good term ordering. However, the best ordering that maxi-
mizes internal sharing cannot be determined in advance from the original constraint set,
as it highly depends on the applied operations in the proof rules.

In PACHECK as presented in Paper F, we order variables using the function “strcmp”,
which lexicographically sorts by the names of the variables. A further option is to use
the same variable ordering as in the given proof files. That is, whenever we read a new
variable from a proof file, we assign an increasing numeric value to the variable and
sort according to this value. In Table 8.3 we compare these two orderings and also
include the respective reverse orderings. It can be seen that there is no clear preference
towards a specific ordering and the number of generated terms highly depends on the
given problem. We added the ability to select between the four orderings to PACHECK.
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mult len
strcmp rev. strcmp level rev. level

(106) terms MB terms MB terms MB terms MB

btor-128 0.4 421 k 90 453 k 90 421 k 90 453 k 90
btor-256 1.6 1 694 k 356 1 823 k 355 1 695 k 356 1 824 k 356
btor-512 6.3 6 796 k 1 420 7 317 k 1 420 6 797 k 1 421 7 318 k 1 421
sparrc-128 0.6 711 k 134 694 k 133 726 k 134 727 k 134
sparrc-256 2.3 2 864 k 532 2 797 k 532 2 927 k 532 2 928 k 532
sparrc-512 9.4 11 494 k 2 130 11 230 k 2 129 11 752 k 2 130 11 754 k 2 130

sparcl-32 1.6 9 685 k 352 17 931 k 478 17 931 k 478 9 681 k 352
spdtlf-32 0.3 456 k 73 539 k 78 547 k 78 451 k 72
bpctbk-32 0.2 264 k 51 260 k 52 266 k 52 261 k 51
bpwtcl-32 5.6 88 115 k 1 426 151 162 k 2 559 152 788 k 2 567 86 641 k 1 415

Table 8.3: Sorting methods.
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Chapter 9

Evaluation
In this chapter we evaluate the contributions of this thesis and compare our introduced
approaches to related work. In our experiments we use an Intel Xeon E5-2620 v4 CPU
at 2.10 GHz (with turbo-mode disabled) with a memory limit of 128 GB. The time is
listed in rounded seconds (wall-clock time) and the time limit is set to 300 seconds.

9.1 Circuit Verification

In the experiments in this section we verify multiplier circuits without proof generation.
We compare our approaches of Papers A and C to related work [31, 80]. As discussed in
Sect. 2.6 the tools of [93] are not available, thus a comparison is not possible.

In the approach of Paper A we use AIGMULTOPOLY to translate multipliers given as
AIGs into polynomials. We apply preprocessing techniques, where we eliminate internal
variables of certain sub-circuits, which are identified using syntactic pattern matching.
The CAS Mathematica [102] and Singular [38] are used to apply polynomial reduction
based on our incremental verification algorithm. In the experiments we measure the
time from starting AIGMULTOPOLY until Mathematica resp. Singular is finished.

We enhance the method in Paper C, where we combine SAT and computer algebra
to identify and replace complex FSA of the multiplier. SAT solvers are used to check
the equivalence of the adder circuits and our dedicated reduction engine AMULET

verifies the rewritten multiplier using computer algebra techniques. We measure the
time AMULET needs to apply adder substitution and circuit verification and include the
time the SAT solver CADICAL [15] needs to verify the equivalence of the adders. We
compare our tools to the current state-of-the-art of related work, cf. Sect. 2.6:

Mahzoon et al. [80] The authors of [80] propose a rewriting technique, where converging
gate cones in multipliers are detected and rewritten. Their tool RevSCA uses so-called
“atomic blocks” in order to speed-up rewriting by reducing the search space for finding
converging gates. Recently RevSCA-2.0 was published, which improves RevSCA and
also supports verification of signed multipliers.

Yu et al. [31] The method of [31] reduces the word-level output of a multiplier by the
circuit constraints in order to derive the input signature of the multiplier. The rewriting
algorithm has been integrated into the ABC [10] tool. A flag “atree” can be used to
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Figure 9.1: Verification time of “btor”-multipliers (in sec).

identify and rewrite full- and half-adders in the multipliers. However, this flag leads to
incompleteness, when the multipliers cannot be fully decomposed into adder trees.

9.1.1 Simple Multipliers

In our first experiment, we select the “btor”-multipliers with input bit-width n in the
interval [4, 128], generated by Boolector [83]. These multipliers can be fully decomposed
into full- and half-adders, as depicted in the left side of Fig. 2.2. The results are shown
in Fig. 9.1 and it can be seen that our approach of Paper C is much faster than our initial
approaches of Paper A. Singular has the problem that the number of ring variables is
already exceeded for input bit-width n = 100. The tool of Yu et al. [31], with “atree”
enabled, is slightly faster than our approach of Paper C. Both tools of [80] fail to
verify “btor”-benchmarks, RevSCA due to a segmentation fault and RevSCA-2.0 due to
incompleteness (returns “buggy multiplier”).

We repeat the experiment using “sp-ar-rc”-multipliers with input bit-widths n in the
interval [4, 128], which are generated using the tool GenMul [81]. These multipliers
can be seen on the right side of Fig. 2.2 and can be fully decomposed into full- and
half-adders too. Figure 9.2 shows the experimental results. The results of the approaches
of Paper A, Paper C and Yu et al. [31] are very similar to the experiments shown in
Fig. 9.1. It can again be seen that the approach of Paper C is much faster than our initial
approaches of Paper A, but slightly slower than the method of Yu et al. [31]. The tools
of Mahzoon et al. [80] are able to verify “sp-ar-rc”-multipliers, but are slower than our
approach of Paper C.
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Figure 9.2: Verification time of “sp-ar-rc”-multipliers (in sec).

Figure 9.3: Verification time of “bp-wt-cl”-multipliers (in sec).
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9.1.2 Complex Multiplier

In these experiments we select “bp-wt-cl”-multipliers, which are part of the AOKI-
benchmarks [53]. These multipliers are highly optimized to yield a logarithmic computa-
tion time. Partial products are generated using Booth-encoding, which are accumulated
in a Wallace-tree structure and the FSA is a carry look-ahead adder. The AOKI-
benchmarks are only available up to input bit-width 64, thus we generate benchmarks
with input bit-width n in the interval [4, 64].

For ABC [31], we turned off the option “atree”, because it leads to incompleteness.
The results can be seen in Fig. 9.3. Both approaches of Paper A and ABC exceed the
time limit for very small input bit-widths. RevSCA [80] times out for small benchmarks
but is able to verify multipliers of larger input bit-width. Our approach of Paper C is
faster than both tools of Mahzoon et al. [80].

9.1.3 Benchmark Suite

In order to derive a more comprehensive comparison over different multiplier architec-
tures, we consider all possible multipliers of the AOKI benchmarks with input bit-width
64. Following components can be combined to gain 192 different multipliers:

Part. Product Gen. Part. Product Accum. Final-Stage adder
Simple (AND gates) Array Ripple carry
Booth encoding Wallace tree Carry look-ahead

Balanced delay tree Ripple-block c. l.-ahead
Overturned-stairs tree Block c. l.-ahead
Dadda tree Ladner-Fischer
(4;2) compressor tree Kogge-Stone
(7,3) counter tree Brent-Kung
Red. binary addition tree Han-Carlson

Conditional sum
Carry select
Carry-skip fix size
Carry-skip var. size

The results can be seen in Fig. 9.4. Again, we deactivated the option “atree” in
ABC. Our approaches of Paper A are able to solve only one benchmark, namely the
“sp-ar-rc” multipliers. The approach of Yu et al. [31] is not able to solve any multiplier.
Our approach of Paper C is much faster than the solvers RevSCA and RevSCA-2.0
of Mahzoon et al. [80], but we are able to solve fewer instances in total compared to
RevSCA-2.0.

We compare AMULET to RevSCA-2.0 in Fig. 9.5 and Table 9.1. Multipliers, which
either use a “(7,3) counter tree” or a “redundant binary addition tree” as PPA are colored
in red and it can be seen that our approach fails to verify multipliers that contain these
architectures. We are currently investigating this issue.
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Figure 9.4: Verification of AOKI multipliers (in sec).

Figure 9.5: Comparison of AMULET and RevSCA-2.0 (in sec).
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AMULET
total

solved TO

RevSCA-2.0
solved 141 21 162
TO 8 10 18
buggy 1 11 12

total 150 42 192

Table 9.1: Comparison of AMULET and RevSCA-2.0.

Furthermore, for some instances RevSCA-2.0 returns “buggy multiplier”, although
AMULET is able to verify (some of) these multipliers and even provides proof certifi-
cates. These multipliers are contained in the line “buggy” in Tbl. 9.1.

9.2 Proof Generation and Checking

In this section we present experiments on proof generation and checking, where we
compare the methods presented in Paper B, C, and F. None of the related work supports
proof generation. The approach of Paper B uses Mathematica to generate the proof
certificates, which are checked by Singular or our own proof checking tool PACTRIM.

In the approach of Paper C, we generate the proof certificates as by-product of
verification in our reduction engine AMULET, which are checked by PACTRIM.

We introduce a new syntax of PAC in Paper F, where we add deletion and extension
rules and use indices to name polynomials. AMULET is modified to generate certificates
in the new syntax, which are checked by PACHECK or PASTÈQUE.

We certify “btor”-benchmarks up to input bit-width 128. The results for generating
the certificates can be seen in Fig. 9.6. It can be seen that proof certificates can only
be generated for multipliers with input bit-width less than 30 using our approach of
Paper B. The time needed to generate the proofs for Paper C and Paper F is the same,
because only the syntax is adapted in AMULET and the process for proof generation
remains the same.

Figure 9.7 shows that proof checking using our own implemented proof checking
tools is much more efficient than using Singular. Furthermore, the fastest proof checker
is PACHECK, which uses the condensed PAC syntax, introduced in Paper F.
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Figure 9.6: Proof generation of “btor”-multipliers (in sec).

Figure 9.7: Proof checking of “btor”-multipliers (in sec).
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Chapter 10

Conclusion
In this thesis, we presented several techniques to verify arithmetic circuits, in particular
multiplier circuits, using computer algebra. Furthermore, we developed a practical proof
calculus, which allows us to efficiently generate and check proof certificates in order to
validate the results of the automated reasoning tools.

The developed approaches were topics of six publications, which are included as
Papers A–F in the second part of the thesis. In Part I of the thesis, i.e., Chap. 3–8, we
discussed the ideas and results and reflected on the contributions of these papers. Addi-
tionally we gave a comprehensive evaluation of our developed techniques in Chap. 9.

In Paper A we gave a rigorous formalization of the approach of arithmetic circuit
verification using computer algebra for polynomial rings over fields and proved sound-
ness and completeness. We developed an incremental verification algorithm based on
column-wise slicing, which has the effect that the verification problem can be split
into smaller, more manageable sub-problems. Furthermore, we proposed rewriting
techniques that apply syntactic pattern matching to identify and rewrite structures in
the circuits. Our tool AIGMULTOPOLY translates circuits into polynomials, which can
be passed on to computer algebra systems, where polynomial reduction is applied. In
Chap. 3 we elaborated on the selected polynomial ring and discussed how modeling
our problem in polynomial rings over fields leads to bigger intermediate reduction re-
sults than for polynomial rings, which admit modular reasoning. We presented why
the incremental algorithm can only be applied column-wise and showed the effects
of different reduction orderings. Additionally, we discussed the drawbacks of using
computer algebra systems for arithmetic circuit verification.

Since the verification approach might not be error-free, we introduced in Paper B a
practical proof calculus, which allows us to capture low-level algebraic proofs. Our cal-
culus PAC instantiates the polynomial calculus (PC) [34] and can be checked efficiently
by our tool PACTRIM. In Chap. 4, we gave a more comprehensive comparison of the
proof formats PAC and PC and furthermore elaborated on the effects of adding Boolean
axioms to PAC. We presented in detail the procedure of generating proof certificates in
computer algebra systems.

In Paper C, we generalized the approach of multiplier verification to be applicable
in more general rings, which allow modular reasoning. We further combine SAT
and computer algebra to verify complex multiplier architectures. Certain parts of the
multiplier, i.e., the final-stage adders are hard to verify using computer algebra. In our
approach we identify whether the final-stage adder is a generate-and-propagate adder
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and, if necessary substitute the complex adder by an equivalent ripple-carry adder. The
replacement is checked by SAT solvers and the rewritten multiplier is verified using
our own implemented reduction engine AMULET. We generalized our preprocessing
techniques of Paper A, such that they do not rely on specific patterns in the multiplier.
In Chap. 5 we discussed why the new preprocessing approaches are more powerful
and subsume the preprocessing techniques of Paper A. Furthermore, we expanded the
discussion on proof generation and added missing experiments of Paper C.

Paper D extended Paper C and we provided a rigorous system description of our
reduction engine. We presented the developed algorithms for applying adder substitution
and circuit verification. Furthermore, we derived upper bounds for the proof length,
size, and degree of simple multiplier architectures. In Chap. 6 we further elaborated on
proof generation and discussed the effect of different addition orders. We completed the
discussion on proof metrics.

In Paper C two different verification techniques for circuit verification were used.
Thus two proof certificates in different proof formats were generated. In Paper E,
we aimed to merge both proofs, such that one single proof is generated. We derived
methods to translate DRUP proofs into PAC, which are complete. PAC proofs cannot
fully be translated into DRUP proofs, which leaves gaps in the certification arguments.
In Chap. 7, we further elaborated on proof merging. We showed why the DRUP-to-
PAC approach of Paper E leads to redundant proof rules and we discussed the need of
extension rules. Additionally, we expanded the discussion why the method to convert
PAC proofs into DRUP does not lead to complete DRUP proofs.

In Paper F we introduced a new syntax of PAC, which uses indices to name poly-
nomials. Furthermore, we extended PAC of Paper B and added deletion and extension
rules. We presented our proof checking tools PACHECK and PASTÈQUE, which are able
to check PAC proofs in the new syntax. In Chap. 8 we presented design decisions of
our tool PACHECK, in particular we discussed the addition algorithm and the choice of
variable sorting. Furthermore, we discussed and modified the experiments of Paper F.

In Chap. 9 we gave a comprehensive evaluation of our developed methods and
compared our techniques to the most recent related work. We selected simple and
complex multiplier architectures of different input bit-widths and applied verification,
certification, and proof checking. Our experiments showed that we are faster than related
work but our approach struggles for multipliers that contain certain components.

Tackling these architectures is an interesting future work. Furthermore, we want
to make our approach applicable to optimized multipliers, where gate synthesis and
technology mapping is applied to reduce the size and computation time of circuits.
Additionally we want to investigate floating points and other word-level operators.
Another idea for future work is to develop techniques that enhance proof generation and
lead to shorter proofs.
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Incremental Column-Wise
Verification of Arithmetic Circuits
Using Computer Algebra

To be published In the Special Issue on Formal Methods in Computer-Aided Design
of the International Journal on Formal Methods in System Design (FMSD) and is
currently available as an “Online First Article” 1.

This article extends and revises work presented in [17, 89, 91], which are published
in the Proceedings of the 17th International Conference on Formal Methods in Com-
puter Aided Design (FMCAD 2017) [89], in the Proceedings of the 19th International
Symposium on Symbolic and Numeric Algorithms for Scientific Computing (SYNASC
2017) [17] and in the Proceedings of the Design, Automation & Test in Europe Confer-
ence (DATE 2018) [91].
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Abstract Verifying arithmetic circuits and most prominently multiplier circuits is
an important problem which in practice still requires substantial manual effort. The
currently most effective approach uses polynomial reasoning over pseudo boolean
polynomials. In this approach a word-level specification is reduced by a Gröbner
basis which is implied by the gate-level representation of the circuit. This reduction
returns zero if and only if the circuit is correct. We give a rigorous formalization of this
approach including soundness and completeness arguments. Furthermore we present a
novel incremental column-wise technique to verify gate-level multipliers. This approach
is further improved by extracting full- and half-adder constraints in the circuit which
allows us to rewrite and reduce the Gröbner basis. We also present a new technical
theorem which allows us to rewrite local parts of the Gröbner basis. Optimizing the

1https://link.springer.com/journal/10703/onlineFirst
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Gröbner basis reduces computation time substantially. In addition we extend these
algebraic techniques to verify the equivalence of bit-level multipliers without using a
word-level specification. Our experiments show that regular multipliers can be verified
efficiently by using off-the-shelf computer algebra tools, while more complex and
optimized multipliers require more sophisticated techniques. We discuss in detail our
complete verification approach including all optimizations.

A.1 Introduction

Formal verification of arithmetic circuits is important to help to prevent issues like the
famous Pentimum FDIV bug. Even more than 20 years after detecting this bug the prob-
lem of verifying arithmetic circuits and especially multiplier circuits is still considered
to be hard. A common approach models the verification problem as a satisfiability (SAT)
problem, in which the circuit is translated into a formula in conjunctive normal form
(CNF) which is then passed on to SAT-solvers. In order to stimulate the development
of fast SAT solving techniques for arithmetic circuit verification, a large set of these
benchmarks was generated and the CNF encodings were submitted to the SAT 2016
competition. They are publicly available [12]. The competition results confirmed that
miters of even small multipliers produce very hard SAT problems. The weak perfor-
mance of SAT solvers on this benchmark set lead to the conjecture that verifying miters
of multipliers and other ring properties after encoding them into CNF needs exponential
sized resolution proofs [14], which would imply exponential run-time of CDCL SAT
solvers. However, this conjecture was recently rebutted. In [7] it was shown that such
ring properties do admit polynomial sized resolution proofs. But since proof search is
non-deterministic, this theoretical result still needs to be transferred into practical SAT
solving.

Alternative verification techniques use decision diagrams [22, 24], more specifically
binary decision diagrams (BDDs) and binary moment diagrams (BMDs) are used for
circuit verification. The drawback of BDDs is their high usage of memory for this kind
of benchmarks [22]. This issue can be resolved by using BMDs which remain linear in
the number of input bits of a multiplier. Actually BMDs and variants of them have been
shown to be capable of detecting the Pentium FDIV bug. However, the BMD approach
is not robust, it still requires explicit structural knowledge of the multipliers [29]. It is
important to determine the order in which BMDs are built, because it has tremendous
influence on performance. Actually only a row-wise backward substitution approach
seems to be feasible [28], which in addition assumes a simple carry-save-adder (CSA)
design.

The currently most effective approach for gate-level verification of arithmetic circuits
uses computer algebra [32, 78, 87, 89, 91, 93, 94, 103]. For each gate in the circuit a
polynomial is introduced which represents the relation of the gate output and the inputs
of the gate. To ensure that variables in the circuit are restricted to boolean values,
additional so-called “field polynomials” are introduced. Furthermore the word-level
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specification of the multiplier is modeled as a polynomial. If the circuit variables are
ordered according to their reverse topological appearance in the circuit, i.e., a gate output
variable is greater than the input variables of the gate, then the gate polynomials and field
polynomials form a Gröbner basis. As a consequence, the question if a gate-level circuit
implements a correct multiplier can be answered by reducing the multiplier specification
polynomial by the circuit Gröbner basis. The multiplier is correct if and only if the
reduction returns zero.

Related work [32, 103] uses a similar algebraic approach, which is called function
extraction. The word-level output of the circuit is rewritten using the gate relations
and the goal is to derive a unique polynomial representation of the gate inputs. In
order to verify correctness of the circuit this polynomial is then compared to the circuit
specification. This rewriting method is essentially the same as Gröbner basis reduction
and is able to handle very large clean multipliers but fails on slightly optimized multiplier
architectures. The authors of [78,87,104] focus on verification of Galois field multipliers
using Gröbner basis theory. In contrast we focus in our work [17, 89, 91] on integer
multipliers as the authors of [32, 93, 94, 103] do. In [93, 94] the authors propose a
sophisticated reduction scheme which is used to rewrite and simplify the Gröbner basis,
which as a consequence reduces computation time substantially. Several optimizations
are introduced which made their verification technique scale to large multipliers of
various architectures [53], but their arguments for soundness and completeness are rather
imprecise and neither the tools nor details about experiments are publicly available.

Inspired by these ideas we presented in [89] an incremental column-wise verification
technique for integer multipliers where a multiplier circuit is decomposed into columns.
In each column the partial products can be uniquely identified and we can define a
distinct specification for each slice relating the partial products, incoming carries, slice
output and outgoing carries of the slice. We incrementally apply Gröbner basis reduction
on the slices to verify the circuit. The incremental column-wise checking algorithm
is improved in [17, 91]. The idea in this work is to simplify the Gröbner basis by
introducing linear adder specifications. We search for full- and half-adder structures in
the gate-level circuit and eliminate the internal gates of the adder structures, with the
effect of reducing the number of polynomials in the Gröbner basis. Furthermore we
are able to include adder specifications in the Gröbner basis. Reducing by these linear
polynomials leads to substantial improvements in terms of computation time.

Alternatively to circuit verification using a word-level specification, it is also common
to check the equivalence of a gate-level circuit and a given reference circuit. This
technique is extremely important when it is not possible to write down the word-level
specification of a circuit in a canonical expression. In [95] equivalence checking of mul-
tiplier circuits is achieved by first extracting half-adder circuits from the accumulation of
partial products and then checking the equivalence of these extracted half-adder circuits.
Proofs of soundness and completeness are lacking. More recently [94] proposes an
algebraic variant of combinational equivalence checking based on Gröbner basis theory.
It is similar to SAT sweeping [70], and compares the circuits bit-wise, e.g., output bit by
output bit, again without soundness nor completeness proof.

As a further contribution we present an extension of our incremental column-wise
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verification approach, which can be used to incrementally derive the equivalence of
two arbitrary gate-level circuits in a column-wise fashion. We prove soundness and
completeness for this method.

This article extends and revises work presented earlier in [17, 89, 91]. Extending [89],
we provide a more detailed description of the algebraic approach, including several
examples. In Sect. A.4 we introduce additional rewriting methods, called “Partial Product
Elimination” and “Adder-Rewriting” [17,91], which help to further simplify the Gröbner
basis. We present the theory behind these rewriting approaches in Sect. A.5 including
a theoretical theorem [17], which allows that only a local part of the Gröbner basis is
rewritten without losing the Gröbner basis property. In Sect. A.8 we generalize our
incremental column-wise verification approach to an incremental equivalence checking
approach [91].

For this article we revised our engineering techniques and discuss a new method to
derive our column-wise slices in Sect. A.9, which reduces the need of reallocating gates.
Furthermore we were able to improve the computation time of the experiments in [89]
by adjusting the order of polynomials during printing, cf. Sect. A.9.

A.2 Algebra

Following [17, 32, 78, 87, 89, 91, 93, 94, 103], we model the behavior of a circuit using
multivariate polynomials. For each input and output of a logical gate a variable is
introduced. The behavior of a gate, i.e., the relation of the gate inputs to the output
of a gate is translated into a polynomial. The set of all these polynomials builds a
comprehensive description of the circuit. We show that the circuit is correct if and only
if the circuit specification, a polynomial describing the relation of the circuit inputs and
outputs, is implied by the gate-level polynomials.

The appropriate formalism for such a reasoning is the theory of Gröbner bases [25,26,
35]. Throughout this section let K[X] = K[x1, . . . , xn] denote the ring of polynomials
in variables x1, . . . , xn with coefficients in the field K.

Definition A.1. A term (or power product) is a product of the form xe1
1 · · ·xen

n for
certain non-negative exponents e1, . . . , en ∈ N. The set of all terms is denoted by [X].
A monomial is a constant multiple of a term, αxe1

1 · · ·xen
n with α ∈ K. A polynomial is

a finite sum of monomials.

On the set of terms we fix an order such that for all terms τ, σ1, σ2 we have 1 ≤ τ
and σ1 ≤ σ2 ⇒ τσ1 ≤ τσ2. Such an order is called a lexicographic term order if for
all terms σ1 = xu1

1 · · ·xun
n , σ2 = xv1

1 · · ·xvn
n we have σ1 < σ2 iff there exists an index i

with uj = vj for all j < i, and ui < vi.
Since every polynomial p 6= 0 contains only finitely many terms and they are ordered

according to our fixed order <, we can determine the largest term in a polynomial.
We call it the leading term of p and write lt(p). If p = cτ + · · · and lt(p) = τ , then
lc(p) = c is called the leading coefficient and lm(p) = cτ is called the leading monomial
of p. The tail of p is defined by p− cτ .
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Definition A.2. A nonempty subset I ⊆ K[X] is called an ideal if

∀ p, q ∈ I : p+ q ∈ I and ∀ p ∈ K[X] ∀ q ∈ I : pq ∈ I.

If I ⊆ K[X] is an ideal, then a set P = {p1, . . . , pm} ⊆ K[X] is called a basis of I
if I = {q1p1 + · · · + qmpm | q1, . . . , qm ∈ K[X]}, i.e., if I consists of all the linear
combinations of the pi with polynomial coefficients. We denote this by I = 〈P 〉 and
say I is generated by P .

In general, an ideal I has many bases which generate the ideal. We are particularly
interested in bases with certain structural properties, called Gröbner bases.

Definition A.3. A basis G = {g1, . . . , gn} of an ideal I ⊆ K[X] is called a Gröbner
basis (w.r.t. the fixed order ≤) if the leading term of every nonzero element of I is a
multiple of (at least) one of the leading terms lt(g1), . . . , lt(gn).

Lemma A.4. Every ideal I ⊆ K[X] has a Gröbner basis w.r.t. a fixed term order.

Proof. Cor. 6 in Chap. 2 §5 of [35].

The following Lemma A.5 describes Buchberger’s Criterion, which states when a
basis of an ideal is a Gröbner basis. Given an arbitrary basis of an ideal, Buchberger’s
algorithm [25] is able to compute a Gröbner basis for it in finitely many steps. The
algorithm is based on repeated computation of so-called S-polynomials.

Lemma A.5. Let G ⊆ K[X] \ {0} be a basis of an ideal I = 〈G〉. We define S-
polynomials

spol(p, q) := lcm(lt(p), lt(q))
(

p

lm(p) −
q

lm(q)

)
for all p, q ∈ K[X] \ {0}, with lcm the least common multiple. Then G is a Gröbner
basis of the ideal I if and only if the remainder of the division of spol(p, q) by G is zero
for all pairs (p, q) ∈ G×G.

Proof. Thm. 6 in Chap. 2 §6 of [35].

To reduce the computation effort of Buchberger’s algorithm several optimizations
exist which decrease the number of S-polynomial computations. We will heavily make
use of the following optimization.

Lemma A.6 (Product criterion). If p, q ∈ K[X] \ {0} are such that the leading terms
are coprime, i.e., lcm(lt(p), lt(q)) = lt(p) lt(q), then spol(p, q) reduces to zero mod
{p, q}.

Proof. Prop. 4 in Chap. 2 §9 of [35].
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Figure A.1: And-Inverter Graphs (AIGs) [70] used in Ex. A.8 and later in Sect. A.4.

Since {p, q} ⊆ G, Lemma A.6 suggests that if all leading terms of the polynomials in
a basis G of an ideal I are coprime, i.e., we cannot find any pair of polynomials p, q ∈ G
such that lt(p) and lt(q) have any variable in common, then the product criterion holds
for all pairs of polynomials of G and thus G is automatically a Gröbner basis for the
ideal I .

To answer the question if a circuit is correct and hence fulfills its specification we
need to check if the specification polynomial is contained in the ideal generated by the
circuit relations, as we discuss in detail in Sect. A.3. The theory of Gröbner bases offers
a decision procedure for this so-called ideal membership problem: Given a polynomial
f ∈ K[X] and an ideal I = 〈G〉 ⊆ K[X], determine if f ∈ I .

Given an arbitrary basis G of the ideal I , it is not so obvious how to check whether
the polynomial f belongs to the ideal I = 〈G〉. However, if G is a Gröbner basis
of I , then the membership question can be answered using a multivariate version of
polynomial division with remainder, cf. Alg. 1, as derivation procedure. It can be shown
that whenever G is a Gröbner basis, then f belongs to the ideal generated by G if and
only if the remainder of division of f by G is zero. In the following we will introduce
this approach more formally.

Lemma A.7 (Multivariate Division with Remainder). Let the set of terms be ordered
according to a fixed order < and let P = (p1, . . . , ps) be an ordered list of polynomials
in K[X]. Then every f ∈ K[X] can be written as:

f = h1p1 + . . .+ hsps + r

where h1, . . . , hs, r ∈ K[X]. The remainder r is either zero or is a polynomial ∈ K[X],
such that no term in r is a multiple of some lt(pi). The complete division algorithm is
listed in Alg. 1. We call the polynomials hi the co-factors of f and the polynomial r is
called the remainder of f with respect to P .

Proof. Thm. 3 in Chap. 2 §3 of [35].

Example A.8. Figure A.1 depicts several And-Inverter-Graphs (AIGs) [70]. A node in
an AIG represents logical conjunction of the two inputs, depicted by edges on the lower
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Algorithm 1: Multivariate Division Algorithm [35]
Input :p1, . . . , ps, f
Output :h1, . . . , hs, r

1 h1 = 0, . . . , hs = 0, r = 0;
2 p = f ;
3 while p 6= 0 do
4 i = 1, division = false;
5 while i ≤ s ∧ division = false do
6 if lt(pi) | lt(p) then
7 hi = hi + lt(p)/ lt(pi);
8 p = p− pi · lt(p)/ lt(pi);
9 division = true;

10 else
11 i = i+ 1;

12 if division = false then
13 r = r + lt(p);
14 p = p− lt(p);

15 return h1, . . . , hs, r

half of the node. The output is depicted by an edge in the upper half of the node. An
edge containing a marker negates the variable.

LetK = Q.Hence for the AIG on the left of Fig. A.1, we have the relation g = a(1−b)
for all a, b, g ∈ {0, 1}. Furthermore, we always have g(g−1) = a(a−1) = b(b−1) = 0
since a, b, g ∈ {0, 1}. To show that we always have gb = 0, it suffices to check if the
polynomial gb ∈ Q[g, a, b] is contained in the ideal I ⊆ Q[g, a, b] with

I = 〈−g + a(1− b), g(g − 1), a(a− 1), b(b− 1)〉.

Multivariate polynomial division yields

gb =

h1
↓

(−b) (−g + a(1− b)) +

h4
↓

(−a) b(b− 1) +

remainder r
↓
0,

with h2 = h3 = 0, and therefore gb ∈ I and thus gb = 0 in the left AIG of Fig. A.1.

As shown in this example, we can view an ideal I = 〈G〉 ⊆ K[X] as an equational
theory, where the basis G = {g1, . . . , gm} defines the set of axioms. The ideal I = 〈G〉
contains exactly those polynomials f for which the equation “f = 0” can be derived
from the axioms “g1 = · · · = gm = 0” through repeated application of the rules
u = 0 ∧ v = 0⇒ u+ v = 0 and u = 0⇒ uw = 0 (compare to Def. A.2).

Lemma A.9. If G = {g1, . . . , gm} is a Gröbner basis, then every f ∈ K[X] has a
unique remainder r with respect to G. Furthermore it holds that f − r ∈ 〈G〉.
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Proof. Prop. 1 in Chap. 2 §6 of [35].

Ultimately the following Lemma provides the answer on how we can solve the ideal
membership problem with the help of Gröbner basis and thus can check whether a
polynomial belongs to an ideal or not.

Lemma A.10. Let G = {g1, . . . , gm} ⊆ K[X] be a Gröbner basis, and let f ∈ K[X].
Then f is contained in the ideal I = 〈G〉 iff the remainder of f with respect to G is zero.

Proof. Cor. 2 in Chap. 2 §6 of [35].

A.3 Ideals associated to Circuits

We consider circuits C with two bit-vectors a0, . . . , an−1 and b0, . . . , bn−1 of size n as
inputs, and a bit-vector s0, . . . , s2n−1 of size 2n as output. The circuit is represented
by a number of logical gates where the output of some gate may be input to some
other gate, but cycles in the circuit are not allowed. Additionally to the variables
ai, bi, si for the inputs and outputs of the circuit, we associate a variable g1, . . . , gk
to each internal gate output. In our setting let K = Q. By R we denote the ring
Q[a0, . . . , an−1, b0, . . . , bn−1, g1, . . . , gk, s0, . . . , s2n−1], containing all polynomials in
the above variables with coefficients in Q. At first glance it may seem surprising that we
use Q instead of Z2 as ground field although all our variables are restricted to boolean
values. The reason for this choice is that we want to verify correctness of integer
multiplication. As we will see in Def. A.13, using Q as base field allows us to describe
the desired behavior of the circuit by connecting it to the multiplication in Q. It would
also be possible to use Z2, but in this case, specifying the desired behavior of the circuit
in terms of polynomial equations would not be much easier than constructing a circuit
in the first place. Such a specification would not be more trustworthy than the circuit
that we want to verify.

The semantic of each circuit gate implies a polynomial relation among the input and
output variables, such as the following ones:

u = ¬v implies 0 = −u+ 1− v
u = v ∧ w implies 0 = −u+ vw
u = v ∨ w implies 0 = −u+ v + w − vw
u = v ⊕ w implies 0 = −u+ v + w − 2vw.

(A.1)

The polynomials in R are chosen such that the boolean roots of the polynomials are
the solutions of the corresponding gate constraints and vice versa. We denote these
polynomials by gate polynomials. To ensure that we only find boolean solutions of
the polynomials we add the relations u(u − 1) = 0 for each variable u. We call this
relations field polynomials.

Example A.11. The possible boolean solutions for the gate constraint p00 = a0 ∧ b0
of Fig. A.2 represented as (p00, a0, b0) are (1, 1, 1), (0, 1, 0), (0, 0, 1), (0, 0, 0) which
are all solutions of the polynomial −p00 + a0b0 = 0, when a0, b0 are restricted to the
boolean domain.
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Since the logical gates in a circuit are functional, the values of all the variables
g1, . . . , gk, s0, . . . , s2n−1 in a circuit are uniquely determined as soon as the inputs
a0, . . . , an−1, b0, . . . , bn−1 ∈ {0, 1} are fixed. This motivates the following definition.

Definition A.12. Let C be a circuit. A polynomial p ∈ R is called a polynomial circuit
constraint (PCC) for C if for every choice of

(a0, . . . , an−1, b0, . . . , bn−1) ∈ {0, 1}2n

and the resulting values g1, . . . , gk, s0, . . . , s2n−1 which are implied by the gates of the
circuit C, the substitution of all these values into the polynomial p gives zero. The set
of all PCCs for C is denoted by I(C).

It can easily be verified that I(C) is an ideal of R. Since it contains all PCCs, this
ideal includes all relations that hold among the values at the different points in the
circuit. Therefore, the circuit fulfills a certain specification if and only if the polynomial
relation corresponding to the specification of the circuit is contained in the ideal I(C).

Definition A.13. A circuit C is called a multiplier if the word-level specification

2n−1∑
i=0

2isi −
(n−1∑
i=0

2iai
)(n−1∑

i=0
2ibi

)
∈ I(C).

Thus checking whether a given circuit C is a correct multiplier reduces to an ideal
membership test. Definition A.12 does not provide any information of a basis of I(C),
hence Gröbner basis technology is not directly applicable. However, we can deduce at
least some elements of I(C) from the semantics of circuit gates.

Definition A.14. Let C be a circuit. Let G ⊆ R be the set which contains for each gate
of C the corresponding polynomial of Eqn. (A.1), where the variable u is replaced by
the output variable and v, w are replaced by the input variables of the gate. Furthermore
G contains the polynomials ai(ai − 1) and bi(bi − 1) for 0 ≤ i < n, called input field
polynomials. Then the ideal 〈G〉 ⊂ R is denoted by J(C).

Hence G is a basis for the ideal J(C) and we can decide membership using Gröbner
bases theory. Assume that we have a verifier which checks for a given circuit C and
a given specification polynomial p ∈ R if p is contained in the ideal J(C). Because
it holds that J(C) ⊆ I(C), such a verifier is sound. To show that the verifier is also
complete, we further need to show J(C) ⊇ I(C). For doing so, we recall an important
observation shown for instance in [78, 100].

Theorem A.15. Let C be a circuit, and let G be as in Def. A.14. Furthermore let ≤ be
a reverse topological lexicographic term order where the variables are ordered such
that the variable of a gate output is always greater than the variables attached to the
input edges of that gate. Then G is a Gröbner basis with respect to the ordering ≤.
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Proof. By the restrictions on the term order and the form of Eqns. (A.1), the leading
term of each gate polynomial is simply the output variable of the corresponding gate.
Furthermore, the leading terms of the input field polynomials ai(ai − 1) and bi(bi − 1)
are a2

i and b2
i . Hence all leading terms are coprime and therefore, by Lemma A.6,

division of spol(p, q) by {p, q} has remainder zero for any choice p, q ∈ G. Since
{p, q} ⊆ G for all p, q ∈ G, division of spol(p, q) by G gives the remainder zero for all
p, q ∈ G, and then, by Lemma A.5, the claim follows.

Theorem A.16. For all acyclic circuits C, we have J(C) = I(C).

Proof. “⊆” (soundness): Immediately follows from the definition of J(C).
“⊇” (completeness): Let p ∈ R be a polynomial with p ∈ I(C). We show that
p ∈ J(C). Since C is acyclic, we can order the variables according to the needs of
Thm. A.15. Hence by Thm. A.15 we can derive a Gröbner basis G for J(C). Let r
be the remainder of division of p by G. Thus p − r ∈ J(C) by Lemma A.9, and
r ∈ J(C) ⇐⇒ p ∈ J(C). Then, since J(C) ⊆ I(C) it holds that p− r ∈ I(C). By
p ∈ I(C) and p− r ∈ I(C) it follows that r ∈ I(C). Thus we need to show r ∈ J(C).

By the choice of the ordering of the terms and the observations about the leading
terms in G made in the proof of Thm. A.15, from Lemma A.9 it also follows that r only
contains input variables a0, . . . , an−1, b0, . . . , bn−1, and each of them has a maximum
degree of one. Simultaneously, r ∈ I(C) implies that all evaluations of r for all choices
ai, bj ∈ {0, 1} are zero.

We show r = 0, and thus r ∈ J(C). Assume r 6= 0. Suppose m is a monomial of r
with a minimal number of variables, including the case that m is a constant. Since the
exponents are at most one, no two monomials in r contain exactly the same variables.
Now select ai (bj) to evaluate to 1 iff ai ∈ m (bj ∈ m). Hence all monomials of r
except m evaluate to zero and thus vanish. By this choice r evaluates to the (non-zero)
coefficient of m, contradicting r ∈ I(C). Thus r = 0.

Example A.17. In contrast to our definition of a circuit, where both input bit-vectors
have the same length, Fig. A.2 shows a 3× 2-bit multiplier. The leading terms of the
polynomials in the right column, read from top to bottom, follow a reverse topological
lexicographic ordering. Hence these polynomials form a Gröbner basis.

We conclude this section with the following simple but important observations. First,
the ideal I(C) is a so-called vanishing ideal. Therefore, it follows that J(C) is a radical
ideal. Hence testing ideal membership of the specification is sufficient for verifying the
correctness of a circuit, and we do not need to apply the stronger radical membership
test (cf. Chap. 4 §2 of [35]).

Second, since it holds that I(C) = J(C) contains all the field polynomials u(u− 1)
for all variables u, not only for the inputs, we may add them to G.

Third, in the Gröbner basis G for gate-level circuits defined as given in Def. A.14
using Eqn. (A.1) it holds that all polynomials have leading coefficient ±1. Thus during
reduction (division) no coefficient outside of Z (with non-trivial denominator) is intro-
duced. Hence all coefficient computations actually remain in Z. This formally shows
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a0 b0a0 b1a1 b0a1 b1a2 b0a2 b1

p00p01p10p11p20p21

c1

g1

g2

g0

c2

c3
s0s1s2s3s4

S0S1S2S3S4

s4 = c3 −s4 + c3,
c3 = p21 ∧ c2 −c3 + p21c2,
s3 = p21 ⊕ c2 −s3 + p21 + c2 − 2p21c2,
p21 = a2 ∧ b1 −p21 + a2b1,
c2 = g2 ∨ g1 −c2 + g2 + g1 − g2g1,
s2 = g0 ⊕ c1 −s2 + g0 + c1 − 2g0c1,
g2 = g0 ∧ c1 −g2 + g0c1,
g1 = p20 ∧ p11 −g1 + p20p11,
g0 = p20 ⊕ p11 −g0 + p20 + p11 − 2p20p11,
p20 = a2 ∧ b0 −p20 + a2b0,
p11 = a1 ∧ b1 −p11 + a1b1,
c1 = p10 ∧ p01 −c1 + p10p01,
s1 = p10 ⊕ p01 −s1 + p10 + p01 − 2p10p01,
p10 = a1 ∧ b0 −p10 + a1b0,
p01 = a0 ∧ b1 −p01 + a0b1,
s0 = p00 −s0 + p00,
p00 = a0 ∧ b0 −p00 + a0b0,

a2, a1, a0 ∈ {0, 1} a2(1− a2), a1(1− a1), a0(1− a0),
b1, b0 ∈ {0, 1} b1(1− b1), b0(1− b0)

Figure A.2: A 3x2-bit gate-level multiplier circuit, gate constraints, and polynomials.
Colored gates represent a full adder, cf. Sect. A.5. Dashed lines depict column-wise
slicing, cf. Sect. A.7.

that the implementations, e.g., those from [93, 103], used for proving ideal membership
to verify properties of gate-level circuits, actually can rely on computation in Z without
loosing soundness nor completeness. Of course it needs to hold that the same term order
as in Thm. A.15 is used.

Fourth, we do not need Z as coefficient ring if we use computer algebra systems, we
can simply choose any field containing Z, e.g., Q, which actually improves computation,
because Z is not a field and ideal theory over rings is harder than ideal theory over fields.
In our experiments, using rational coefficients made a huge difference for Singular [38]
(but did not show any effect in Mathematica [102]).

Fifth, because the leading terms of G contain only one variable, computing a remain-
der with respect to G has the same effect as substituting each leading term with the
corresponding tail until no further substitution is possible.

Sixth, given a circuit C, checking whether an assignment of the inputs exists, which
yields a certain value at an output is actually the same as (circuit) SAT, and hence is NP
complete:

Corollary A.18. Consider the problem to decide, for a given polynomial p ∈ Q[X] and
a given Gröbner basis G ⊆ Q[X], whether p ∈ 〈G〉. Taking the bit-size of p and G in
the natural encoding as a measure for the problem size, this problem is co-NP-hard.

Proof. Circuit SAT is the problem to decide for a given circuit with n gates and one
output bit whether it produces the output 1 for at least one choice of inputs. This problem
is known to be NP-hard. Consequently, the problem of deciding whether a given circuit
with n gates and one output bit s produces the output 1 for every choice of inputs is
co-NP-hard. A circuit C returns 1 for every input iff s − 1 ∈ J(C). As the Gröbner
basis G for the circuit C has essentially the same size as C, the circuit problem can
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be solved with at most polynomial overhead if we have an algorithm for solving the
membership problem.

The main point of this corollary is not that ideal membership is difficult, but that it
remains difficult even if we assume to be given a Gröbner basis of the ideal as part of the
input. For other results on the complexity of the ideal membership problem, see [2, 57].

As a final remark, in the case when a polynomial g is not contained in an ideal
I = 〈G〉, i.e., the remainder of dividing g by G is not zero, the last part in the proof of
Thm. A.16, where the “smallest” monomial m is evaluated, allows us to determine a
concrete choice of input assignments for which g does not vanish. In our application of
multiplier verification these evaluations provide counter-examples, in case a circuit is
determined not to be a multiplier.

We claim that this section shows the first formalization of not only soundness but also
completeness arguments for recent successful algebraic approaches [93,103]. In previous
work soundness and completeness was formally shown too but only for other polynomial
rings, i.e., over F2q to model circuits which implement Galois-field multipliers [78, 87],
or for polynomial rings over Z2q which model arithmetic circuit verification using
overflow semantics [100]. In the work of [103] soundness and completeness is discussed
too, but refers to [78, 87] instead of showing proofs, which as discussed above uses
coefficients in F2q and not Z, the coefficient ring the approach [103] is actually working
with.

A.4 Optimizations

In this section we extend the “XOR-Rewriting”, “Common-Rewriting” and “Vanishing
Constraints” optimizations of [89] by the additional rewriting techniques of “Adder-
Rewriting” and “Partial Product Elimination” [17, 91]. Picking up the statement of
Cor. A.18, simply reducing the specification polynomial in the constructed Gröbner basis
of the circuit generally leads to an exponential number of monomials in the intermediate
reduction results. This conjecture was also made in [93]. Thus in practice to efficiently
use polynomial reduction for verification of specific circuits tailored heuristics which
rewrite Gröbner bases and hence improve the reduction process become very important
to speed up computation. The (non-reduced) Gröbner basis of an ideal is not unique,
thus some Gröbner bases may be better than others, for instance much smaller. A natural
choice among all the Gröbner bases is the unique reduced Gröbner basis [35], but it
was shown empirically in [91] that the computation of this basis for multipliers is not
feasible in practice, e.g., the computation of the unique reduced Gröbner basis for a
4-bit multiplier took more than 20 minutes.

In [93] a logic reduction rewriting scheme consisting of XOR-Rewriting and Common-
Rewriting is proposed which helps to reduce the number of monomials by partially
reducing the Gröbner basis. Furthermore several specific monomials are eliminated
which fulfill a certain Vanishing Constraint.
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The technique XOR-Rewriting of [93] eliminates all variables of the Gröbner basis
which are neither an input nor an output of an XOR-gate. Also the primary input and
output variables of the circuit are not eliminated in the Gröbner basis.

In our setting circuits are usually given as AIGs, hence we adopt this rewriting
for AIGs by matching XOR (XNOR) patterns in the AIG which represent an XOR
(XNOR) gate. This means we want to find a set of nodes for which the relation s =
(a ∧ b) ∧ (ā ∧ b̄) holds. We eliminate internal variables of these structures and define
the polynomial of the XOR (XNOR) output directly in terms of the grandchildren.

Example A.19. The middle AIG in Fig. A.1 depicts an XOR constraint. For this
structure we only use the polynomial−s+a+b−2ab for describing the logical constraint
instead of the polynomials −l+ ab,−r+ (1− a)(1− b), and−s+ (1− l)(1− r). This
deletes polynomials containing the variables l, r from the Gröbner basis, unless they are
used as an input of further gates.

After applying XOR-Rewriting the Common-Rewriting [93] technique further sim-
plifies the Gröbner basis by eliminating all variables which are used exactly once as an
input of a further gate. This technique can be compared to bounded variable elimination
in SAT [39] after encoding a circuit to a CNF using, e.g., Tseitin encoding. This ap-
proach would also eliminate all variables in the CNF representing gates in the circuit
having only one parent [56].

Example A.20. The right AIG of Fig. A.1 contains several variables occurring only
once, hence Common-Rewriting eliminates gates t, u, v, and w. Thus the relation of r
is directly expressed in terms of a, b, c.

Although the concepts of XOR-Rewriting and Common-Rewriting seem rather intu-
itive in the sense that we can simply rewrite and delete polynomials from the Gröbner
basis, we need sophisticated algebraic reasoning, i.e., elimination theory of Gröbner
bases. We will introduce this theory in Sect. A.5, but before doing so we want to
complete the discussion of possible optimizations.

A further optimization presented in [93] was to add vanishing constraints, i.e., poly-
nomials which are PCCs of the circuit C and because they are contained in I(C), they
can be added to the Gröbner basis. In [93] a specific constraint was called the XOR-AND
Vanishing Rule, denoting that an XOR-gate and AND-gate which have the same input
can never be 1 at the same time. An XOR- and AND-gate with the same inputs logically
represent a half-adder, where the XOR-gate represents the sum output and the AND-gate
represents the carry output. Because a half-adder only sums up two bits, it can never
happen that the sum output and carry output is 1 at the same time.

Example A.21. In the middle AIG of Fig. A.1 the variable l represents an AND-gate
and s represents an XOR-gate. Both have a, b as input. Hence we can deduce sl = 0.

We adapt this rule by searching for (negative) children or grandchildren of specific
AND-gates in the circuit. We add a corresponding polynomial to our Gröbner basis
which deletes redundant monomials in intermediate reduction results.
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Additionally to the above optimizations which we more or less adopted of [93], we
presented in [17, 91] a further optimization called Adder-Rewriting, which is also based
on elimination theory of Gröbner basis. The core idea is to simplify the Gröbner basis
by introducing linear adder specifications.

Definition A.22. A sub-circuit CS of a circuit C is a full-adder if

−2c− s+ a+ b+ i is a PCC for C

for outputs c, s and inputs a, b, i of CS and a half-adder if

−2c− s+ a+ b is a PCC for C.

We search for such sub-circuits representing full- and half-adders in the gate-level
circuit C. Then we eliminate the internal variables of these sub-circuits, cf. Sect. A.5,
which has the effect that the linear adder specifications are included in the Gröbner basis.
Reducing by these linear polynomials leads to substantial improvements in terms of
computation time. Furthermore we will also add a polynomial representing the relation
of s to the inputs a, b, i, because there are no restrictions on s. It can be used multiple
times as a child of a gate and hence we need a relation for it. In general, assuming that
the carry output c is always larger than the sum output s, the intermediate reduction
polynomials includes the term 2c+s before we reduce c. Using the adder specification s
is canceled in parallel during the reduction of c. Hence in certain multiplier architectures
which consist only of full- and half-adders we never have to reduce s, cf. Sect. A.10. But
we have to include polynomials with leading term s, otherwise we lose completeness of
our approach.

In [106] a similar strategy is given which detects embedded MAJ3 and XOR3 gates.
In this approach the Gröbner basis of the circuit is not simplified, but the MAJ3 and
XOR3 gates are used to receive a more efficient reduction order.

Example A.23. The middle AIG in Fig. A.1 shows a half adder with outputs l and s as
carry and sum and inputs a, b. Hence we can derive the relations −2l − s+ a+ b and
−s+ a+ b− 2ab. In Fig. A.2 the filled gates describe a full-adder. In this case we can
obtain the specification −2c2 − s2 + p20 + p11 + c1 by elimination of g0, g1, g2.

We apply the optimizations in the following order: Adder-Rewriting, XOR-Rewriting,
Common-Rewriting, Adding Vanishing Constraints. We start by eliminating variables
from bigger parts of the circuit and continue with rewriting smaller parts and only in the
end we add polynomials to the Gröbner basis.

In [91] we introduced a rewriting method which is different from the optimizations
above, because in Partial Product Elimination we change the circuit specification. In
multipliers where a partial product is simply the conjunction of two input bits, we find
exactly n2 polynomials, representing the corresponding AND-gates.

We can eliminate these polynomials by cutting off these gates from the circuit and
verify them separately, e.g., we search for them in the AIG, but do not introduce separate
polynomials pi,j = aibj . Hence we change the specification of the multiplier from
Def. A.13 to the specification given in Cor. A.24.
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Corollary A.24. A circuit C is a multiplier if

2n−1∑
i=0

2isi −
n−1∑
i,j=0

2i+jpi,j ∈ I(C) with pi,j = aibj .

We can easily check that the specifications of Cor. A.24 and Def. A.13 are equivalent,
when we expand the sums and replace every occurring of pi,j with aibj in Cor. A.24.

This approach works only in multipliers with a simple partial product generation, in
multipliers using, e.g., Booth encoding [85] these patterns do not exist, but it might be
possible to find similar patterns in this situation too.

In the following we show how rewriting techniques, which are based on variable
elimination can be applied to circuit verification.

A.5 Variable Elimination

Section A.4 actually relies on elimination theory of Gröbner bases to justify our rewriting
techniques. This section provides more details about this theory and also presents a
theorem which allows to rewrite only local parts of the Gröbner basis following [17].
To apply these rewriting techniques the circuit is split into two parts by extracting a
sub-circuit, which is then rewritten, without changing the rest of the circuit. For example
Adder-Rewriting is applied on an extracted full- or half-adder and XOR-Rewriting is
used for nodes in the AIG describing an XOR-constraint. Consequently also the overall
ideal I(C) and the Gröbner basis G are split into two parts. In the extracted sub-circuit
we want to eliminate redundant internal variables, i.e., variables occurring only inside
the sub-circuit. For this purpose we use the elimination theory of Gröbner bases [35].

Recall, that if I ⊆ Q[X] and J ⊆ Q[X] are ideals, then their sum is the set I + J =
{f + g | f ∈ I, g ∈ J}, which in fact is also an ideal in Q[X].

Lemma A.25. Let I = 〈f1, . . . , fr〉 and J = 〈g1, . . . , gs〉 be two ideals in Q[X]. Then
I + J = 〈f1, . . . , fr, g1, . . . , gs〉. In particular 〈f1, . . . , fr〉 = 〈f1〉+ . . .+ 〈fr〉.

Proof. Prop. 2 and Cor. 3 in Chap. 4 §3 of [35].

In the simple case where all occurring polynomials are linear, the effect of elimination
theory can be easily illustrated with Gaussian elimination.

Example A.26 (Gaussian elimination). Let us consider the following system of three
linear equations in Q[x, y, z]:

2x+ 4y − 3z + 4 = 0
3x+ 7y − 3z + 2 = 0
2x+ 5y − 4z + 5 = 0

Let V be the vector space consisting of all Q-linear combinations of the polynomials on
the left-hand side, then each possible root (x, y, z) ∈ Q3 of the above system is also a
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root of each polynomial contained in V. In this sense, V contains all linear polynomials
whose solutions can be deduced from the roots of the system, i.e., the polynomials
generating V .

If we are only interested in polynomials of V in which the variable x does not occur,
we can triangularize the above system using Gaussian elimination. This for example
leads to the equivalent system:

x+ 2y − 2z + 3 = 0
y + 3z − 7 = 0

z − 2 = 0

In Gaussian elimination new polynomials are derived by applying linear combinations
of the original polynomials. Hence the polynomials on the left-hand side belong to the
vector space V . We see that two polynomials do not contain x. In fact, every element of
V which does not contain x can be written as a linear combination of the polynomials
y + 3z + 2 and z + 1 which are free of x.

Since Gaussian elimination is defined only for linear equations, we cannot use it for
our setting, but using Gröbner bases theory we can extend the reasoning in the example
above to systems of nonlinear equations.

In linear polynomials a term consists of a single variable, hence for triangularization
we only have to order the terms in such a way that the variables which we want to
eliminate are the largest terms. This ordering is generalized to multivariate terms by
introducing an elimination order on the set of terms. In the following assume that we
want to eliminate the variables belonging to a subset Z of X .

Definition A.27. [35] Let X = Y
·
∪ Z. An order < on the set of terms of [X] is called

elimination order for Z if it holds for all terms σ, τ where a variable from Z is contained
in σ but not in τ , we obtain τ < σ. We denote this ordering by Y < Z.

In the case that Z = {x1, . . . , xi} and Y = {xi+1, . . . , xn}, the lexicographic term
order is such an elimination order. In Ex. A.26 the elimination order Y < Z is defined
by a lexicographic ordering with Y = {y, z} and Z = {x}.

Definition A.28. [35] Assume an ideal I ⊆ Q[X] = Q[Y,Z]. The ideal where the
Z-variables are eliminated is the elimination ideal J ⊆ Q[Y ] defined by

J = I ∩Q[Y ].

Theorem A.29. [35] Given an ideal I ⊆ Q[X] = Q[Y, Z]. Further let G be a Gröbner
basis of I with respect to an elimination order Y < Z. Then the set

H = G ∩Q[Y ]

is a Gröbner basis of the elimination ideal J = I ∩Q[Y ], in particular 〈H〉 = J .
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G

GA GB

HB

HY HZ

H

Step 1: original Gröbner basis G

Step 2: split G into two subbases

Step 3: change order of < to <Z

Step 4: eliminate the variables of Z

Step 5: rejoin bases H = GA ∪HY

Figure A.3: Each step of the elimination procedure of the proof of Thm. A.30.

The requirements of Thm. A.29 demand that we need to calculate a new Gröbner basis
H w.r.t. to an elimination order Y < Z for our circuit C. In general this means that
we really need to apply Buchberger’s algorithm and cannot simply rely on the product
criterion anymore as we did for G. Since Buchberger’s algorithm is computationally
expensive [35], this is practically infeasible. In [17, 91] we derived a method which
allows that we split G into two smaller Gröbner basis GA and GB , where 〈GB〉 defines
the ideal generated by the gate polynomials of the extracted sub-circuit. The following
theorem shows that in order to compute a basis of the elimination ideal J = 〈G〉 ∩Q[Y ]
it suffices to compute a basis of the elimination ideal 〈GB〉 ∩Q[Y ].

Theorem A.30. Let G ⊆ Q[X] = Q[Y, Z] be a Gröbner basis with respect to some
term order <. Let GA = G ∩ Q[Y ] and GB = G \ GA. Let <Z be an elimination
order for Z which agrees with < for all terms that are free of Z, i.e., terms free of Z
are equally ordered in < and <Z . Suppose that 〈GB〉 has a Gröbner basis HB with
respect to <Z which is such that every leading term in HB is free of Z or free of Y . Let
HB = HY ∪HZ , such that HZ consists of all polynomials with leading terms in Z and
HY = HB \HZ contains the remaining polynomials with leading terms in Y . Then

1. 〈G〉 ∩Q[Y ] = (〈GA〉+ 〈GB〉) ∩Q[Y ] = 〈GA〉+ (〈GB〉 ∩Q[Y ]).

2. H = GA ∪HY is a Gröbner basis for 〈GA〉+ (〈GB〉 ∩Q[Y ]) w.r.t. the order-
ing <Z .

Proof. 1) The steps of the elimination process of this proof are depicted in Fig. A.3.
Since Y <Z Z, it follows that the polynomials in HY cannot contain any variable of Z.
Furthermore by definition GA does not contain any polynomial containing Z-variables,
hence variables of Z only occur in HZ .

By Lemma A.25 we derive

〈G〉 = 〈GA〉+ 〈GB〉 = 〈GA〉+ 〈HB〉
= 〈GA〉+ 〈HY 〉+ 〈HZ〉 = 〈GA ∪HY 〉+ 〈HZ〉.

By GB(S, o) we denote an arbitrary Gröbner basis for S w.r.t. an ordering o. Changing
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an arbitrary basis into a Gröbner basis does not affect the ideal, hence

〈GA ∪HY 〉+ 〈HZ〉 = 〈GB(GA ∪HY , <Z)〉+ 〈HZ〉
= 〈GB(GA ∪HY , <Z) ∪HZ〉.

Furthermore GB(GA ∪HY , <Z) ∪HZ is a Gröbner basis, because all S-polynomials
of pairs of polynomials p, q reduce to zero:

1. p, q ∈ GB(GA ∪HY , <Z): By Lemma A.5, spol(p, q) reduces to zero.

2. p ∈ GB(GA∪HY , <Z), q ∈ HZ : The leading terms ofHZ contain only variables
of Z, whereas the polynomials GA ∪HY do not contain any variable of Z. Hence
by Lemma A.6, spol(p, q) reduces to zero.

3. p, q ∈ HZ : Since HB = HY ∪ HZ is a Gröbner basis, it holds that spol(p, q)
reduces to zero w.r.t. HB . Consequently it reduces to zero w.r.t. GA ∪ HB =
GA∪HY ∪HZ . Since each leading term ofGA∪HY is a multiple of a leading term
in GB(GA∪HY , <Z), spol(p, q) reduces to zero w.r.t. GB(GA∪HY , <Z)∪HZ .

Combining the above results we conclude that GB(GA ∪HY , <Z) ∪HZ is a Gröbner
basis for the ideal 〈GB(GA∪HY , <Z)∪HZ〉 = 〈G〉. Following Thm. A.29 we receive

(〈GA〉+ 〈GB〉) ∩Q[Y ]
= 〈GB(GA ∪HY , <Z) ∪HZ〉 ∩Q[Y ]
= 〈GB(GA ∪HY , <Z)〉.

Since computation of a Gröbner basis does not change the ideal, we have

〈GB(GA ∪HY , <Z)〉 = 〈GA ∪HY 〉 = 〈GA〉+ 〈HY 〉.

Because the set HY does not contain any variable of Z, it follows

〈HY 〉 = 〈HB〉 ∩Q[Y ] = 〈GB〉 ∩Q[Y ]

Altogether by composing the derived results we obtain

(〈GA〉+ 〈GB〉) ∩Q[Y ] = 〈GA〉+ (〈GB〉 ∩Q[Y ]).

2) We need to prove that for every term τ ∈ [Y ] which is also a leading term of a
polynomial in 〈G〉 it follows that there exists a polynomial f ∈ GA ∪ HY such that
lt(f) | τ . Let τ be such a term.

Because G is a Gröbner basis it holds that there exists a g ∈ G with lt(g) | τ . Since
G = GA ∪GB it consequently follows that either g ∈ GA or g ∈ GB:

1. g ∈ GA: It immediately follows that g ∈ GA ∪HY , hence f := g.
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2. g ∈ GB: Since 〈GB〉 = 〈HB〉, there exists an element h ∈ HB with lt(h) | lt(g).
From this it follows that lt(h) | τ . Since τ ∈ [Y ] it further holds that lt(h) ∈ [Y ].
Hence h ∈ HY and altogether h ∈ GA ∪HY . In this case f := h.

So for each g ∈ G we find f ∈ GA ∪HY whose leading term divides τ .

The above theorem allows that we simply add the Gröbner basisHY of the elimination
ideal of the extracted sub-circuit 〈HY 〉 = 〈HB〉 ∩Q[Y ] = 〈GB〉 ∩Q[Y ] to the Gröbner
basis GA of the remaining circuit and obtain again a Gröbner basis, preventing that
we have to compute a new Gröbner basis w.r.t. to an elimination order for the whole
circuit C. Actually we only have to really compute one “small” local Gröbner basis HB .
Although in principle we can choose Z arbitrarily, we apply the idea to sets of variables
that only occur locally in the circuit. One source of such variables are intermediate
results of adders.

Example A.31. We want to apply Adder-Rewriting on the full adder in the circuit
C of Fig. A.2, which is depicted by the colored gates. The full adder has outputs c2
(carry) and s2 (sum) and three inputs p20, p11, c1. The internal gates g2, g1, g0 are not
used outside the full adder structure, hence we want to eliminate them and include the
specification 2c2 + s2 − p20 − p11 − c1 in the Gröbner basis G.

The Gröbner basisG which is depicted by polynomials in the right column in Fig. A.2
is split such that GA = G \GB and

GB = {−g0 + p20 + p11 − 2p20p11, −g1 + p20p11, −g2 + c1g0,
−s2 + c1 + g0 − 2c1g0, −c2 + g1 + g2 − g1g2}

We apply variable elimination only in GB . For this let Z = {g2, g1, g0}. According
to the requirements of Thm. A.29 we need to find an elimination order <Z such that
Y < Z. So far we used in Ex. A.17 a lexicographic term ordering < with

b0 < b1 < a0 < a1 < a2 < p00 < s0 < p01 < p10 < s1 < c1 <

p11 < p20 < g0 < g1 < g2 < s2 < c2 < p21 < s3 < c3 < s4

We choose <Z such that < and <Z restricted on Y are equal, i.e., we move g0, g1, g2
to be the largest variables in the lexicographic ordering, but do not change the order of
the remaining variables.

We compute a Gröbner basis HB w.r.t. <Z . During the computation we use the
notation f P−→ r, meaning that r is the remainder f with respect to P . For simplification
we immediately reduce higher powers without showing this reduction by the field
polynomials explicitly. Initially HB contains:

f1 := −g0 − 2p20p11 + p20 + p11, f2 := −g1 + p20p11,
f3 := −g2 + g0c1, f4 := −2c1g0 + g0 − s2 + c1,
f5 := −g2g1 + g2 + g1 − c2

According to Buchberger’s algorithm [25] we consider all possible pairs (fi, fj) ∈
HB ×HB and compute spol(fi, fj)

HB−−→ r. If r is not zero, we add r to HB . This step
is repeated until all spol(fi, fj) for (fi, fj) ∈ HB ×HB reduce to zero.
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Initially we only have to explicitly compute remainders of spol(f1, f4), spol(f2, f5)
and spol(f3, f5), because all other S-Polynomials reduce to zero according to the product
criterion, cf. Lemma A.6.

spol(f1, f4) = 2c1f1 − f4 = −g0 + s2 − 4p20p11c1 + 2p20c1 + 2p11c1 − c1
{f1}−−−→ s2 − 4p20p11c1 + 2p20p11 + 2p20c1 − p20 + 2p11c1 − p11 − c1 =: f6

The non-zero remainder f6 of spol(f1, f4) is added to HB . Since lt(f6) is coprime to
all other leading terms of HB , all spol(fi, f6) reduce to zero, cf. Lemma A.6.

spol(f2, f5) = g2f2 − f5 = g2p20p11 − g2 − g1 + c2
{f3}−−−→ − g1 + g0p20p11c1 − g0c1 + c2
{f2}−−−→ g0p20p11c1 − g0c1 + c2 − p20p11
{f1}−−−→ c2 + 2p20p11c1 − p11c1 + p20c1 − p20p11 =: f7

We add f7 to HB and we again apply the product criterion for all S-Polynomials
containing f7.

spol(f3, f5) = g1f3 − f5 = −g2 + g1g0c1 − g1 + c2
{f3}−−−→ g1g0c1 − g1 − g0c1 + c2
{f2}−−−→ g0p20p11c1 − g0c1 + c2 − p20p11
{f1}−−−→ c2 + 2p20p11c1 − p11c1 + p20c1 − p20p11

{f7}−−−→ 0

At this point the algorithm terminates, because now all S-Polynomials reduce to zero.
Thus HB = {f1, f2, f3, f4, f5, f6, f7} is a Gröbner basis for 〈HB〉.

Although HB is already a Gröbner basis, we will modify it to cover our needs. It
is always allowed to add polynomials of 〈HB〉 to HB without violating the Gröbner
basis property. In order to add the specification of the full adder to HB we construct
f8 := 2f7 + f6 = 2c2 + s2 − p20 − p11 − c1 and add it to HB .

To reduce the size of the Gröbner basis HB we eliminate unnecessary polynomials.
Lemma 3 in Chap. 2 §7 of [35] tells us that we can remove a polynomial p from
our Gröbner Basis HB whenever we have a further polynomial q ∈ HB such that
lt(q) | lt(p). Thus we can eliminate f4, f5 and f7 and our final Gröbner basis HB w.r.t.
<Z is

HB = {g0 + 2p20p11 − p20 − p11, g1 − p20p11, g2 + g0c1,

s2 − 4p20p11c1 + 2p20p11 + 2p20c1 − p20 + 2p11c1 − p11 − c1,

2c2 + s2 − p20 − p11 − c1}.

We eliminate the first three colored polynomials containing variables of Z and derive
〈H〉 = 〈GA〉+ 〈HY 〉 with HY = HB ∩Q[Y ].
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Figure A.4: Standard row-wise slicing (left) and our column-wise slicing (right) for a
clean 3-bit carry-save-adder based (CSA) multiplier. The numbers in the full-adders
depict the order.

A.6 Order

As long as the gate and field polynomials are ordered according to a reverse topological
lexicographic term order, the choice of order does not affect the correctness of the
approach, cf. Thm. A.15. However the choice of order has an influence on the number
of monomials in the intermediate reduction result [103]. Hence, in addition to rewriting
and reducing the Gröbner basis G, choosing an appropriate term and hence reduction
order has a tremendous effect on computation time.

Given the two-dimensional structure of multipliers, two orderings seem well fitted,
namely a row-wise and a column-wise ordering. The idea in both approaches is to
partition the gates of a circuit into slices, which are then totally ordered. The gates
within a slice are ordered reverse topologically. The combined order of the variables
has to be reverse topological, such that the requirements of Thm. A.15 are fulfilled and
hence the gate and input field polynomials form a Gröbner basis.

In the row-wise approach the gates are ordered according to their backward level.
The ordering is abstractly depicted in the left circuit in Fig. A.4, where the order of the
full-adders in a clean carry-save-adder based (CSA) multiplier is given. Informally, a
multiplier is clean when neither gate synthesis nor mapping is applied and where the
XOR-gates, partial products and the half/full adders can easily be identified. Otherwise
a multiplier is called dirty. In previous work the row-wise approach is widely used. In
the approach of [103] the gates are ordered according to their logic level based on the
circuit inputs. In [29] the row-wise order is used to derive a word-level specification for
a CSA step in a clean CSA multiplier. Unfortunately, the variable order is only roughly
discussed in [93].

In the column-wise order, cf. right side of Fig. A.4, the multiplier is partitioned
vertically such that each slice contains exactly one output bit. We will use this order to
determine a more robust incremental checking approach.

In Fig. A.4 we also list the sum of the partial products which occur in the row-wise
and column-wise slices. Assume we swap a1b2 and a2b1. In contrast to permuting
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partial products within a row, permuting partial products within a column does not affect
the correctness of the multiplier. By exchanging a1b2 and a2b1 the given sums of partial
products for the row-wise slices are not valid anymore, whereas in the column-wise
slicing the sum of partial products is still correct, meaning we can uniquely identify the
partial products in a column-wise slice.

A.7 Incremental Column-Wise Checking

The goal of an incremental checking algorithm is to divide the verification problem into
smaller, less complex and thus more manageable sub-problems. Because a column-wise
term order is robust under permutation of partial products, we use such an order to define
our incremental slices. Furthermore we split the word-level specification of Def. A.13
into smaller specifications which relate the partial products, incoming carries, sum
output bit and the outgoing carries of each slice.

Definition A.32. Let C be a circuit which is partitioned according to a column-wise
term order, such that each slice contains exactly one output bit. For column i with
0 ≤ i < 2n let Pi =

∑
k+l=i akbl be the partial product sum (of column i).

Definition A.33. Let C be a circuit, as defined in Sect. A.3. A sequence of 2n + 1
polynomials C0, . . . , C2n over the variables of C is called a carry sequence if

−Ci + 2Ci+1 + si − Pi ∈ I(C) for all 0 ≤ i < 2n+ 1

Then the Ri = −Ci + 2Ci+1 + si − Pi polynomials are called the carry recurrence
relations for the sequence C0, . . . , C2n.

Based on these definitions we can obtain a general theorem which allows to incre-
mentally verify multiplier circuits using carry recurrence relations. For this theorem it is
not necessary to know how the carry sequence is actually derived.

Theorem A.34. Let C be a circuit where all carry recurrence relations are contained in
I(C), i.e., C0, . . . , C2n define a carry sequence as in Def. A.33. Then C is a multiplier
in the sense of Def. A.13, if and only if C0 − 22nC2n ∈ I(C).

Proof. By the condition of Def. A.33, we have (modulo I(C))

2n−1∑
i=0

2isi =
2n−1∑
i=0

2i(Pi + Ci − 2Ci+1)

=
2n−1∑
i=0

2iPi +
2n−1∑
i=0

(2iCi − 2i+1Ci+1)︸ ︷︷ ︸
C0 − 22nC2n

.
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Figure A.5: Deriving input cones (left) and slices (right) for a clean 3-bit CSA multiplier.

It remains to show
∑2n−1
i=0 2iPi = (

∑n−1
i=0 2iai)(

∑n−1
i=0 2ibi):

2n−1∑
i=0

2iPi =
2n−1∑
i=0

2i
k,l≤n−1∑
k+l=i
k,l≥0

akbl =
n−1∑
k=0

n−1∑
l=0

2k+lakbl = (
n−1∑
k=0

2kak)(
n−1∑
l=0

2lbl)

Putting the above calculations together yields:

2n−1∑
i=0

2isi︸ ︷︷ ︸
L

= (C0 − 22nC2n)︸ ︷︷ ︸
L1

+ (
n−1∑
k=0

2kak)(
n−1∑
l=0

2lbl)︸ ︷︷ ︸
L2

Since all Ri ∈ I(C), it holds that L− L1 − L2 ∈ I(C). For soundness, we assume
L1 ∈ I(C), thus conclude L − L2 ∈ I(C), which proves that C is a multiplier. For
completeness, let L− L2 ∈ I(C) and thus L1 ∈ I(C).

For our incremental checking algorithm we determine for each output bit si its input
cone, namely the gates which si depends on (cf. left side of Fig. A.5):

Ii := {gate g | g is in input cone of output si}

We derive slices Si as the difference of consecutive cones Ii (cf. right side of Fig. A.5):

S0 := I0 Si+1 := Ii+1 \
i⋃

j=0
Sj

Definition A.35 (Sliced Gröbner Bases). LetGi be the set of polynomial representations
of the gates in a slice Si, cf. Eqn. (A.1), and the input field polynomials. The terms are
ordered such that the requirements of Thm. A.15 are fulfilled.

Corollary A.36. The set Gi is a Gröbner basis for the slice ideal 〈Gi〉.

Proof. Follows from Thm. A.15 with C replaced by Si and G replaced by Gi.
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Algorithm 2: Multiplier Checking Algorithm
Input :Circuit C with sliced Gröbner bases Gi
Output :Determine whether C is a correct multiplier

1 C2n ← 0;
2 for i← 2n− 1 to 0 do
3 Ci ← Remainder (2Ci+1 + si − Pi, Gi ∪ Fi )

4 return C0 = 0

Since the ideal 〈Gi〉 contains all the field polynomials Fi for the gate variables in Si,
we may use them in the reduction process to eliminate exponents greater than 1 in the
intermediate reduction results. Our incremental checking algorithm, cf. Alg. 2, works as
follows: We start at the last output bit s2n−1 and compute the polynomials Ci recursively
as the remainder of dividing 2Ci+1 + si − Pi by Gi ∪ Fi. Hence a polynomial Ci is
uniquely defined, given Pi and Ci+1. It remains to fix the boundary polynomial C2n,
where we simply choose C2n = 0.

Theorem A.37. Algorithm 2 returns true iff C is a multiplier.

Proof. By definition Ri := −Ci + 2Ci+1 + si − Pi ∈ 〈Gi ∪ Fi〉. Let F denote the set
of all field polynomials for the variables of C. Since Gi ⊆ G and Fi ⊆ F , we have
Gi ∪ Fi ⊆ G ∪ F . Furthermore 〈G ∪ F 〉 = 〈G〉 = J(C) and thus Ri ∈ J(C) = I(C).

We show inductively that Ci is reduced w.r.t. Ui, where Ui :=
⋃
j≥i(Gj ∪ Fj). This

requires that si and Pi are reduced w.r.t. to Ui+1, which holds due to the construction of
the sliced Gröbner bases Gi. By U0 = G ∪ F we can derive that the final remainder
C0 is reduced w.r.t. G ∪ F thus C0 = C0 − 22nC2n ∈ I(C) = J(C) iff C0 = 0, which
concludes the proof using Thm. A.34.

Consequently Alg. 2 returns false iff a multiplier is incorrect, i.e., C0 6= 0. As
discussed in the final remark of Sect. A.3 we can use C0 to receive a concrete counter-
example. It also is possible to abort the algorithm earlier if we find partial products akbl
of higher slices Sk+l = Sj in remainders Ci with i < j.

A.8 Incremental Equivalence Checking

In this section we introduce an incremental equivalence checking algorithm [91] gener-
alizing our incremental checking approach to gate-level equivalence checking of two
multipliers, but the approach is not restricted to multiplier circuits only. The presented
theory applies to all acyclic circuits C,C ′ which have the same inputs and the same
number of output bits. We generalize our definition of circuits of Sect. A.3 as follows.

Let C be a circuit with l boolean inputs a0, . . . , al−1 and m output variables
s0, . . . , sm−1. Internal gates are represented by g0, . . . , gj . Further let C ′ be a circuit
with the same l boolean inputs, but m different outputs s′0, . . . , s

′
m−1. The gates of C ′
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are defined by gate variables g′0, . . . , g
′
k. The union of C,C ′ is denoted by C ∪ C ′, for

which we can determine I(C ∪ C ′) = J(C ∪ C ′) as described in Sect. A.3.
The core idea of equivalence checking is to verify that two circuits C and C ′ compute

the same output, given the same input. The benefit of equivalence checking is that
a circuit can be verified without requiring a word-level specification by checking the
equivalence of a circuit and a correct “golden” reference circuit. In the following we
show how we can derive an incremental equivalence checking approach based on our
column-wise checking algorithm of Sect. A.7.

Definition A.38. Let C,C ′ be two circuits. They are equivalent, written C ≡ C ′, if

si − s′i ∈ I(C ∪ C ′) i = 0, . . . ,m− 1.

Lemma A.39.

C ≡ C ′ iff
m−1∑
i=0

2i(si − s′i) ∈ I(C ∪ C ′)

Proof. “⇒”: Follows from Def. A.2.

“⇐”: Let ϕ : X → B ⊆ Q denote an evaluation of all variables X of C,C ′, which is
implied by the functionality of the circuit gates, e.g., values of si, s′i in B are uniquely
determined given fixed inputs a0, . . . , al−1. We extendϕ to an evaluation of polynomials
in the natural way (the unique homomorphic extension), i.e., ϕ : Q[X] → Q. For all
PCCs f , i.e. f ∈ I(C∪C ′), it holds by definition that ϕ(f) = 0. Since ϕ(si), ϕ(s′i) ∈ B
it is clear that ϕ(si − s′i) ∈ {−1, 0, 1}.

Assume
∑m−1
i=0 2i(si − s′i) ∈ I(C ∪ C ′), but C 6≡ C ′. Then there is a largest k with

0 ≤ k < m and ϕ(sk − s′k) 6= 0, which gives the following contradiction

0 = ϕ(
m−1∑
i=0

2i(si − s′i)) =
k∑
i=0

2iϕ(si − s′i)

= 2kϕ(sk − s′k)︸ ︷︷ ︸
∈{−2k,2k}

+
k−1∑
i=0

2iϕ(si − s′i)︸ ︷︷ ︸
∈[−2k+1,2k−1]

6= 0

As for the incremental checking algorithm we define a sequence of relations, which is
used to split the word-level equivalence specification. Based on the sequence we define
an abstract incremental bit-level equivalence checking algorithm.

Definition A.40. Let C,C ′ be two circuits. A sequence of m polynomials ∆0, . . . ,∆m

over the variables of C, C ′ is called a sequence of slice polynomials if

−∆i + 2∆i+1 + (si − s′i) ∈ I(C ∪ C ′) for all 0 ≤ i < m

The polynomials Ei = −∆i + 2∆i+1 + (si − s′i) are called slice relations for the
sequence ∆0, . . . ,∆m.
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Theorem A.41. Let C,C ′ be two circuits and ∆0, . . . ,∆m be a sequence of slice
polynomials. Then C ≡ C ′ in the sense of Def. A.38 iff 2m∆m −∆0 ∈ I(C ∪ C ′).

Proof. Using Def. A.40 we obtain modulo I(C ∪ C ′)

m−1∑
i=0

2i(si − s′i) =
m−1∑
i=0

2i(2∆i+1 −∆i) = 2m∆m −∆0.

Before we can define our incremental equivalence checking algorithm, we need to
find a Gröbner basis for the ideal I(C ∪C ′) and similar to Sect. A.7 we will define input
cones which are then used to define slices Si.

Lemma A.42. LetC andC ′ be two circuits. LetG,G′ be Gröbner bases for I(C), I(C ′)
w.r.t. ≤,≤′, satisfying the conditions of Thm. A.15. Further let ≤∪ be such that ≤,≤′
are contained in ≤∪. Then G ∪G′ is a Gröbner basis for I(C ∪ C ′) w.r.t. ≤∪.

Proof. The set G ∪G′ consists of all gate polynomials of C,C ′ and input field polyno-
mials ai(ai− 1), but no more. Since all variables of C,C ′ apart from the input variables
are unequal, G ∩G′ contains only the input field polynomials.

Since the variables a0, . . . , al−1 are the smallest elements in ≤,≤′ they are by def-
inition also the smallest elements in ≤∪. Furthermore the term orderings for the gate
polynomials of C and C ′ are still valid in ≤∪. Hence by the constraints on ≤∪ the
leading term of a polynomial in G ∪ G′ is either the output variable of a circuit gate
or the square of an input variable. Thus by Lemma A.6 G ∪G′ is a Gröbner basis for
I(C ∪ C ′) w.r.t. ≤∪.

For each pair of output bits si and s′i we determine its input cone

Ii := {gate g | g is in input cone of output si or s′i}.

The slices Si are defined as in Sect. A.7 as difference of consecutive cones Ii. For
each slice we define a set of polynomials Gi according to Def. A.35. By Cor. A.36 such
a set is a Gröbner basis for the ideal generated by the input field polynomials and the
gate polynomials of a slice. Note that the ideal generated by Gi contains all the field
polynomials Fi for the gate variables in Si.

Using Thm. A.41 we define our incremental equivalence checking algorithm, cf.
Alg 3. Setting the boundary 2m∆m to 0 we obtain the sequence of slice polynomials
∆0, . . . ,∆m−1 recursively by computing each ∆i as the remainder of 2∆i+1 + si − s′i
modulo the sliced Gröbner bases Gi ∪ Fi. This ensures that all Ei are contained in
〈Gi ∪ Fi〉 ⊆ I(C ∪ C ′). After computing ∆0, . . . ,∆m−1 we have to check if ∆0 = 0.

By similar arguments as in the proof of Thm. A.37 we show correctness of Alg 3.

Theorem A.43. Algorithm 3 returns true iff (C ≡ C ′).

Proof. It holds by definition that Ei = −∆i + 2∆i+1 + (si − s′i) ∈ 〈Gi ∪ Fi〉. By F
we denote the set of all field polynomials of the variables of C,C ′. We can derive that
Gi ∪ Fi ⊆ G ∪G′ ∪ F Therefore Ei ∈ 〈G ∪G′ ∪ F 〉 = I(C ∪ C ′).
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Algorithm 3: Equivalence Checking Algorithm
Input :Circuits C,C ′ with sliced Gröbner bases Gi
Output :Decide if C and C ′ are equivalent (C ≡ C ′)

1 ∆m ← 0;
2 for i← m− 1 to 0 do
3 ∆i ← Remainder (2∆i+1 + si − s′i, Gi ∪ Fi)
4 return ∆0 = 0

Algorithm 4: Outline of our tool AIGMULTOPOLY

Input :Circuit in AIG format
Output :File f for computer algebra system

1 for i← 0 to 2n− 1 do
2 Si ← Define-Cones-of-Influence (i);
3 Merge (Si);
4 Promote (Si);
5 Levelize (Si);
6 Apply-Rewriting (Si);
7 Identify-Vanishing Constraints (Si);

8 f ← Print to file;

We show inductively that ∆i is reduced w.r.t. Ui :=
⋃
j≥i(Gj ∪Fj). For the induction

it is required that si and s′i are reduced w.r.t. to Ui+1, which holds due to the definition of
the sliced Gröbner bases. With U0 = G∪G′∪F we get ∆0 is reduced w.r.t. G∪G′∪F
thus ∆0 = 2m∆m − ∆0 ∈ J(C ∪ C ′) iff ∆0 = 0, concluding the proof using
Thm. A.41.

A.9 Engineering

In this section we present the outline of our tool AIGMULTOPOLY [89], cf. Alg. 4, and
present a novel approach to define column-wise slices. Our tool AIGMULTOPOLY,
which is implemented in C, takes a circuit given as an AIG in AIGER format [16]
as input and returns a file which can be passed on to the computer algebra systems
Mathematica [102] and Singular [38].

In AIGMULTOPOLY we define the cones-of-influence, which are used to define the
column-wise slices. In certain cases we have to optimize the slices by moving nodes
from one slice to another slice, which we discuss further down. After slicing an ordering
is defined for the nodes inside a slice, the rewriting methods are applied and as a last
step everything including the computation instructions of our incremental column-wise
verification algorithm in the syntax of the computer algebra system is printed to a file.
In the computer algebra system the actual computation (repeated multivariate division)
of the incremental checking algorithm is executed.
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Figure A.6: Moving nodes between slices by Merge (left side) and Promote (right side).

We generally define the column-wise slices based on the input cones, cf. Sect. A.7.
But this is not always precise enough for dirty multipliers. It frequently happens that
AIG-nodes which are not directly used to compute the output si of a slice are allocated
to later slices. This happens for example for carry outputs of full- and half-adders when
they do not share their nodes with the sum output.

Example A.44. In Fig. A.2 the dashed lines depict an optimal column-wise slicing. If
we would define the slices only based on input cones, then the AND-gate with output c1
would belong to S2. Similar for the gates with outputs c2, g2, g1, c3, thus all the full-
and half-adders would be cut into two pieces.

We want to have these nodes in the same slice as the nodes computing the sum output
of an adder. Otherwise we cannot apply Adder-Rewriting. We informally define those
nodes in a slice Si which are used as inputs of nodes in a slice Sj with j > i as carries
of a slice Si. The size of the carry polynomial Ci can be reduced by decreasing the
number of carries of the corresponding slice Si. If the nodes are not moved, larger carry
polynomials Ci are generated and hence we get larger intermediate reduction results
than necessary. Therefore we eagerly move nodes between slices in a kind of peephole
optimization, backward (Merge) as well as forward (Promote).

Merge Assume we find a node g in the AIG which belongs to a slice
Si and both children q and r belong to smaller slices Sj and Sk. Let
l = max(j, k). If the children q and r do not have any other parent than g in
a bigger slice than Sl, we move the node g back to slice Sl. This approach is
depicted on the left side of Fig. A.6 for j = k = i− 1. Thus after merging
g, the nodes q, r are less likely to be carry variables any more, especially
when j = k. We apply merging repeatedly until completion and Sl and Si
are updated after each application. Merging nodes usually ensures that the
complete logic of a full- or half-adder is contained within one slice.

Example A.45. In the circuit of Fig. A.2 gate c1 is merged to slice S1. Gates g1, g2, c2
are repeatedly merged to S2 and gate c3 is merged from S4 to S3. Hence every full- or
half-adder logic is contained within one slice.

Promote In some multiplier architectures it happens the inputs of a node
g are contained in the same slice and all three nodes are carries. In this case
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we decrease the number of carries by promoting g to the next bigger slice.
More precisely we search for nodes g in a slice Si−1 which have exactly
one parent contained in a larger slice Sj with j ≥ i− 1. If g would also be
an input of a node in Si−1, we cannot move g to slice Si without violating
the topological order. The inputs of g also have to be contained in Si−1 and
need to have at least one parent in a bigger slice Sj with j > i− 1, i.e., they
are carries. Then we promote g to slice Si and thus decrease the number of
carries. Promoting is shown on the right side of Fig. A.6 for j = i.

A node g which is merged cannot be promoted back in the next round, because
merging and promoting have different requirements for the input nodes of g. This
prevents an endless alternate application of the above rules.

We can overcome the necessity of merging gates by defining slices based on the
output cones of the partial products, i.e., gates which depend on a partial product. This
approach works only if the partial products are generated by a simple AND-gate. If for
example Booth encoding of partial products is applied, we cannot identify all partial
products in the AIG and thus cannot apply the approach of defining slices based on the
output cones.

Oi := {gate g | g is in output cone of a partial product akbl with k + l = i}

We derive slices Si as the difference of consecutive cones Oi:

Sn−2 := On−2 Si := Oi \
n−2⋃
j=i+1

Sj

The disadvantage of this approach is that the slice Sn−2 actually contains two output
bits, namely sn−2 and sn−1. In an AIG the output bit is usually introduced by a relation
of the form s = gk, i.e., renaming of a gate variable gk. To solve the issue we simply
define a slice Sn−1 which contains exactly the relation sn−1 = gk for some gk. This
constraint is removed from Sn−2.

It can be seen in Fig. A.6 that slicing based on the output cones makes the concept of
merging superfluous. The node g in slice Si has inputs q and r, which belong to smaller
slices Sj and Sk. Hence g depends on the partial products of q and r. Thus g is in the
same output cone than its children and it will be allocated to Sl, with l = max(j, k). So
it cannot belong to a different slice.

In contrast to merging, promoting a node is still necessary, because as it can be seen
in the right side of Fig. A.6, nodes g, q, r all depend on the same partial products, hence
they will all be allocated to Si−1, which makes promoting of g to Si still necessary.
Since promoting is necessary in both approaches and slicing based on the input cones
also works for encodings, such as Booth encoding, we will stick to the slicing based on
input cones.

After merging and promoting, the allocation of nodes to a slice is fixed. The slices
are totally ordered starting from S2n−1 to S0. We order the nodes in a slice according to
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their level seen from the circuit inputs. Ordering the nodes after merging and slicing
ensures that the variables are topologically sorted.

The rewriting techniques of Sect. A.4 are applied in the order: Adder-Rewriting,
XOR-Rewriting and Common-Rewriting. Since the structures of full- and half-adders
usually do not change within a certain circuit, we do not have to compute the Gröbner
basis HB , cf. Sect. A.5, every time we find a certain full- or half-adder structure in
the corresponding AIG. The polynomials describing the adder will always have the
same form. Thus it suffices that we know the structure of the polynomials in HB and
simply replace the polynomials describing the adder structure by the polynomials of
HB with appropriate variables. The same applies to structures describing an XOR- or
XNOR-gate.

In order to simulate Common-Rewriting, we search in each slice Si for nodes which
are not used in another slice and have exactly one parent. We collect them in the set
Ui. Polynomials of nodes in Si which depend on nodes in Ui are reduced first by the
polynomials of nodes in Ui, thus eliminating the nodes of Ui.

After rewriting Si, we search for Vanishing Constraints in the remaining nodes of
Si. More precisely we search for products which always evaluate to zero, e.g., gb in
Example A.8. We store these constraints in a set Vi and during remainder computation
we also reduce against elements of Vi. Since these constraints are contained in the ideal
I(C), and because of Thm. A.16, we can add these polynomials to the Gröbner basis
without violating the Gröbner basis property.

Partial Product Elimination is handled internally. We search for all n2 nodes which
define a partial product in the AIG and check if they are correct. We exclude the original
inputs from the AIG and treat these nodes as new inputs of the AIG. In the printing
process we simply rewrite the specification in terms of these nodes.

The polynomials of each slice together with computation instructions for the incre-
mental checking algorithm are written to a file which can be passed on to the computer
algebra systems Mathematica or Singular. Whereas Singular treats the polynomials of
the sliced Gröbner bases as a set which is then ordered internally according to the given
variable order, it seems that Mathematica actually treats the set of polynomials as a
list. Therefore it is necessary to print the polynomials in the correct order. We did not
obey this fact in [89], where we actually printed the polynomials in reverse order. We
started by printing the polynomials defining the partial products and ended by printing
the polynomial representation of the output bit of each slice. By adjusting the printing
order of the polynomials such that the leading terms of the polynomials are ordered
according to the given variable order we were able to improve our computation results
from [89].

A.10 Experiments

In our work we focus on integer multipliers, as the authors of [32,93,94,103], which take
two n-bit vectors as inputs and return a bit-vector of size 2n. In the work of [32, 103]
the authors used clean CSA multipliers, crafted from [69]. They further used multipliers
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Figure A.7: Multiplier architectures of “btor” (left) and “sp-ar-rc” (right) for input
bit-width n = 4.

generated by ABC [10] on which synthesis and technology mapping is applied. These
multipliers are extremely hard to verify [32, 103].

In our experiments we focus on two different architectures, called “btor” and “sp-ar-
rc”. The “btor” benchmarks are generated from Boolector [83] and can be considered
as clean multipliers. The “sp-ar-rc” multipliers are part of the bigger AOKI bench-
marks [53] and can be considered as dirty multipliers. The AOKI benchmark set was
used extensively in the experiments of [93, 94]. The structure of “btor” and “sp-ar-rc”
multipliers is shown in Fig. A.7. Both architectures can be fully decomposed into full-
and half-adders, which are then accumulated. In “btor” these full- and half-adders are
accumulated in a grid-like structure, whereas in “sp-ar-rc” full- and half-adders are
accumulated diagonally.

In addition to “btor” and “sp-ar-rc” multipliers, we will further use more complex
multiplier architectures of [32, 103] and of the AOKI benchmarks. The architectures
of the different AOKI benchmarks are indicated by the names of the multipliers. The
naming of the multipliers follows the following structure: “partial product generation -
accumulation - last step adder”, e.g., a “sp-ar-rc” multiplier consists of simple partial
product generation, which are accumulated in an array structure and the adder in the last
accumulation step is a ripple-carry adder. In our experiments we will include “bp-ar-rc”,
“sp-ar-cl” and “sp-wt-rc”, where bp defines booth encoding [85] , cl defines a carry
look-ahead adder and wt means accumulation by a Wallace-tree structure, where the
number of partial products is reduced as soon as possible, which minimizes the overall
delay of the multiplier [85].

Furthermore we use benchmarks which are synthesized and technology mapping is
applied. The basis of these benchmarks is an “abc”-multiplier, which is generated with
ABC [10] and has the same clean structure as the “btor” benchmarks. The different
versions of synthesis and technology mapping should be the same as in [32, 103].

In all our experiments we used a standard Ubuntu 16.04 Desktop machine with Intel
i7-2600 3.40GHz CPU and 16 GB of main memory. The (wall-clock) time limit was set
to 1200 seconds and main memory was limited to 14GB. We measure the time from
starting our tool AIGMULTOPOLY until Mathematica resp. Singular are finished. This
includes the time our tool AIGMULTOPOLY needs to generate the files for the computer
algebra system, which in the worst case is around 3 seconds for 128-bit multipliers. The
results also include the time to launch Mathematica resp. Singular. We mark unfinished
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mult n
Mathematica Singular

+inc -inc +col -inc +row +inc -inc +col -inc +row
btor 16 2 3 4 1 1 2
btor 32 14 56 106 10 42 42
btor 64 131 MO MO MO MO MO
btor 128 TO TO TO EE EE EE
sp-ar-rc 16 4 9 11 1 TO TO
sp-ar-rc 32 30 326 425 28 TO TO
sp-ar-rc 64 300 MO MO MO MO MO
sp-ar-rc 128 TO TO TO EE EE EE

Table A.1: Our column-wise incremental approach (+inc +col) vs. a non-incremental
approach using column-wise (-inc +col) and row-wise order (-inc +row) without Adder-
Rewriting.

experiments by TO (reached the time limit), MO (reached the memory limit) or by an
error state EE (reached the maximum number of ring variables in Singular). Singular
has a limit of 32767 on the number of ring variables and multipliers of larger bit-width
easily exceed this limitation. We also mark some unfinished experiments by TO*, in this
case the time limit was set to 36000 seconds (10 hours). Experimental data, benchmarks
and source code is available at http://fmv.jku.at/fmsd18.

In Table A.1 we compare our incremental column-wise verification approach of Alg. 2
to a non-incremental verification approach, where the complete word-level specification
(Def. A.13) is reduced. For the non-incremental approach we use a column-wise as
well as row-wise term ordering. In Table A.1 all optimizations are enabled (XOR-
Rewriting, Common-Rewriting, Vanishing Constraints, Merge, Promote), but Adder-
Rewriting is disabled. The results show that our incremental verification approach is
faster and uses less memory than the non-incremental approaches. In the experiments
of [89] Mathematica needed a lot more time than Singular, but as discussed at the
end of Sect. A.9 we could improve the running time of Mathematica by adjusting the
printing order. Hence in the experiments presented in this work the computation time
of Mathematica and Singular is nearly the same. The big difference between the two
computer algebra systems is that Singular needs a lot of memory, verification of 64-bit
multipliers needs more than 14 GB. As expected we get an error state for the 128-bit
multipliers.

By default the adapted optimizations XOR-Rewriting, Common-Rewriting and adding
Vanishing Constraints of [93] are enabled in our incremental column-wise checking
algorithm. In the experiments shown in Table A.2 we show the effects of turning
off exactly one of these optimizations (keeping Adder-Rewriting disabled). For the
“btor” multipliers turning off Common-Rewriting actually speeds up computation time.
In the “btor” multipliers only a few gates with only one parent exist and applying
common-rewriting by splitting remainder computation increases the run-time. In “sp-ar-
rc” multipliers turning off Common-Rewriting increases computation time drastically,
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mult n
Mathematica Singular

+inc -xor -com -vc +inc -xor -com -vc
btor 16 2 5 2 3 1 1 1 1
btor 32 14 31 4 15 10 28 5 12
btor 64 131 292 22 128 MO MO MO MO
btor 128 TO TO 186 TO EE EE EE EE
sp-ar-rc 16 4 17 TO 4 1 6 TO 1
sp-ar-rc 32 30 171 TO 31 28 242 TO 28
sp-ar-rc 64 300 TO TO 303 MO EE MO MO
sp-ar-rc 128 TO TO TO TO EE EE EE EE

Table A.2: Effect of turning off optimizations XOR-Rewriting (-xor), Common-
Rewriting (-com) and Vanishing Constraints (-vc) keeping Adder-Rewriting disabled.

mult n
Mathematica Singular

+inc -merge -prom +ocone +inc -merge -prom +ocone
btor 16 2 3 2 3 1 1 1 1
btor 32 14 21 15 15 10 10 10 11
btor 64 131 233 133 132 MO MO MO MO
btor 128 TO TO TO TO EE EE EE EE
sp-ar-rc 16 4 4 TO 4 1 1 TO 1
sp-ar-rc 32 30 39 TO 31 28 29 MO 28
sp-ar-rc 64 300 430 TO 301 MO MO MO MO
sp-ar-rc 128 TO TO TO TO EE EE EE EE

Table A.3: Effect turning off Merge (-merge) and Promote (-prom). Furthermore the
effect of using slicing based on the output cones (+ocone).

because structures containing nodes with only one parent occur much more frequently.
Turning off XOR-Rewriting is a downgrade for both clean and dirty multipliers. Because
of the additional number of gates we already reach an error state for a 64-bit multiplier
in Singular. In [89] turning off Vanishing Constraints had a very bad effect for clean
multipliers in Mathematica. By printing the polynomials in a different order we could
overcome this issue. Now turning off Vanishing Constraints does not influence the
behavior of neither Mathematica nor Singular for clean as well as dirty multipliers.
Hence the question can be asked if adding Vanishing Constraints in the current form is
really necessary. Summarized it can be said that the optimizations have both positive
and negative effects, depending on the structure of the multiplier.

In the experiments shown in Table A.3 we investigate the effects of turning off the
engineering methods Merge and Promote. The computation time of disabling Merge
can considered to be the same. The difference can be seen in the size of Ci in the
log-files, e.g., in sp-ar-rc-8 the maximum number of monomials in any Ci is 38, whereas
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mult n

Mathematica Singular
+inc +Adder Rew. +inc +Adder Rew.

+as +ppe -s +as +ppe -s
btor 16 2 2 1 1 0 1 0 1 0 0
btor 32 14 15 2 2 2 10 11 1 1 1
btor 64 131 132 11 6 5 MO MO 14 9 5
btor 128 TO TO 101 47 40 EE EE EE EE EE
sp-ar-rc 16 4 4 1 1 1 1 1 0 0 0
sp-ar-rc 32 30 30 2 2 1 28 28 2 1 1
sp-ar-rc 64 300 295 11 6 5 MO MO 16 10 5
sp-ar-rc 128 TO TO 102 48 41 EE EE EE EE EE

Table A.4: Enabling Adder-Rewriting and Partial Product Elimination.

in the approach with Merge enabled the maximum number is 8. Furthermore all Ci are
linear. Turning off Promote does not affect “btor”-multipliers but really slows down
computation time of “sp-ar-rc” multipliers. Furthermore we compare our incremental
slicing based on the input cones to the slicing method which is based on the output
cones. Both slicing approaches lead to identical output files for the computer algebra
systems, hence we have the same computation time in both approaches.

In Table A.4 we apply Adder-Rewriting on top of our incremental verification ap-
proach. In the first step we simply add the full- and half-adder specifications (+as) to the
Gröbner basis, without eliminating any internal variable. Comparing the computation
time, it seems that computer algebra systems cannot use this additional redundant infor-
mation, similar to Vanishing Constraints in Table A.2. Applying Adder-Rewriting by
eliminating internal variables in the sliced Gröbner bases has a tremendous effect on
the computation time. Now also 128-bit multipliers can be verified within roughly 100
seconds, while before verification timed out after 20 minutes. Additionally eliminating
the partial products (+ppe) further speeds-up computation time. We assume that the
considered multipliers are correct and since they can fully be decomposed into full-
and half-adders, we never have to reduce by the sum output of a full- or half-adder
separately. It is always reduced in parallel with the carry output. Elimination of the
polynomials where the leading term is a sum-output of an adder from the Gröbner basis
(-s) brings further improvements, but loses completeness.

In the experiments shown in Table A.5 we consider the more complex multiplier archi-
tectures introduced at the beginning of this section. We apply our default incremental-
checking approach without Adder-Rewriting, because usually the regular full- and
half-adder structures are destroyed by synthesis and technology mappings. Synthesizing
and application of complex mappings makes it very hard to verify a circuit. Even an 8-bit
multiplier cannot be verified any more, neither in Mathematica nor in Singular. This
confirms the results of [32, 103]. It can further be seen that more complex architectures
cannot be verified with the state-of-the-art approach, which makes more sophisticated
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mult n Mathematica Singular
abc-resyn3-no-comp 4 1 0
abc-resyn3-no-comp 8 2 7
abc-resyn3-no-comp 16 TO TO
abc-resyn3-comp 4 1 0
abc-resyn3-comp 8 TO TO
bp-ar-rc 4 TO 287
bp-ar-rc 8 TO TO
sp-ar-cl 4 1 1
sp-ar-cl 8 TO TO
sp-wt-rc 4 1 1
sp-wt-rc 8 2 1
sp-wt-rc 16 TO TO

Table A.5: Complex multiplier architectures, including synthesis and technology map-
ping.

mult n Lingeling [13] ABC [10] -Adder Rew. +Adder Rew.
btor vs. sp-ar-rc 8 14 12 2 1
btor vs. sp-ar-rc 16 TO* TO* 6 1
btor vs. sp-ar-rc 32 - - 44 3
btor vs. sp-ar-rc 64 - - 443 15
btor vs. sp-ar-rc 128 - - TO 115

Table A.6: Incremental column-wise Equivalence checking with and without Adder-
Rewriting.

reasoning necessary.
In the experiments of Table A.6 we apply the column-wise equivalence checking

algorithm of Sect. A.8 and check the equivalence of the “btor” and “sp-ar-rc” multipliers.
Despite their architectural similarities neither Lingeling [13] nor ABC [10] are able
to verify their equivalence for n = 16 within 10 hours, whereas it takes only around
a second using our approach based on computer algebra. In this experiment we only
use Mathematica as a computer algebra system, because it supports more variables.
We check the equivalence using our incremental equivalence checking algorithm with
and without Adder-Rewriting. Enabling Adder-Rewriting again substantially reduces
computation time. We do not use Partial Product Elimination, because in this setting we
would have to manually map the AND-gates which generate the partial products of the
two multipliers.
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A.11 Conclusion

This article presents in detail our incremental column-wise verification approach to
formally verify integer multiplier circuits, as introduced in [17, 89, 91].

We give a precise mathematical formalization of the theory of arithmetic circuit
verification using computer algebra including rigorous soundness and completeness
arguments. Our incremental column-wise checking algorithm has tremendously positive
effects on computation time. We discuss several optimizations which rewrite and
simplify the Gröbner basis. For these optimizations we introduce the necessary theory
and present a technical theorem which allows us to rewrite local parts of the Gröbner
basis based on [17]. Furthermore we show how our incremental verification algorithm
can be extended to equivalence checking [91]. As a novel contribution we revise our
engineering techniques and present a simple alternative method to define column-wise
slices. We further improve computation times compared to [89] by changing the printing
process of our tool.

As future work, we want to extend our methods to more complex architectures, i.e.,
we want to efficiently verify multiplier architectures used in Table A.5. We also want to
consider overflow-semantics and negative numbers. Furthermore we want to investigate
floating points and other word-level operators.
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Abstract Generating and automatically checking proofs independently increases
confidence in the results of automated reasoning tools. The use of computer algebra
is an essential ingredient in recent substantial improvements to scale verification of
arithmetic gate-level circuits, such as multipliers, to large bit-widths. There is also
a large body of work on theoretical aspects of propositional algebraic proof systems
in the proof complexity community starting with the seminal paper introducing the
polynomial calculus. We show that the polynomial calculus provides a frame-work to
define a practical algebraic calculus (PAC) proof format to capture low-level algebraic
proofs needed in scalable gate-level verification of arithmetic circuits. We apply these
techniques to generate proofs obtained as by-product of verifying gate-level multipliers
using state-of-the-art techniques. Our experiments show that these proofs can be checked
efficiently with independent tools.

B.1 Introduction

Formal verification gives correctness guarantees. However, the process of verification
might also not be error-free. A common approach to increase confidence in the results of
verification consists of generating machine checkable proofs which are then checked by
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independent proof checkers. These checkers are less complex than for example theorem
provers producing proofs and can also be verified.

For instance many applications of formal verification rely on SAT solvers. Their
results can be validated by producing and checking resolution proofs [47,107] or clausal
proofs [43,47]. Generating proofs is mandatory in the main track of the SAT Competition
since 2016. These approaches have also recently been shown to scale to huge low-level
proofs of combinatorial problems such as the Boolean Pythagorean triples problem [51]
or Schur Number Five [46].

However, in certain applications, e.g., arithmetic circuit verification, resolution based
SAT solving does not work. Especially reasoning about gate-level multipliers is con-
sidered to be hard [12]. For arithmetic circuit verification the currently most promising
approach uses algebraic reasoning [32, 78, 89, 93].

In this approach each circuit gate is translated into a polynomial to model constraints
between its output and inputs, i.e., roots of polynomials are identified as solutions of gate
constraints. Additional polynomials ensure that values remain in the Boolean domain.
Word-level specifications relating circuit outputs and inputs can also be translated into
polynomials. Thus verification boils down to show that the specification polynomial
is “implied” by the polynomials induced by the circuit gates (contained in the ideal
generated by them).

To validate results of algebraic reasoning the polynomial calculus can be used [34]. It
operates on polynomials and allows checking if a polynomial is a logical consequence of
a given set of polynomials. The main focus in this area has been on proof complexity to
obtain lower bounds for the degree and size of proofs [55]. For instance [82] introduces
a general method to obtain lower bounds and [75] shows that certifying the non-k-
colorability of graphs requires proofs of large degree. A more general calculus capable
of detecting unsatisfiability of nonlinear equalities as well as inequalities is discussed
in [96].

Our paper shows that the polynomial calculus can also be used in practice. In
particular we generate low-level algebraic proofs needed to validate the results of ideal
membership testing used in arithmetic circuit verification by translating proofs extracted
from computer algebra systems to polynomial refutations in the polynomial calculus.
After we review preliminaries in Sect. B.2, we present a concrete proof format for
polynomial calculus proofs, called practical algebraic calculus in Sect. B.3. In Sect. B.4
we give a comprehensive introduction to arithmetic circuit verification, following [89].
Section B.5 introduces the tool flow of verifying and proof checking arithmetic circuits.
In our experiments, shown in Sect. B.6, our new proof checker PACTRIM is used to
independently validate the results of multiplier verification [89]. We further apply
these techniques to equivalence checking of multipliers [91] and proving certain ring
properties, e.g., commutativity of multipliers [7]. In general, we claim that our approach
is the first to provide machine checkable proofs for current state-of-the-art techniques in
verifying arithmetic circuits [32, 78, 89, 93].
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B.2 Preliminaries

Proof systems are used to validate the results of verification systems. While a verification
system only gives a yes/no answer, a proof system provides additionally a certificate
with which the answer can be checked independently. We are concerned here with a
proof system for reasoning about polynomial equations. The question is whether the
zeroness of a certain set of polynomials implies the zeroness of another polynomial.
We consider polynomials p ∈ F[X] where F is a field and X = {x1, . . . , xn} is a finite
set of variables. The function X 7→ p(X) is called polynomial function of p. The
polynomial equation of p is defined as p(X) = 0 and the solutions of this equation are
the roots of p. From now on we drop the function argument and write p = 0 instead of
p(X) = 0.

Reasoning with polynomial equations is well-understood both in computer algebra
and in computational logic. Already Hilbert and collaborators have studied the theory of
polynomial ideals in order to reason about the solution sets of polynomial equations.
The application of Gröbner bases [25] by for instance Kapur [58, 59, 60] has turned the
algebraic approach into a valuable computational tool for automated theorem proving
with renewed recent interest [1, 108].

In order to introduce the notation and terminology needed later, let us give a brief
summary of the theory. As far as algebra is concerned, we follow the standard text-
books [9, 26, 35]. From the logical perspective, we use a variant of the polynomial
calculus (PC) as proposed by [34]. It is more flexible than the Nullstellensatz (NS) proof
system [6], which is also heavily used in the proof complexity community. The relation
between PC and NS in the context of our application is further discussed at the end of
this section.

Let G ⊆ F[X] and f ∈ F[X]. In logical terms, the question is whether the equation
f = 0 can be deduced from the equations g = 0 with g ∈ G, i.e., every common root
of the polynomials g ∈ G is also a root of f . As we will only consider polynomial
equations with right-hand side zero, we take the freedom to write f instead of f = 0.
We write proofs as tuples P = (p1, . . . , pn) of polynomials where each pi is derived by
one of the following rules.

Addition
pi pj
pi + pj

pi, pj appearing earlier in the proof
or are contained in G

Multiplication
pi
qpi

pi appearing earlier in the proof
or is contained in G
and q ∈ F[X] being arbitrary

If f can be deduced from the polynomials g ∈ G, i.e., pn = f , we write G ` f .
In algebraic terms, G ` f means that f belongs to the ideal generated by G. Recall
that an ideal I ⊆ F[X] is defined as a set with 0 ∈ I and the closure properties
u, v ∈ I ⇒ u + v ∈ I and w ∈ F[X], u ∈ I ⇒ wu ∈ I . If G = {g1, . . . , gm} ⊆
F[X] is a finite set of polynomials, then the ideal generated by G is defined as the set
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G = { − b+ 1− a,
− c+ a+ b− 2ab,
a2 − a, b2 − b, c2 − c}

a c

b

−c+ a+ b− 2ab −b+ 1− a
−c+ 1− 2ab

−b+ 1− a
2ab− 2a+ 2a2

−c+ 1− 2a+ 2a2
a2 − a
−2a2 + 2a

−c+ 1

Figure B.1: The circuit, polynomial representation of the gates and proof for Ex. B.1.

{q1g1 + · · · + qmgm : q1, . . . , qm ∈ F[X]} and denoted by 〈G〉. The set G is called
a basis of the ideal 〈G〉. It is clear that this is an ideal and that it consists of all the
polynomials whose zeroness can be deduced from the zeroness of the polynomials in G.
In logical terms we would call G an axiom system and 〈G〉 the corresponding theory.
If we can derive G ` 1, or in algebraic terms 1 ∈ 〈G〉, the PC proof is called a PC
refutation.

Example B.1. This example shows that the output c of an XOR gate over an input a
and its negation b = ¬a is always true, i.e., c = 1 or equivalently −c + 1 (= 0). We
apply the polynomial calculus over the ring Q[c, b, a]. Over Q a NOT gate x = ¬y is
modeled by the polynomial −x+ 1− y and an XOR gate z = x⊕ y is modeled by the
polynomial −z + x + y − 2xy. Because the variables are of the boolean domain we
further need to enforce that every variable can only take the values 0 or 1. Therefore
we add for each variable xi a polynomial of the form xi(xi − 1) to the given set of
polynomials. The corresponding circuit representation, the given polynomials and a
polynomial proof are shown in Fig. B.1.

Example B.2. Let G = {x, x + y} ⊆ Q[x, y], f = y. We have G ` f . A proof is
P = (−x, y). The first entry follows by the multiplication rule from x with q = −1,
and the second entry follows by the addition rule from the first entry and x+ y which is
contained in G.

Thanks to the theory of Gröbner bases [9,25,35], the polynomial calculus is decidable,
i.e., there is an algorithm, which for any finite G ⊆ F[X] and f ∈ F[X] can decide
whether G ` f or not. A basis of an ideal I is called a Gröbner basis if it enjoys certain
structural properties whose precise definition is not relevant for our purpose. What
matters are the following fundamental facts:

• There is an algorithm (Buchberger’s algorithm) which for any given finite set
B ⊆ F[X] computes a Gröbner basis for the ideal 〈B〉 generated by B.

• Given a Gröbner basis G, there is a computable function redG : F[X] → F[X]
such that ∀ p ∈ F[X] : redG(p) = 0 ⇐⇒ p ∈ 〈G〉.
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• Moreover, if G = {g1, . . . , gm} is a Gröbner basis of an ideal I and p, r ∈ F[X]
are such that redG(p) = r, then there exist h1, . . . , hm ∈ F[X] such that p− r =
h1g1 + · · ·+ hmgm, and such polynomials hi can be computed.

Consider the extended calculus with the additional rule

Radical
pmi
pi

m ∈ N \ {0} and
pmi appearing earlier in the proof or is contained in G.

If the polynomial f can be deduced from the polynomials g, where g ∈ G, with the
rules of PC and this additional radical rule, we write G `+ f and call this proof radical
proof (`+). In algebra, the set { f ∈ F[X] : G `+ f } is called the radical ideal of G
and is typically denoted by

√
〈G〉.

Also the extended calculus `+ is decidable. It can be reduced to ` using the so-called
Rabinowitsch trick [35, 4§2 Prop. 8], which says

f ∈
√
〈G〉 ⇐⇒ 1 ∈ 〈G ∪ {yf − 1}〉 or G `+ f ⇐⇒ G ∪ {yf − 1} ` 1,

depending whether you prefer algebraic or logic notation. In both cases, y is a new
variable and the ideal/theory on the right-hand sides is understood as an ideal/theory of
the extended ring F[X, y]. The Rabinowitsch trick is therefore used to replace a radical
proof (`+) by a PC refutation.

For a given set G ⊆ F[X], a model is a point u = (u1, . . . , un) ∈ Fn such that for
all g ∈ G we conclude that g(u1, . . . , un) = 0. Here, by g(u1, . . . , un) we mean the
element of F obtained by evaluating the polynomial g for x1 = u1, . . . , xn = un. For
a set G ⊆ F[X] and a polynomial f ∈ F[X], we write G |= f if every model for G
is also a model for {f}. Given G ⊆ F[X], define V (G) as the set of all models of G.
For an algebraically closed field F, Hilbert’s Nullstellensatz [35, 4§1 Thms. 1 and 2]
asserts that V (G) is nonempty if and only if 1 6∈ 〈G〉, and furthermore, f ∈

√
〈G〉 ⇐⇒

V (G) ⊆ V ({f}). In other words, G |= f ⇐⇒ G `+ f . Particularly, the PC
including the radical rule is correct (“⇐”) and complete (“⇒”). In combination with
Rabinowitsch’s trick, we can therefore decide the existence of models and furthermore
produce certificates for the non-existence of models.

For our applications, only models u ∈ {0, 1}n ⊆ Fn matter. Let us write G |=bool f
if every model u ∈ {0, 1}n of G is also a model of {f}. Using basic properties of ideals
as described in [35, 4§3 Thm. 4], it is easy to show that G |=bool f ⇐⇒ G ∪B |= f ,
whereB = {xi(xi−1) : i = 1, . . . , n}. Furthermore, the equivalenceG∪B |= f ⇐⇒
G ∪B `+ f also holds when F is not algebraically closed, because changing from F to
its algebraic closure F̄ will not have any effect on the models in {0, 1}n. Finally, let us
remark that the finiteness of {0, 1}n also implies that G ∪B `+ f ⇐⇒ G ∪B ` f .
This follows from Seidenberg’s lemma [9, Lemma 8.13] and generalizes Theorem 1
of [34].

In contrast to a PC refutation G ∪ {1− yf} ∪B ` 1, where each polynomial in the
proof is generated using the rules of PC, a refutation in the NS proof system is a set of
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letter ::= ‘a ’ | ‘b ’ | . . . | ‘z ’ | ‘A ’ | ‘B ’ | . . . | ‘Z ’
number ::= ‘0 ’ | ‘1 ’ | . . . | ‘9 ’

constant ::= (number)+

variable ::= letter (letter | number)∗

power ::= variable [ ‘^ ’ constant ]
term ::= power (‘* ’ power)∗

monomial ::= constant | [ constant ‘* ’ ] term
operator ::= ‘+ ’ | ‘- ’

polynomial ::= [ ‘- ’ ] monomial (operator monomial)∗

given ::= (polynomial ‘; ’)∗

rule ::= (‘+ ’ | ‘* ’) ‘: ’ polynomial ‘, ’ polynomial ‘, ’ polynomial ‘; ’
proof ::= (rule ‘; ’)∗

Figure B.2: Syntax of given polynomials and proofs in PAC-format.

polynomials Q = {q1, . . . , qm} ⊆ F[X] such that

m∑
i=0

qipi = 1 for pi ∈ G ∪ {1− yf} ∪B.

Although both systems are able to verify correctness of a refutation, we will use PC and
not the NS proof system, because for arithmetic circuit verification we will rewrite some
polynomials of G ∪ {1− yf} ∪B, and thus gain an optimized algebraic representation
of the circuit, cf. Sect. B.4. In a correct NS refutation we would also need to express
these rewritten polynomials as a linear combination of elements of G ∪ {1− yf} ∪B
and thus lose the optimized representation, which will most likely lead to an exponential
blow-up of monomials in the NS proof [27]. In PC we can generate these optimized
polynomials on-the-fly and then use these polynomials to show the correctness of the
refutation.

B.3 Practical Algebraic Calculus

For practical proof checking we translate the abstract polynomial calculus (PC) into a
concrete proof format, i.e., we only define a format based on PC, which is logically
equivalent but more precise. In principle a proof in PC can be seen as a finite sequence
of polynomials derived from given polynomials and previously inferred polynomials by
applying either an addition or multiplication rule.

To ensure correctness of each rule it is of course necessary to know which rule was
used, to check that it was applied correctly, and in particular which given or previously
derived polynomials are involved. During proof generation these polynomials are usually
known and thus we require that all of this information is part of a rule in our concrete
practical algebraic calculus (PAC) proof format to simplify proof checking. The syntax
of PAC is shown in Fig. B.2. White space is allowed everywhere except between letters
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and digits in a constant or a variable. A proof rule contains four components

o : v, w, p;

The first component o denotes the operator which is either ‘+’ for addition or ‘*’ for
multiplication. The next two components v, w specify the two (antecedent) polyno-
mials used to derive p (conclusion). In the multiplication rule w plays the role of the
polynomial q of the multiplication rule of PC, cf. Sect. B.2. A refutation in PAC is a
proof, which contains a non-zero constant polynomial (typically just the constant “1”)
as conclusion p of a rule.

As discussed above we do not need the radical rule for our purpose, even though
it could be easily added. Further note that the format is independent of the domain
of the models u, e.g., u ∈ {0, 1}n for gate-level circuit verification, to which the
values of variables are restricted. If such a restriction is necessary, all elements of the
corresponding set B (often also called field polynomials) have to be added to the given
set of polynomials.

Although the definition of number together with the definition of polynomial only al-
lows integer coefficients, this is not a severe restriction. Rational number coefficients can
be simulated by multiplying involved polynomials with appropriate non-zero constants
to eliminate denominators.

Example B.3. Consider again Ex. B.1. To test membership of 1− c ∈
√
〈G〉 we add

1 + y(c− 1) to the set of given polynomials G in order to apply Rabinowitsch’s trick
and obtain a PAC refutation:

+ : -c+a+b-2a*b, -b+1-a, -c+1-2a*b;

* : -b+1-a, -2a, 2a*b-2a+2a^2;
+ : -c+1-2a*b, 2a*b-2a+2a^2, -c+1-2a+2a^2;

* : a^2-a, -2, -2a^2+2a;
+ : -c+1-2a+2a^2, -2a^2+2a, -c+1;

* : -c+1, y, -c*y+y;
+ : -c*y+y, 1+c*y-y, 1;

For proof validation we need to make sure that two properties hold. The connection
property states that the components v, w are either given polynomials or conclusions of
previously applied proof rules. For multiplication we only have to check this property
for v, because w is an arbitrary polynomial. By the second property, called inference
property, we verify the correctness of each rule, namely we simply calculate v + w
resp. v ∗ w and check that the obtained result matches p. In a correct PAC refutation we
further need to verify that at least one pi is a non-zero constant. The complete checking
algorithm is shown in Alg. 5.

B.4 Circuit verification using Computer Algebra

Following [32, 89, 91, 93, 94, 103] we consider gate-level (integer) multipliers with
2n input bits a0, . . . , an−1, b0, . . . , bn−1 ∈ {0, 1} and 2n output bits s0, . . . , s2n−1 ∈
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Algorithm 5: Proof Checking algorithm in PAC
Input :G sequence of given polynomials, r1 · · · rk sequence of PAC proof rules
Output :“incorrect”, “correct-proof”, or “correct-refutation”

1 P0 ← G;
2 for i← 1 . . . k do
3 let ri = (oi, vi, wi, pi);
4 case oi = + do
5 if vi ∈ Pi−1 ∧ wi ∈ Pi−1 ∧ pi = vi + wi then Pi ←append(Pi−1, pi) ;
6 else return “incorrect";

7 case oi = ∗ do
8 if vi ∈ Pi−1 ∧ pi = vi ∗ wi then Pi ←append(Pi−1, pi) ;
9 else return “incorrect";

10 for i← 1 . . . k do
11 if pi is a non zero constant polynomial then return “correct refutation”;

12 return “correct proof";

{0, 1}. Each internal gate (output) is represented by a further variable l1, . . . , lm. In this
setting letX = a0, . . . , an−1, b0, . . . , bn−1, l1, . . . , lm, s0, . . . , s2n−1. Then a multiplier
is correct iff for all possible inputs the following specification holds:

2n−1∑
i=0

2isi =
(n−1∑
i=0

2iai
)(n−1∑

i=0
2ibi

)
(B.1)

Using algebraic reasoning this can be verified by showing that the specification is
contained in the ideal generated by the gate constraints. For each logical gate in the
circuit a so-called gate polynomial g ∈ Q[X] representing the relation between the gate
inputs and output is defined. Example B.1 defines these polynomials for a NOT and
an XOR gate. Indicating that the circuit operates over Boolean variables, we add for
each variable xi ∈ X the relation xi(xi − 1) matching the definition of B in the last
paragraph of Sect. B.2 to the gate polynomials G.

Although all variables are restricted to boolean values we use Q as the base field.
Using Q connects the circuit specification (Eqn. (B.1)) to multiplication in Q. The
specification would be the same over Z, but Z is not a field, hence the underlying
Gröbner basis theory would be more complex. Theoretically reasoning in the field Z2 is
possible, but probably would be much more involved. A more precise comparison will
be done in the future.

A term order is a lexicographic term order if for all terms σ1 = xu1
1 · · ·xun

n , σ2 =
xv1

1 · · ·xvn
n we have σ1 < σ2 iff there exists i with uj = vj for all j < i, and ui < vi. If

the terms in the gate polynomials are ordered according to such a lexicographic variable
ordering where the variable corresponding to the output of a gate is always bigger
than the variables corresponding to inputs of the gate, then by Buchberger’s product
criterion [35] the gate polynomials define a Gröbner basis for the ideal generated by
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the gate polynomials. Thus the correctness of the circuit can be shown by reducing the
specification by the gate polynomials using polynomial reduction (redG) and checking
if the result is zero. We generate and check proofs for this reduction, cf. Sect. B.5.

Directly reducing the specification without rewriting the Gröbner basis leads to an
explosion of intermediate results [89]. In practice it is necessary to use rewriting
techniques to simplify the Gröbner basis. In recent work [93] a reduction scheme was
proposed which effectively (partially) reduces the Gröbner basis. These preprocessing
steps [93] are also applied in [89], where we introduced a column-wise checking
algorithm which cuts the circuit into 2n slices Si with 0 ≤ i < 2n such that each
slice contains exactly one output bit si. In each slice the relation that the sum of the
outgoing carries Ci+1 and the output bit si is equal to the sum of the partial products
Pi =

∑
k+l=i akbl and the incoming carries of the slice Ci has to hold. Thus we define

for each slice Si a corresponding specification Ci = 2Ci+1 + si − Pi. Initially we set
C2n = 0 and recursively calculate Ci as the remainder of reducing 2Ci+1 + si − Pi by
the gate polynomials of the corresponding slice. In a correct multiplier C0 = 0 has to
hold. Hence each slice is verified recursively, thus the problem of circuit verification is
divided into smaller more manageable sub-problems.

In [91] we further improved incremental checking by eliminating variables [17],
local to full- and half-adders. Since these preprocessing and incremental algorithms are
complex and error prone to implement but essential to achieve scalable verification, we
also generate and check proofs for them.

B.5 Engineering

We take as input circuit an And-Inverter Graph (AIG) [70] in the common AIGER
format [16]. The AIG is then verified using the computer algebra system Mathemat-
ica [102]. We also generate proofs in our PAC-format (c.f. Sect. B.3) which then are
either passed on to the computer algebra system Singular [38] or to our own algebraic
proof checker PACTRIM. The complete verification flow is depicted in Fig. B.3. Boxes
with “.〈suffix〉” refer to the input AIG or generated files. The variable n defines the
length of the two input bit-vectors of the multiplier.

The tool AIGMULTOPOLY [89,91] is used for verification without generating proofs
(verify). It takes an AIG as input and produces a file which can be passed on to
either Mathematica or Singular, which then performs the actual ideal membership test.
Different option settings can be selected to enable or disable the preprocessing and
rewriting techniques discussed in Sect. B.4.

For proof generation (verify+) we use a second tool PROOFIT which takes the output
file from AIGMULTOPOLY as well as the original AIG and returns a file which can
be passed on to Mathematica. In Mathematica the proof (.pac) is calculated. In the
tool AIGTOPOLY the original AIG is translated into a set of polynomials G without
applying any preprocessing. Together with the set B = {xi(xi − 1) | xi ∈ X} these
polynomials define the given set of polynomials G ∪B of the PAC proof (.polys). This
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Figure B.3: Toolflow of verifying and proof checking circuits.

is a rather trivial task implemented in fewer than 130 lines of C code (half of them are
just about command line option handling) using the AIGER [16] library for parsing.

In the same spirit PACMULTSPEC and PACEQSPEC have been implemented to
produce the specifications we want to verify (.spec). In PACMULTSPEC we simply
generate the multiplier specification as given in Sect. B.4, i.e., Eqn. (B.1) flattened.
In PACEQSPEC we generate a similar specification for equivalence checking of two
multipliers [91]. To gain a PAC refutation both types of specifications are produced in
negated form using the Rabinowitsch trick and hence become part of the given set of
polynomials.

Each polynomial of AIGMULTOPOLY which is derived during preprocessing needs
to be checked if it is a logical consequence of the given set of polynomials. Hence for
each preprocessed polynomial f the representation modulo the given set of polynomials
G∪B = {g1, . . . , gk} is calculated in Mathematica using the built-in function “Polyno-
mialReduce”. This command does not only allow computing the reduction redG∪B(f) =
r, but it also returns cofactors h1, . . . , hk such that f = h1g1 + . . . + hkgk + r.
If the preprocessing is done correctly, the derived polynomials f are contained in
the ideal 〈G ∪ B〉, thus redG∪B(f) = 0 and the above representation simplifies to
f = h1g1 + . . . + hkgk. Knowing the cofactors hi and the corresponding elements
of G ∪ B we generate proof rules in PAC in the following way. First we generate a
multiplication proof rule for each product higi.

∗ : g1, h1, h1g1; · · · ∗ : gk, hk, hkgk;

In the listed rules the result p is always depicted simply as the product higi, but in
the actual PAC proof p is written in expanded (flattened) form. These products are now
simply added together as follows:

+ : h1g1, h2g2, h1g1 + h2g2;
+ : h1g1 + h2g2, h3g3, h1g1 + h2g2 + h3g3;

...
+ : h1g1 + . . .+ hk−1gk−1, hkgk, f ;
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In the experiments we also use a non-incremental verification approach where we do
not use the incremental optimizations presented in Sect. B.4, hence we have to reduce
the complete word-level specification of a multiplier by the (preprocessed) gate and
field polynomials. Extracting a proof works in the same way as just described for the
preprocessed polynomials.

Generating proofs for incremental verification is also similar, but instead of the
word-level specification of the multiplier we have to use the incremental specifications
Ci = 2Ci+1 + si − Pi of each slice, cf. Sect. B.4. The polynomials Ci describing the
incoming carries of a slice can be derived by calculating redG∪B(2Ci+1 +si−Pi) = Ci.
Since verification can be assumed to succeed, we have C2n = 0 and C0 = 0. As
described in the last bullet on fundamental facts in Sect. B.2 we are able to obtain
cofactors h1, . . . , hk such that 2Ci+1+si−Pi−Ci = h1g1+. . .+hkgk and consequently
a translation into the PAC-format to derive the left-hand side of the equation.

To derive the word-level specification of a multiplier from the incremental specifica-
tions we first multiply for each slice Si its incremental specificationCi = 2Ci+1+si−Pi
by the constant 2i.

∗ : 2C1 + s0 − P0, 1, 2C1 + s0 − P0;
∗ : 2C2 + s1 − P1 − C1, 2, 4C2 + 2s1 − 2P1 − 2C1;

...
∗ : s2n−1 − P2n−1 − C2n−1, 22n−1, 22n−1s2n−1 − 22n−1P2n−1 − 22n−1C2n−1;

Subsequent accumulation of the polynomials above using PAC addition rules cancels
the terms Ci and

∑2n−1
i=0 2isi −

∑2n−1
i=0 2iPi remains. It holds that the sum of partial

products can be reordered to
∑2n−1
i=0 2iPi = (

∑n−1
i=0 2iai)(

∑n−1
i=0 2ibi) [89] and thus we

are able to deduce the word-level specification of multipliers.
In both approaches the incremental as well as the non-incremental one, we multiply

the word-level specification of the multiplier by the additional variable y and add it to
the given polynomial 1− y ∗ spec ∈ G ∪B to derive 1 and thus obtain a correct PAC
refutation.

As Fig. B.3 shows we have two different flows for checking PAC proofs independently
from Mathematica, which was used for verification. The first one uses Python scripts to
validate the connection property of each rule and whether the proof actually defines a
refutation. With Singular we check the inference property of each proof line, which in
essence uses Singular as a calculator for adding and multiplying polynomials.

We also provide a new dedicated proof checker called PACTRIM implemented from
scratch in C. It has similar features as DRAT-TRIM, which is the standard proof checker
in the SAT community for clausal proofs (and is used in the SAT Competition – see
also [46, 51]). Our new PACTRIM checker contains a parser for PAC proofs and checks
the connection property using hash tables and the inference property using a dedicated
stand-alone implementation of polynomial arithmetic over arbitrary precision integers
represented as strings.

While the first approach is rather general and easy to adapt it is, as the experiments
confirm, less robust (due to for instance the limit on variables in Singular) and more
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Figure B.4: Architecture of “btor” (left) and “sparrc” (right), where pij = aibj [91].

importantly far less efficient than our dedicated checker. The latter also allows to produce
proof cores (of both original polynomials and proof lines), and is also much closer to
being certifiable.

B.6 Experiments

In our experiments we generate and validate PAC proofs for the (integer) multiplier
benchmarks used in [89, 91]. The “btor”-benchmarks are generated by Boolector [83]
and the “sparrc”-multipliers are part of the bigger AOKI benchmark set [53], containing
several multiplier architectures. In both multiplier architectures the partial products
are generated as products of two input bits which are then accumulated by full- and
half-adders, as shown in Fig. B.4 for input size n = 4. In “btor”-multipliers the full-
and half-adders are accumulated in a grid-like structure, thus they are considered as
array multipliers, whereas in “sparrc”-multipliers full- and half-adders are accumulated
diagonally.

In all our experiments we use a standard Ubuntu 16.04 Desktop machine with Intel i7-
2600 3.40GHz CPU and 16 GB of main memory. The (wall-clock) time limit is 90 000
seconds and the main memory usage is limited to 7GB. The time in our experiments
is measured in seconds (wall-clock time). We mark unfinished experiments by TO
(reached time limit), MO (reached memory limit) or by EE, when an error state is
reached. An error state is reached by Singular, because it has a limit of 32767 on
the number of ring variables. All experimental data, benchmarks and source code is
available at http://fmv.jku.at/pac.

In Table B.1 we separately list the time taken for verification, the generation as well as
checking of PAC-proofs for “btor”and “sparrc” multipliers of different input bit-width n.
The third column lists configurations of AIGMULTOPOLY. The default configuration
uses incremental column-wise slicing of [89], c.f. Sect. B.4, both with (inc-add) and
without (inc) our new optimization of eliminating local variables in full- and half-
adders [91]. In the third configuration (noninc) the whole word-level specification is
reduced without any slicing of the multiplier.

The time needed for verification, proof generation and proof checking is listed in
the following columns. The corresponding execution paths are marked in Fig. B.3 by
dashed rectangles. The column verify shows the time Mathematica needs to verify
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n mult option verify verify+ chk I con inf chk II length core size core deg
4 btor inc 0 1 0 0 0 0 646 68% 3551 72% 6
4 btor inc-add 0 1 0 0 0 0 594 62% 4001 63% 5
4 btor noninc 0 1 0 0 0 0 638 68% 3862 74% 6
8 btor inc 1 4 0 0 0 0 3350 65% 21169 70% 6
8 btor inc-add 0 3 0 0 0 0 2914 62% 21915 64% 5
8 btor noninc 1 5 0 0 0 0 3334 65% 28227 78% 6

16 btor inc 4 70 0 1 3 4 14998 64% 106853 72% 6
16 btor inc-add 1 37 0 1 3 4 12738 61% 104351 66% 5
16 btor noninc 4 78 0 1 9 10 14966 64% 231643 87% 6
32 btor inc 44 1631 1 26 57 83 63254 64% 533773 76% 6
32 btor inc-add 7 801 1 18 49 67 53122 61% 487911 69% 5
32 btor noninc 65 1811 5 29 522 551 63190 64% 2594059 95% 6
64 btor inc 622 49638 4 586 4539 5125 259606 63% 2839901 81% 6
64 btor inc-add 121 22378 4 414 4236 4650 216834 61% 2387831 74% 5
64 btor noninc MO MO - - - - - - - - -

4 sparrc inc 0 1 0 0 0 0 753 64% 4943 68% 6
4 sparrc inc-add 0 1 0 0 0 0 764 65% 8156 66% 8
4 sparrc noninc 0 1 0 0 0 0 745 65% 5252 71% 6
8 sparrc inc 1 8 0 0 0 0 3917 62% 30494 69% 6
8 sparrc inc-add 0 7 0 0 1 1 3964 63% 59330 63% 8
8 sparrc noninc 1 33 0 0 0 1 3901 63% 37477 75% 6

16 sparrc inc 8 134 0 2 6 7 17445 62% 152698 71% 6
16 sparrc inc-add 1 112 0 2 18 20 17804 63% 317874 62% 8
16 sparrc noninc 11 2696 0 2 15 17 17413 62% 276885 84% 6
32 sparrc inc 104 3582 1 43 132 175 73301 62% 735218 74% 6
32 sparrc inc-add 8 2611 2 55 402 457 75244 63% 1492082 63% 8
32 sparrc noninc 351 TO - - - - - - - - -
64 sparrc inc 1575 TO - - - - - - - - -
64 sparrc inc-add 133 80906 12 1307 EE EE 309164 62% 6727026 65% 8
64 sparrc noninc MO - - - - - - - - - -

Table B.1: Wordlevel proof checking.
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n mult verify verify+ chk I con inf chk II length core size core deg
4 btor-btor 1 1 0 0 1 1 1170 59% 7952 61% 5
8 btor-btor 1 6 0 0 1 1 5794 59% 43902 63% 5

16 btor-btor 2 75 1 5 10 14 25410 59% 210666 65% 5
32 btor-btor 27 1632 3 87 189 277 106114 59% 995330 69% 5
64 btor-btor 502 45155 15 1625 EE EE 433410 59% 4942642 74% 5
4 btor-sparrc 1 2 0 1 1 2 1340 61% 12107 64% 8
8 btor-sparrc 1 9 1 1 2 3 6844 61% 81317 63% 8

16 btor-sparrc 3 148 1 7 42 48 30476 61% 424189 63% 8
32 btor-sparrc 28 3456 7 163 848 1011 128236 60% 1999501 64% 8
4 sparrc-sparrc 1 2 0 0 0 1 1510 62% 16270 65% 8
8 sparrc-sparrc 1 12 1 1 5 6 7894 62% 118820 63% 8

16 sparrc-sparrc 2 223 2 9 73 82 35542 61% 638248 62% 8
32 sparrc-sparrc 29 5363 11 308 1591 1899 150358 61% 3006256 63% 8

Table B.2: Equivalence proof checking.

the multiplier, column verify+ shows the time needed to generate the proof including
the time of verify and in column chk I we measure the time our own proof checker
PACTRIM needs to validate the proof. The time Python needs to verify the connection
property is listed in column con and the time Singular needs to verify the inference
property is listed in column inf. The column chk II is the total time needed to verify the
proof with Python and Singular. We did not include the time the tools AIGTOPOLY,
PACMULTSPEC and PACEQSPEC need, because in the worst-case it only takes a second
for 64-bit multipliers.

Inspired by [82] we also compute and include the number of polynomials in a proof
(length), the total number of monomials of the derived polynomials (size), counted with
repetition, and the maximum total degree of any monomial (deg). Usually not all given
polynomials in the data set G ∪ {1− yf} ∪B are needed to derive a correct refutation,
especially only a small subset of B is used. Thus next to the length and size columns
we list the percentage of polynomials and monomials which are actually necessary to
derive a PAC refutation (core) w.r.t. the number of original and derived polynomials.

In general it can be seen that “sparrc”-multipliers need more time and space for
verification, certification and proof checking than “btor”-multipliers. By far most of the
time is needed for generating the proofs. For more scalable proof generation it is clear
that computer algebra systems would need to be adapted to support proof generation on-
the-fly or even application specific algebraic reasoning engines have to be implemented.
Checking the proof with PACTRIM takes a fraction of the time needed for verification,
at most 12 seconds, even for 64-bit multipliers. Proof checking using an independent
computer algebra system takes much longer – for 64-bit multipliers more than 4000
seconds.

In further experiments shown in Table B.2 we construct proofs for the commutativity
property of multipliers, i.e., we want to prove for a certain multiplier architecture that
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Figure B.5: Length and size of btor-btor commutativity check.

A∗B = B∗A holds. Among other things it was shown in the work of [7] that polynomial
sized resolution proofs for the commutativity property of array and diagonal multipliers
exist. Motivated by this result we generate proofs for these two multiplier architectures,
where “btor”-multipliers play the role of array multipliers and “sparrc”-multipliers are
considered as diagonal multipliers. We generate the commutativity miters by checking
the equivalence of a multiplier and the same multiplier with input bit-vectors swapped
(btor-btor, sparrc-sparrc). Furthermore we derive proofs for checking the equivalence
of the two architectures “btor” vs. “sparrc” (btor-sparrc). The columns in Table B.2
follow the same structure as in Table B.1. In all commutativity and equivalence checking
experiments we used the configuration “inc-add”, which uses our incremental column-
wise slicing of [89] with the optimization of eliminating local variables in full- and
half-adders. We did not include commutativity or equivalence checking experiments
containing “sparrc” multipliers with bit-width n = 64, because we reached an error
state (EE) in the experiments of Table B.1.

In Fig. B.5 data points depicting core size (left plot) and core length (right plot) of
the “btor-btor”-commutativity proofs are shown for various input bit-widths n. The
additional polynomial curves are fitted to the data points (using linear regression with
R). For the proof length we used a parameterized model of a quadratic polynomial. The
proof size required a cubic polynomial. In both cases the match is perfect, with absolute
values of residuals less than 9 ∗ 10−10. This empirically suggested quadratic complexity
of algebraic proofs compares favorably to the O(n7logn) upper bound for resolution
proofs given in Thm. 2 of [7].

Comparing the meta data of the “btor-btor” and “sparrc-sparrc”-benchmarks the proof
lengths of “sparrc-sparrc”-benchmarks are of the same magnitude as the proof lengths
of “btor-btor”-benchmarks. The proof sizes of “sparrc-sparrc” are around three times as
big as the proof sizes of “btor-btor” with nearly same percentages for the cores. Hence
both measurements of “sparrc-sparrc”-benchmarks can also be depicted by quadratic
and cubic curves.
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B.7 Conclusion

This paper applies proof checking to algebraic reasoning, not only in theory, but also
in practice, in order to validate verification techniques based on computer algebra. We
show how the abstract polynomial calculus [34] can be instantiated to yield a practical
proof format (PAC). Proofs in this format can be obtained as by-product of verifying
multiplier circuits using state-of-the-art techniques and can be checked with our new
proof checker tool PACTRIM in a fraction of the time needed for verification. Our
experiments produce small polynomial proofs which certify the correctness of certain
multipliers. The theoretical analysis in [7] gives much larger polynomial upper bounds
(for clausal resolution proofs).

To explore the connection between PAC and clausal proof systems, such as RUP and
DRAT [47], is an interesting subject for future work, as well as embedding PAC into
more general systems, such as Isabelle [84].

We want to thank Thomas Sturm for pointing out the Rabinowitsch trick to the
second author and Jakob Nordström for discussions on the polynomial calculus and
Nullstellensatz proof systems.
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Abstract We combine SAT and computer algebra to substantially improve the most
effective approach for automatically verifying integer multipliers. In our approach
complex final stage adders are detected and replaced by simple adders. These simplified
multipliers are verified by computer algebra techniques and correctness of the replace-
ment step by SAT solvers. Our new dedicated reduction engine relies on a Gröbner basis
theory for coefficient rings which in contrast to previous work no longer are required
to be fields. Modular reasoning allows us to verify not only large unsigned and signed
multipliers much more efficiently but also truncated multipliers. We are further able to
generate and check proofs an order of magnitude faster than in our previous work, rela-
tive to verification time, while other competing approaches do not provide certificates.

C.1 Introduction

Automated formal verification of arithmetic circuits, most prominently multiplier cir-
cuits, remains an important problem, which in practice still requires substantial manual
effort. Currently the most effective approach for automatically verifying integer multi-
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pliers is based on polynomial reasoning using computer algebra techniques [31, 61, 79,
80, 106].

However, parts of multipliers, i.e., final stage adders, are a real challenge for the
computer algebraic approach. In certain adder designs carries are computed by complex
tree structures, leading to an explosion of intermediate results. Contrarily SAT solvers
can easily verify the equivalence of adders. Therefore we replace complex final stage
adders by simpler adders and verify the correctness of the replacement using SAT
solvers. The simplified multiplier is verified using computer algebra.

Our new dedicated reduction engine makes use of the structure of the polynomial
representation of circuits and is more capable in multiplier verification than computer
algebra systems [38,102] used in our previous work. Additionally it efficiently produces
certificates, which validate the correctness of the verification. In previous work we
used Q as coefficient domain. Our experiments show that it is beneficial to use more
general rings to support modular arithmetic [100]. We summarize the theory and provide
arguments for the correctness of the algebraic approach over more general rings. As
a consequence we are able to verify not only unsigned and signed multipliers more
efficiently but also truncated multipliers.

Recently significant progress has been made in fully automated verifying integer
multipliers using computer algebra. The authors of [79,80] presented a method allowing
local cancellation of vanishing monomials in converging gate cones. This approach
is empirically much more successful than previous work in verifying a large variety
of multiplier architectures but its formal exposition has room for improvement. The
technique of [31, 106] eliminates redundant polynomials by identifying and rewriting
half- and full-adders in the circuit. This approach is able to verifying large clean
multiplier circuits, but fails on complex multiplier architectures. None of these methods
produces certificates. Contrarily theorem provers in combination with SAT are able to
certify industrial multipliers [54], however this approach is not fully automated.

C.2 Specifying Multiplier Circuits

A circuit implements a logical function and the specification of a circuit is a desired
relation between the inputs and the outputs of a circuit. We say that a circuit fulfills a
specification if for all inputs it produces outputs that match this desired relation. The
goal of verification is to formally prove that the circuit fulfills its specification and hence
deriving correctness.

We consider acyclic gate-level circuits C with inputs a0, . . . , ak−1, a number of
internal logical gates g1, . . . , gl ∈ {0, 1}, and outputs s0, . . . , sm−1 in {0, 1}. Thus we
fix X to denote the variables a0, . . . , ak−1, g1, . . . , gl, s0, . . . , sm−1. In the algebraic
verification approach every input and output of a gate in the circuit is labeled by a
variable and for each gate there is a polynomial describing the relation of the input and
output variables of the gate. Correctness of the circuit is shown by proving that the
specification, encoded as a polynomial L, is implied by the polynomial relations of the
gates.
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C.2 Specifying Multiplier Circuits

Part of the specification is the ring to which the polynomial L belongs. The circuit
polynomials are also considered as elements of this ring. In our previous work [61] we
chose the ring Q[X]. We will now generalize the formulation of circuit verification using
computer algebra to other polynomial rings. Our experiments show that by doing so we
gain an enormous speed-up in the computation time. Although not formally introducing
the theory, related work also relies on more general rings than Q[X]. Furthermore by
generalizing the theory to arbitrary polynomial rings we are able to verify different types
of multipliers, which we now present. We fix a polynomial ring R[X] and state the
corresponding specification of the multipliers as an element of R[X].

Definition C.1. Let ϕ : X → {0, 1} ⊆ R denote an assignment of all variables X . We
extend ϕ to an evaluation of polynomials in the natural way, i.e., ϕ : R[X]→ R.

To capture multiplication of unsigned integers we consider circuits with two unsigned
binary input bit-vectors A = an−1, . . . , a0 and B = bn−1, . . . , b0 ∈ {0, 1}n and an
output bit-vector S = s2n−1, . . . , s0 ∈ {0, 1}2n, calculating A ·B = S.

In previous work [89] we verified unsigned integer multipliers, which most naturally
are specified over Z.

Definition C.2. The word-level specification Un of n-bit unsigned integer multipliers in
the ring Z[X] is given as

Un =
2n−1∑
i=0

2isi −
(n−1∑
i=0

2iai
)(n−1∑

i=0
2ibi

)
(C.1)

A common way to represent signed integers is using two’s complement. The value w
of a bit-vector K = kn−1, . . . , k0 of length n in two’s complement is given as

w = −2n−1kn−1 +
n−2∑
i=0

2iki.

Thus in specifying signed multipliers we interpret A, B and S as signed bit-vectors in
two’s complement representation.

Definition C.3. The specification Sn of n-bit signed integer multipliers in the ring Z[X]
is given as

Sn = −22n−1s2n−1 +
2n−2∑
i=0

2isi

−
(
−2n−1an−1 +

n−2∑
i=0

2iai
)(
−2n−1bn−1 +

n−2∑
i=0

2ibi
)
.

Our experiments will show that it is beneficial to use modular arithmetic to reduce the
size of intermediate verification results. For now we still keep Z as coefficient domain
for the specification of unsigned and signed multipliers. Theorem C.23 and C.24, in
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addition with Lemma C.21 and Lemma C.22, will then allow us to use Z22n [X] too,
because for any assignment ϕ the range of the specification does not exceed ±22n.

In contrast to the multipliers presented so far a truncated multiplier returns only n
output bits for input bit-width n. In the result of multiplying two integers the n most
significant bits are simply discarded. Thus a truncated multiplier calculates A · B =
S mod 2n. We define the specification of truncated multipliers to be an element of the
ring Z2n [X], because Z2n is the ring whose multiplication we wish to describe.

Definition C.4. The specification Tn of n-bit truncated multipliers in the ring Z2n [X]
is given as

Tn =
n−1∑
i=0

2isi −
n−1∑
i=0

n−1−i∑
j=0

2i+jaibj

Our theory is not limited to these multiplication instances. A further example would
be Galois field multipliers, where the specification is an element of Z2[X]/〈p〉, for
a given irreducible polynomial p [78, 105]. Other possible (though perhaps useless)
choices are rings of the form Zm[X1, . . . , Xk]/I for some given m ∈ N and some given
ideal I .

C.3 Algebra

In our previous work [61] we outlined the underlying theory of circuit verification
using computer algebra for polynomial rings over fields. In this section we generalize
the theory to be applicable in more general polynomial rings. To this end let R be a
commutative ring with unity and let R[X] with X = {x1, . . . , xr} be the polynomial
ring over R. By R× we denote the set of multiplicatively invertible elements of R.

Definition C.5. A term τ = xd1
1 · · ·xdr

r is a product of powers of variables for certain
d1, . . . , dr ∈ N. We denote the set of terms by [X]. A monomial is a multiple of a term
cτ , with c ∈ R and a polynomial p is a finite sum of monomials.

On the set of terms an order ≤ is fixed such that for all terms τ, σ1, σ2 it holds that
1 ≤ τ and σ1 ≤ σ2 ⇒ τσ1 ≤ τσ2. Such an order is called a lexicographic term order
if for all terms σ1 = xd1

1 · · ·xdr
r , σ2 = xe1

1 · · ·xer
r we have σ1 < σ2 iff there exists an

index i with dj = ej for all j < i, and di < ei. For a polynomial p = cτ + · · · the
largest term τ (w.r.t. ≤) is called the leading term lt(p) = τ . Furthermore lc(p) = c is
called the leading coefficient and lm(p) = cτ is called the leading monomial of p. Then
we call p− cτ the tail of p.

In the circuit the semantics of the logic gates imply polynomial relations among the
variables, such as:

u = ¬v implies 0 = −u+ 1− v
u = v ∧ w implies 0 = −u+ vw
u = v ∨ w implies 0 = −u+ v + w − vw
u = v ⊕ w implies 0 = −u+ v + w − 2vw.

(C.2)
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The polynomial equations are chosen in such a way that the possible solutions with
u, v, w ∈ {0, 1} of the polynomials are the solutions of the gate constraints and vice
versa. As the left side is always zero, we take the freedom to write f instead of 0 = f .
Note that the coefficients 1,−1 and 2 are elements of the ring R, where 1 represents the
unity of R, −1 represents its additive inverse, and 2 = 1 + 1. On the set of terms we fix
a lexicographic term order, called reverse topological term order, such that the output
variable of a gate is always greater than the variables attached to the input edges of that
gate.

By G(C) ⊆ R[X] we denote the set of circuit polynomials which contains for each
gate of C the corresponding polynomial of (C.2). To encode that each variable x ∈ X
represents a boolean value, we further have boolean value constraints x(1 − x) = 0.
Let B(Y ) = {y(1 − y) | y ∈ Y } ⊆ R[X] for Y ⊆ X , be the set of boolean value
constraints for Y . By L we denote the polynomial in R[X] which models the specified
relation between the input and outputs of the circuit.

Definition C.6. A nonempty subset I ⊆ R[X] is called an ideal if ∀ p, q ∈ I : p+q ∈ I
and ∀ p ∈ R[X] ∀ q ∈ I : pq ∈ I . A set P = {p1, . . . , ps} ⊆ R[X] is called a basis of
I if I = {p1q1 + · · ·+psqs | q1, . . . , qs ∈ R[X]}. We say I is generated by P and write
I = 〈P 〉. The sum of two ideals I and J is defined as I + J = {p+ q | p ∈ I, q ∈ J}.

Note, if I = 〈P 〉 and J = 〈Q〉 are ideals generated by P,Q ⊆ R[X], then I + J =
〈P 〉+ 〈Q〉 = 〈P ∪Q〉.

We show that the question whether L is implied by the gate polynomials of C and the
boolean value constraints can be answered by a so-called ideal membership test:

“ Given a polynomial q ∈ R[X] and a (finite) set of polynomials P ⊆ R[X],
decide whether q ∈ 〈P 〉.”

Definition C.7. Let P ⊆ R[X]. If for a certain term order, all leading terms of P only
consist of a single variable with exponent 1 and are unique and further lc(p) ∈ R× for
all p ∈ P , then we say P has unique monic leading terms (UMLT). Let X0(P ) ⊆ X
be the set of all variables that do not occur as leading terms in P . We further define
B0(P ) = B(X0(P )).

Example C.8. The set P = {−x + 2y, y − z} ⊆ Z[x, y, z] has UMLT for the lex-
icographic term order x > y > z. Correspondingly X0(P ) = {z} and B0(P ) =
{−z2 + z}.

In the following these X0(P ) will represent inputs of a circuit and accordingly B0(P )
are the boolean value constraints only on its inputs. Note, in our application the leading
coefficients of the polynomials in G(C) are only ±1. However we prefer the more
general statement of Def. C.7, allowing that Thm. C.11 and Thm. C.15 also work for
more general settings.

Definition C.9. Let P ⊆ R[X] be a finite set of polynomials with UMLT. A polynomial
q ∈ R[X] can be deduced from P if q ∈ 〈P 〉+ 〈B0(P )〉. In this case we write P `R q.
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Definition C.10. For a given set P ⊆ R[X], a model is an assignment ϕ such that for
all p ∈ P we have ϕ(p) = 0. For a set P ⊆ R[X] and a polynomial q ∈ R[X], we
write P |=R q if every model for P is also a model for {q}, i.e., P |=R q ⇐⇒ ∀ϕ :
∀p ∈ P : ϕ(p) = 0⇒ ϕ(q) = 0.

Note, that for the purpose of this paper, these notions of syntactic “deduction” and
semantic “models” are restricted to our application where variables take only boolean
values.

Theorem C.11 (Soundness). Let P ⊆ R[X] be a finite set of polynomials with UMLT
and q ∈ R[X], then

P `R q ⇒ P |=R q.

Proof. If P `R q then q ∈ 〈P 〉 + 〈B0(P )〉 by definition. This means there are
u1, . . . , um ∈ R[X] and v1, . . . , vr ∈ R[X] with q = u1p1 + · · · + umpm + v1b1 +
· · · + vrbr, where pi ∈ P and bi = xi(xi − 1) ∈ B0(P ) ⊆ B(X) for i = 1 . . . r.
Any assignment ϕ vanishes on B(X), i.e., ϕ(bi) = 0. If ϕ is also a model of P then
ϕ(pi) = 0 too and as a consequence ϕ(q) = 0. Therefore P |=R q, as claimed.

Completeness is not obvious. Consider for instance that {2x} |=Z x but x 6∈ 〈2x〉 in
Z[X]. Requiring P to have UMLT turns out to be essential (which {2x} does not have
in Z[X], because 2 /∈ Z×).

Lemma C.12. If P |=R p and P |=R q then P |=R q ± p.

Lemma C.13. Let P ⊆ R[X] be a finite set of polynomials with UMLT. Then for all
q ∈ R[X] there exists p ∈ 〈P 〉+ 〈B0(P )〉 and r ∈ R[X0(P )] with q = p+ r, such that
the monomials in r have only exponents 1.

Proof. Since P has UMLT, we can replace every occurrence of a leading variable of
P in q by the corresponding tail. This process has to terminate because the tail of a
polynomial contains only smaller variables and the number of variables in P is finite.
Thus at some point only variables in X0(P ) are left which do not occur as leading terms.
If these variables occur with exponent larger than one we can use B0(P ) to reduce their
exponent to 1, which yields r. All reduction steps to obtain r can be captured by adding
polynomials f · g with f ∈ R[X] and g ∈ P ∪B0(P ). Their sum gives p.

Example C.14. Let P ⊆ Z[x, y, z] be as in Ex. C.8 and assume q = 2x2 + xy + z2 ∈
Z[x, y, z]. Consequently

p = (−2x−5y)(−x+2y) + (10y+10z)(y − z)− 11(−z2+z)
= 2x2 + xy + z2 − 11z ∈ 〈P 〉+ 〈B0(P )〉 and

r = 11z ∈ Z[X0(P )].

Theorem C.15 (Completeness). Let P ⊆ R[X] be a finite set of polynomials with
UMLT. Then for every q ∈ R[X] we have

P |=R q ⇒ P `R q.
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Proof. Suppose we have P |=R q. Then our goal is to show q ∈ 〈P 〉 + 〈B0(P ))〉.
First, by applying Lemma C.13, we obtain p ∈ 〈P 〉 + 〈B0(P )〉 and r ∈ R[X0(P )]
with q = p + r. Thus P `R p by definition. Using Thm. C.11 we derive P |=R p
and accordingly P |=R q − p = r by Lemma C.12. Now assume r 6= 0 and let m
be a monomial of r which contains the smallest number of variables. Consider the
assignment ϕ that maps x ∈ X0(P ) to 1 if it appears in m and to 0 otherwise. Therefore
ϕ(r) 6= 0 since exponents of variables in r are all one. This assignment on X0(P )
admits a unique extension to X which vanishes on P (e.g., if −x+ t ∈ P with leading
monomial −x, then choose ϕ(x) = ϕ(t)). This contradicts P |=R r. Thus r = 0 and
q = p+ r ∈ 〈P 〉+ 〈B0(P ))〉.

It is easy to see that for an acyclic circuit C the set G(C) has UMLT for the fixed
reverse topological term order. As a consequence Theorem C.11 and C.15 can be applied
and show that deciding the correctness of circuits can been reduced to deciding ideal
membership problems for R[X].

Definition C.16. I(C) = {f ∈ R[X] : G(C) |=R f}.

It also easily follows that I(C) is an ideal and contains all the relations that hold
among the values at the different signals (gates and inputs) of the circuit. Thus we are
particularly interested whether the specification polynomial L is in I(C).

Definition C.17. A circuit C fulfills L iff L ∈ I(C).

Definition C.18. WriteB0(C) = B0(G(C)) for an acyclic circuitC and define J(C) =
〈G(C) ∪B0(C)〉 in R[X].

Note that J(C) is generated by the gate polynomials G(C) and the boolean value
constraints on the variables X0(G(C)) not occurring as leading term in G(C). Further,
by definition, q ∈ J(C) iff G(C) `R q. Thus J(C) contains exactly those polynomial
constraints “deducible” from the circuit.

Corollary C.19. For all acyclic circuits C, it holds I(C) = J(C).

Proof. By the choice of term order,G(C) satisfies the necessary conditions of Thm. C.11
and Thm. C.15 and applying them allows to conclude q ∈ I(C)⇔ q ∈ J(C).

Corollary C.20. A circuit C fulfills L iff L ∈ J(C).

In order to improve efficiency through modular reasoning (replacing Z by Z22n) we
show that the specifications for unsigned and signed multipliers remain correct for Z22n

too.

Lemma C.21. For all assignments ϕ : X → {0, 1} it holds that ϕ(Un) ∈ [−22n +
1, 22n − 1] in Z.
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Proof. The maximum of ϕ(Un) is reached for the assignment ϕmax with ϕmax(s) = 1
for all s ∈ S and ϕmax(x) = 0 for x ∈ A ∪B. Consequently

ϕmax(Un) =
2n−1∑
i=0

2i = 22n − 1 < 22n.

The minimum of ϕ(Un) is reached for the assignment ϕmin with ϕmin(s) = 0 for all
s ∈ S and ϕmin(x) = 1 for x ∈ A ∪B. It follows (assuming of course n > 0) that

ϕmin(Un) = −(2n − 1)2 = −22n + 2n+1︸ ︷︷ ︸
>2
−1 > −22n.

Lemma C.22. For all assignments ϕ : X → {0, 1} it holds that ϕ(Sn) ∈ [−22n +
1, 22n − 1] in Z.

Proof. The maximum of ϕ(Sn) is reached for the assignment ϕmax with ϕmax(si) = 1
for all 0 ≤ i ≤ 2n− 2 and ϕmax(s2n−1) = 0 and ϕmax(aj) = 1 for all 0 ≤ j ≤ n− 2
and ϕmax(an−1) = 0 and ϕmax(bj) = 0 for all 0 ≤ j ≤ n − 2 and ϕmax(bn−1) = 1.
Then

ϕmax(Sn) = 22n−1 − 1 + 2n−1(2n−1 − 1).

By transforming the inequality we gain the desired result.

22n−1 + 22n−2 − 2n−1 − 1 < 22n

22n−2(2 + 1− 4)− 2n−1 − 1 < 0

The minimum of ϕ(Sn) is reached for the assignment ϕmin with ϕmin(si) = 0 for
all 0 ≤ i ≤ 2n − 2 and ϕmin(s2n−1) = 1 and ϕmin(aj) = ϕmin(bj) = 0 for all
0 ≤ j ≤ n− 2 and ϕmin(an−1) = ϕmin(bn−1) = 1. It follows that

ϕmin(Sn) = −22n−1 − (−2n−1)2

= −3 · 22n−2 > −4 · 22n−2 = −22n.

Theorem C.23. G(C) |=Z Un iff G(C) |=Z22n Un.

Theorem C.24. G(C) |=Z Sn iff G(C) |=Z22n Sn.

C.4 D-Gröbner bases

The question whether a circuit fulfills a given specification can be answered by an ideal
membership test. The theory of Gröbner bases [25] offers a decision procedure for this
problem. For the polynomial rings applied in Sect C.2, we use the more general theory
of D-Gröbner bases [9], where the coefficient ring is a principal ideal domain (PID).
Let D be a PID.

Some facts about the theory of D-Gröbner bases are:
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• Let p, q, r ∈ D[X]. We say q D-reduces to r w.r.t. p if there exists a monomial
m′ in q with m′ = m lm(p) and r = q − mp. If m′ = lm(q), we call this
top-D-reduction.

• Let q ∈ D[X] and P ⊆ D[X]. The remainder r of the D-reduction of q by P is
such that q − r ∈ 〈P 〉 and r is D-reduced w.r.t. P . If r is calculated using only
top-D-reductions, then r is top-D-reduced w.r.t. P .

• Let q ∈ D[X] and P ⊆ D[X] with UMLT. If lc(p) = ±1 for p ∈ P , then
D-reduction of q w.r.t. p amounts to replacing every occurrence of lt(p) in q by
the tail of p.

• A basis P of an ideal I ⊆ D[X] is called a D-Gröbner basis of I iff ∀q ∈ I ∃p ∈
P : lm(p) | lm(q).

• Every ideal of D[X] has a D-Gröbner basis, and there is an algorithm (Thm 10.14
of [9]) which, given an arbitrary basis of an ideal, computes a D-Gröbner basis
of it in finitely many steps. It is based on repeated computation of so-called
S-polynomials and G-polynomials.

Definition C.25. Let g1, g2 ∈ D[X]. Assume

lcm(lc(g1), lc(g2)) = b1lc(g1) = b2lc(g2) with bi ∈ D and
lcm(lt(g1), lt(g2)) = s1lt(g1) = s2lt(g2) with si ∈ [X] and

lcm the least common multiple.
Further pick c1, c2 ∈ D such that c = gcd(lc(g1), lc(g2)) = c1 lc(g1) + c2 lc(g2), with
gcd the greatest common divisor. Then define

spol(g1, g2) := b1s1g1 − b2s2g2

gpol(g1, g2) := c1s1g1 + c2s2g2

Lemma C.26. [Cor. 10.12 in [9]] A set P ⊆ D[X] is a D-Gröbner basis of 〈P 〉 iff for
all pairs (p1, p2) ∈ P × P the remainder of D-reducing spol(p1, p2) w.r.t. P is zero
and gpol(p1, p2) top-D-reduces to zero w.r.t. P .

Lemma C.27. [Thm.11 in [76]] Let p1, p2 ∈ D[X] be such that lcm(lt(p1), lt(p2)) =
lt(p1) lt(p2). If lc(p1) | lc(p2) then spol(p1, p2) and gpol(p1, p2) (top-)D-reduce to
zero.

C.4.1 D-Gröbner bases applied to Multiplier Verification

We use Lemma C.27 to derive a D-Gröbner basis of the ideal J(C). The following
theorem shows that we neither have to compute S-polynomials nor G-polynomials.

Theorem C.28. Let R be a PID and J(C) = 〈G(C) ∪ B0(C)〉 be as in Def. C.18.
Then G(C) ∪B0(C) is a D-Gröbner basis of J(C) for R = D.
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Proof. Since G(C) has UMLT, G(C) ∪B0(C) has UMLT and thus by Lemma C.27,
(top-)D-reduction of spol(p, q) and gpol(p, q) by {p, q} gives the remainder zero for
any choice p, q ∈ G(C) ∪B0(C) and by Lemma C.26 the claim follows.

For the multiplier circuits described in Sect C.2 we chose the polynomial rings Zl[X]
with l ∈ N. For example for the truncated multiplier we set l = 2n. Unless l is a prime,
the ring Zl has zero divisors and is therefore not a PID. However the ideal membership
test in the ring Zl[X] can be reduced to an ideal membership test in the ring Z[X], and
Z is a PID.

Lemma C.29. Let l ∈ N and let I ⊆ Z[X] be an ideal. There is a bijective correspon-
dence from q ∈ I + 〈l〉 ⊆ Z[X] to [q] ∈ {[p] | p ∈ I} ⊆ Z[X]/〈l〉, where [q] is the
equivalence class of q. Furthermore Z[X]/〈l〉 ∼= Zl[X].

Proof. The first claim follows from Prop. 4.3.a Chap. 10 of [4], with π : q 7→ [q]. The
second claim follows from the fundamental theorem of homomorphisms.

Lemma C.29 says that whenever we want to decide whether a polynomial q ∈ I ⊆
Zl[X] we can instead check whether q ∈ I + 〈l〉 ⊆ Z[X]. And for the latter we have
the concept of D-Gröbner bases available.

Lemma C.30. Let C be an acyclic circuit, l ∈ N. Then G(C) ∪ B0(C) ∪ {l} is a
D-Gröbner basis for I(C) + 〈l〉 ⊆ Z[X].

Proof. It remains to show that for all p ∈ G(C) ∪ B0(C) it holds that spol(p, l) D-
reduces to zero and gpol(p, l) top-D-reduces to zero, which follows from Lemma C.27,
because lc(p) = −1 and lt(l) = 1.

C.5 Variable elimination

D-Gröbner bases can be used as a kind of black-box for deciding the ideal membership
of the circuit specification. However it was shown in [61,79] that by simply reducing the
specification by the polynomials G(C) ∪B0(C), the size of the intermediate reduction
results increases drastically.

In [61] we presented a theorem which allows us to simplify local parts of Gröbner
bases over fields without changing the rest of the circuit. We extracted specific patterns
of the original multiplier, eliminated the internal variables and only the corresponding
specification of the sub-circuit remained. In this work we present a more general
elimination procedure which subsumes our proposed rewriting methods of [61]. We
introduce a technical theorem in the fashion of Thm. 4 of [61], which is applicable in
more general polynomial rings.

Definition C.31. Let I ⊆ D[X] = D[Y, z] be an ideal. The ideal I ∩D[Y ] of D[Y ] is
called an elimination ideal of I .
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In general computing a D-Gröbner basis for the elimination ideal means that we
explicitly need to compute a D-Gröbner basis w.r.t. a different term order. However
if the D-Gröbner basis of I has UMLT, we will show that we can instantly obtain a
D-Gröbner basis for the elimination ideal.

Definition C.32. Let P ⊆ D[X] be a D-Gröbner basis of 〈P 〉 with UMLT. We say P is
reduced for z if the variable z ∈ X is contained in exactly one polynomial p ∈ P and
lt(p) = z.

Lemma C.33. Let P be a D-Gröbner basis with UMLT and let p ∈ P . Let H = P be
such that all polynomials h 6= p ∈ H are D-reduced w.r.t. p. Then H is reduced for
lt(p) = z.

Proof. Let f 6= p ∈ P be an arbitrary polynomial containing z. By definition lt(f) 6= z.
Let r be the remainder of D-reducing f w.r.t. p. Because lc(p) ∈ D×, r is free of z.

Let H = (P \ {f}) ∪ {r}. Since lm(r) = lm(f) it follows that H is a D-Gröbner
basis with UMLT. After repeating the steps for all f ∈ P , p is the only polynomial
containing z.

Theorem C.34. Let I ⊆ D[X] be an ideal. Let P be a D-Gröbner basis of I with
UMLT which is reduced for z. Let p ∈ P be the polynomial with lt(p) = z. Then
P \ {p} is a D-Gröbner basis with UMLT for the ideal J = I ∩D[X \ {z}].

Proof. We show that ∀f ∈ J ∃q ∈ P \ {p} : lm(q) | lm(f). Since P is a D-Gröbner
basis there exists a polynomial h ∈ P such that lm(h) | lm(f). Because J is free of z,
it follows that lm(p) - lm(f). Thus h 6= p and consequently h ∈ P \ {p}.

In our approach we apply variable elimination for circuits C as follows. Let Y = X \
{z}. We successively select variables z ∈ X for elimination and rewrite G(C)∪B0(C)
according to Lemma C.33 such that G(C) ∪ B0(C) is reduced for z. By Thm. C.34
removing the polynomial p with lt(p) = z yields a D-Gröbner basis (G(C) \ {p}) ∪
B0(C) for I(C) ∩D[Y ].

We derive by the proof of Lemma C.30 that (G(C)\{p})∪B0(C)∪{l} is a D-Gröbner
basis for (I(C) + 〈l〉) ∩ Z[Y ].

C.6 Combining SAT and Computer Algebra

In this section we present how to combine the algebraic verification approach with
SAT to successfully verify complex multiplier circuits given as And-Inverter-Graphs
(AIG) [70].

Multipliers can be decomposed into three components [85], cf. Fig. C.1. In the first
component partial product generation (PPG) the partial products aibj (as contained in
L) are generated. This can for example be achieved using quadratically many AND-gates
or using a more complex Booth encoding.

The second component partial product accumulation (PPA) reduces the partial prod-
ucts to two layers, where full- and half-adders are arranged in different patterns to sum
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s′0
. . .s′mcm+1

Figure C.1: Substituting the final stage adder to gain a simplified multiplier.

up the partial products. Well-known accumulation structures are array accumulation,
Wallace trees or compressor trees.

In the final stage adder (FSA) the output of the circuit is computed. Generally adder
circuits can be divided into two groups, either the carries are computed alongside the
sum bits or they are calculated before the sum. Adders of the first group are usually
based on a sequence of half- and full-adders, which gives them a simple but inefficient
structure. Examples are ripple-carry adders or carry-select adders. In order to decrease
the latency of carry computation the adder circuits of the second group precompute the
carry bits of the adder. They are also called generate-and-propagate (GP) adders and
examples are carry look-ahead adders and Kogge-Stone adders.

Adders of the second group are hard to verify using the algebraic approach, due to the
OR trees needed to precompute carries. Due to the polynomial representation of OR-
gates, cf. (C.2), this leads to an exponential blow-up in the polynomial reduction. During
preparation for the SAT Race 2019 [67] we observed that checking the equivalence
of different adder circuits is rather trivial for SAT solvers. We use this observation in
the verification procedure and determine whether the final stage adder is a GP adder.
Figure C.2 shows our tool chain used for verifying (left side) and certifying (right side)
multiplier circuits given as an And-Inverter-Graph (AIG) [70]. We implemented a
new dedicated reduction engine AMULET in C. Adder substitution is automatically
applied and, if necessary, a simplified AIG and miter encoded as propositional formula
in conjunctive normal form (CNF) are returned.

Detecting GP adders in non-synthesized multipliers is a simple task and the pseudo-
code is listed in Alg. 6. In a GP adder with inputs x0, . . . , xm, y0, . . . , ym and outputs
s′0, . . . , s

′
m, cm+1, cf. Fig C.1, the outputs s′i are calculated as s′i = pi ⊕ ci, with

pi = xi⊕yi. The carries ci are recursively generated as ci = (xi−1∧yi−1)∨(ci−1∧pi−1).
The precise computation of the carries ci (recursively, unrolled or mixed) depends on
the circuit architecture.

If a multiplier contains a GP adder, the most significant output bit s2n−1 is the carry
output of the adder, i.e., s2n−1 = cm+1 in Fig. C.1. Thus the loop in line 2 of Alg. 6
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Verify

AMulet
substition

AMulet
verify

CAD ICAL

.aig

.cnf

7 | 3

7 | 3

.aig

Certify

Check

AMulet
substitution

AMulet
certify

CAD ICAL

PacTrimDRAT-TRIM

.aig

.cnf

.proof

.polys

.pac

.spec

.aig 7 | 3

7 | 3 7 | 3

Figure C.2: Tool chain for verification (left) or certification and checking (right).

Algorithm 6: Identifying GP adders in AMULET

Input :Circuit C in AIG format
Output :Determine whether C might contain a GP adder

1 j ← 2n− 2, τ ← 1;
2 while τ and j ≥ 0 do
3 τ, cj , pj ← Check-if-XOR-and-Identify-pj-and-cj (sj);
4 xj , yj ←Declare-Adder-Inputs (pj , τ );
5 j ← j − 1;

6 cin ← cj ;
7 for i← j to 2n− 1 do
8 m← Follow-and-Mark-Paths(si);

9 return m = 0

starts at 2n− 2. At first we check whether the output bit si is an XOR-gate, which can
easily be identified in AIGs. If si is an XOR gate, its inputs are pi and ci. We can clearly
identify which is which, because pi has to be an XOR gate, whereas ci cannot be an
XOR gate. In the next step of the loop (line 4) we mark the inputs of the XOR gate pi as
adder inputs xi and yi.

If si is not an XOR gate or we cannot clearly identify pi and ci we stop the loop
(indicated by τ ), because then si is not computed by the GP adder. As can be seen in
Fig. C.1, some smaller output bits are directly computed in the PPA step. We mark the
smallest ci as the carry-in cin of the GP adder.

In the next phase of our algorithm we follow all input paths of si for j ≤ i ≤ 2n− 1.
We now include s2n−1, because it is the carry-out of the adder. We mark the gates
alongside the paths and stop whenever we reach a marked input xi or yi or cin. If we
encounter a path, which ends at the primary inputs ai, bi of the multiplier, then we do
not consider the final stage adder as a GP adder.

If we detect a final stage GP adder, we substitute it by a simple ripple-carry adder,
which has the same inputs xi, yi and cin. We do not change the first two stages of a
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multiplier, as depicted in Fig. C.1. To prove that the ripple-carry adder is equivalent to
the GP adder we generate a bit-level miter in conjunctive normal form, which is verified
by a SAT solver (CaDiCaL [15]). If the final stage adder is not a GP adder we do not
apply adder substitution.

Algorithm 7: Outline of verification flow in AMULET

Input :Substituted circuit C in AIG format
Output :Determine whether C is a multiplier

1 for i← 0 to 2n− 1 do
2 Si ← Define-Cone-of-Influence(i);
3 Order (Si);
4 Search-for-Booth-Encoding (Si);
5 Local-Elimination (Si);

6 Global-Elimination ();
7 C0 ← Incremental-Reduction ();
8 return C0 = 0

After substitution we verify or certify the rewritten AIG in AMULET. The outline of
the flow is depicted in Alg. 7.

For verification we use our incremental column-wise verification algorithm of [61].
The goal is to split the verification approach into smaller more manageable sub-problems
by partitioning the circuit into column-wise slices and by splitting the word-level spec-
ification of a multiplier into multiple polynomials which relate the partial products,
incoming carries, the sum output bit and the outgoing carries of each slice. The incre-
mental specification presented in [61] is tailored to unsigned multipliers, but it can easily
be adapted to more general multiplier specifications by adding coefficients.

We first define slices based on the input cones of the outputs and order the variables
in the slices according to their level seen from the circuit inputs (line 2 in Alg. 7). This
ensures that the variables are topologically sorted and the corresponding polynomials
have UMLT and thus form a D-Gröbner basis.

After sorting we apply syntactic pattern matching to detect whether the circuit uses
Booth encoding. In Booth encoding consecutive primary multiplier inputs are used as
inputs of XOR-gates which are then combined to form an OR-gate. These XOR- and
OR-gates are input to several gates in multiple slices and to increase cancellation of
common monomials, we identify corresponding variables.

For local variable elimination (line 4) we loop over the gate polynomials in each slice
and eliminate the variables of the leading terms which only occur in polynomials in the
same slice and which are contained in exactly one other polynomial inside the slice.
We repeatedly apply variable elimination until all variables of leading terms are either
contained in the tails of multiple polynomials or occur in polynomials of bigger slices.

After reducing the number of variables inside the slices we eliminate variables which
we marked in line 3 of Alg. 7. The difference to local variable elimination is that we
now have to consider all polynomials from the circuit.

After variable elimination we apply Alg. 2 of [61] and reduce the column-wise
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specification by the rewritten sliced D-Gröbner bases and report whether the final result
is zero or not. Our tool AMULET uses the UMLT property of the D-Gröbner basis for
D-reduction, making it much more efficient than the computer algebra systems [38,102]
used in our previous work, which are designed for more general sets of polynomials.
We use the property that every leading monomial contains at most one variable with
exponent 1 and with coefficient −1 and thus D-reduction reduces to replacing every
occurrence of the leading variable by the tail of the polynomial. As a further optimization
we employ reduction by the boolean value constraints implicitly. Whenever a term in
the intermediate reduction results contains an exponent larger than 1, we immediately
eliminate the exponent, without applying explicit reduction by the corresponding boolean
value constraint.

If we want to certify verification we generate PAC proofs [90] in AMULET as by-
product of the verification algorithm. These proofs can be checked by our independent
proof checker PACTRIM [90], cf. right side of Fig. C.2. We write proofs as sequences,
where each rule is of the following form:

+ : pi, pj , pi + pj ;
pi, pj appearing earlier in the proof
or are contained in G(C)
and pi + pj being reduced by B(X)

∗ : pi, q, qpi;

pi appearing earlier in the proof
or is contained in G(C)
and q ∈ R[X] being arbitrary
and qpi being reduced by B(X)

These rules model the properties of an ideal, given in Def. C.6. As for verification we
do not explicitly write down proof rules when reducing a boolean value constraint. In
addition we extend proof rules by a deletion information, similar to clause deletion
in [49]. We changed the proof checker PACTRIM accordingly. Because of Thm. C.11 and
Thm. C.15 the soundness and completeness arguments given in [90] can be generalized
to polynomial rings over commutative rings with unity.

Our tool PACTRIM validates the proof that the simplified AIG fulfills the given
specification L by checking that L is derived and the derivation only uses valid proof
rules. In addition we also check with DRAT-TRIM [99] the proofs generated by
CADICAL for the CNF miter.

C.7 Experiments

In our experiments we used an Intel Xeon E5-2620 v4 CPU at 2.10GHz (with turbo-
mode disabled) with memory limit of 128 GB. The time is listed in rounded seconds
(wall-clock time) and we measure the time from starting the tools until the tools are
finished or we reach the time or memory limit. The source code, benchmarks and
experimental data are available at http://fmv.jku.at/amulet.

In our experiments we aim to provide the most comprehensive comparison by con-
sidering all different multiplier architectures used in the current state-of-the-art [80].
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These benchmarks are generated with the Arithmetic Module Generator [53], which
is able to generate signed and unsigned integer multipliers up to bit-width 64. We
only have access to truncated multipliers using SMT models, which we generated with
Boolector [83]. Additionally we generated benchmarks of large multipliers with Gen-
Mul [81] (which only scales up to 512 bits), Boolector [83] and generator scripts by Arist
Kojevnikov [52]. The multiplier architectures of [52, 83] are very simple architectures
without any optimizations.

In the experiments presented in Table C.1 we verify and certify different unsigned
(u), signed (s) and truncated (t) multiplier architectures of 64 input bit-width. Due to
shortage of space we do not present experiments of smaller bit-widths. The time out for
the experiments in this table is set to 3600 sec (1h).

We show the effect of our contributions by either omitting adder substitution and
using only polynomial reduction for verification (“nosub"), omitting variable elimination
(“noelim") or using the polynomial ring Z[X] instead of Zl[X] (“nomod"). Each of
the optimizations has a large effect and nearly every multiplier architecture, despite the
clean multiplier architecture “sp-ar-rc”, produces a time out in one of the three columns.
For truncated multipliers we would get a wrong result for “nomod", which is marked by
“NA3”.

In the block “Verify” we measure the time for applying the tool chain as shown in the
left side of Fig. C.2. We list the times AMULET needs for adder substitution (“sub")
and for verifying (“aig") as well as the time CADICAL uses to verify the CNF miter
(“cnf"). Column “tot" lists the total time.

We compare our verification results to the most recent related works [31, 80, 89]. We
want to highlight that the tool of [80] is not yet available, but it enhances the approach
of [79]. Thus we list the experiments of their work [80], which are run on an Intel Xeon
E3-1270 v3 CPU with 3.50 GHz and thus is a slightly faster CPU than ours. Experiments
which are not available for comparison are marked by “NA2”.

The tool of [31] uses a certain optimization “&atree”. After contacting the first and
last authors of [106] we were told that this option only works for simple multipliers.
Using this flag on more complex multipliers leads to incompleteness, which we mark
again by “NA3”. If “&atree” is omitted, all experiments produce a segmentation fault.

It can be seen that in contrast to our previous work [89], we are able to verify all
benchmarks within seconds and we are an order of magnitude faster than the currently
most successful approach of [80]. The tools of related work are only partially applicable
to verify signed and truncated multipliers, because the specification used in these tools
is fixed to (un)signed multiplier circuits. We mark non-applicability with “NA1".

In “Certify” and “Check” we present the time used for certifying and checking, cf.
right side of Fig. C.2. The columns of “Certify” have the same form as “Verify”. In
“Check” we list the times DRAT-TRIM (“cnf") [99] and PACTRIM (“aig") [90] need
for proof checking. The column “total” lists the total time used to certify and check
the multipliers. Certifying a multiplier is around twice as slow than verifying, because
additional polynomial operations are necessary to match the proof rules. In the last two
columns we present the sizes of the proofs. The proof size of CNFs is measured by the
number of added RUP clauses [47]. A size of 0 means, that the final stage adder is not a
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Table C.1: Verification and Certification Time.

L column: unsigned (u), signed (s) or truncated (t) multiplier specification.

architecture n L nosub nomod noelim
Verify

[80] [31] [89]
Certify Check

total
proof size

sub cnf aig tot sub cnf aig tot cnf aig tot cnf aig
sp-ar-rc 64 u 1 1 2 0 0 1 1 NA2 0 133 0 0 2 2 0 3 3 5 0 188 290
sp-dt-lf 64 u TO 1 3 0 0 2 2 31 NA3 TO 0 0 2 3 0 3 3 6 34 423 186 170
sp-wt-cl 64 u TO TO 3 0 9 1 11 96 NA3 TO 0 9 2 12 7 3 10 21 264 471 191 623
sp-bd-ks 64 u TO TO 2 0 1 1 3 162 NA3 TO 0 2 2 4 1 3 4 8 78 567 190 915
sp-ar-ck 64 u TO 1 2 0 0 1 1 143 NA3 TO 0 0 2 2 0 3 3 5 1 432 187 251
bp-ar-rc 64 u 1 TO 118 0 0 1 1 53 NA3 TO 0 0 2 2 0 3 3 5 0 161 815
bp-ct-bk 64 u TO TO 100 0 0 1 2 119 NA3 TO 0 0 2 2 0 3 3 5 27 552 138 179
bp-os-cu 64 u 2 TO TO 0 0 2 2 95 NA3 TO 0 0 3 3 0 4 4 7 0 166 967
bp-wt-cs 64 u 1 TO 114 0 0 1 1 75 NA3 TO 0 0 2 2 0 3 3 6 0 161 747

sp-ar-rc 64 s 1 1 2 0 0 1 1 NA1 0 NA1 0 0 2 2 0 3 3 6 0 188 426
bp-wt-cl 64 s TO 3 109 0 10 1 11 NA1 NA3 NA1 0 10 2 12 7 3 10 22 261 650 151 355
btor 64 t 0 NA3 1 0 0 0 1 NA1 NA1 NA1 0 0 1 1 0 1 1 2 0 70 374

NA1: tool not applicable to type L NA2: tool not yet available NA3: incompleteness (see text) TO: 3600 sec

Benchmarks are either generated by the Arithmetic Module Generator of [53] or by Boolector [83] (btor).
PPG: simple (sp), Booth (bp) PPA: Dadda tree (dt), Wallace tree (wt), balanced delay tree (bd), array (ar), compressor tree (ct), overturned-stairs tree (os)

FSA: Ladner-Fischer (lf), carry look-ahead (cl), Kogge-Stone (ks), carry-skip (ck), ripple-carry (rc), Brent-Kung (bk), conditional sum (cu), carry select (cs)
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Table C.2: Verifying benchmarks of large input size.

L column: unsigned (u) multiplier specification.

architecture n L
Verify

[80] [31] AIG size
sub cnf aig tot

btor 128 u 0 0 9 10 NA2 2 123 k
kjvnkv 128 u 0 0 9 9 NA2 2 195 k
sp-ar-rc 128 u 0 0 10 10 349 2 195 k
sp-dt-lf 128 u 0 2 13 15 490 NA3 195 k
sp-wt-bk 128 u 0 1 18 20 746 NA3 198 k

btor 256 u 1 0 119 120 NA2 19 522 k
kjvnkv 256 u 1 0 84 86 NA2 18 782 k
sp-ar-rc 256 u 1 0 84 86 8 720 20 782 k
sp-dt-lf 256 u 3 6 164 174 12 874 NA3 780 k
sp-wt-bk 256 u 3 3 170 177 21 454 NA3 790 k

btor 512 u 7 0 968 975 NA2 300 2 093 k
kjvnkv 512 u 9 0 774 783 NA2 247 3 138 k
sp-ar-rc 512 u 10 0 770 780 192 640 312 3 138 k
sp-dt-lf 512 u 25 21 1 539 1 585 240 051 NA3 3 133 k
sp-wt-bk 512 u 24 9 1 560 1 594 492 320 NA3 3 157 k

btor 1024 u 97 0 10 623 10 720 NA2 8 323 8 379 k
kjvnkv 1024 u 106 0 5 463 5 570 NA2 3 778 12 567 k

btor 2048 u 1 026 0 89 565 90 591 NA2 150 976 33 536 k
kojvnkv 2048 u 1 057 0 67 733 68 790 NA2 74 514 50 299 k

NA2: tool not yet available NA3: incompleteness (see text)

Benchmarks generated by Boolector [83] (btor), from [52] (kjvnkv) and [81].
PPG: simple (sp) PPA: array (ar), Dadda tree (dt), Wallace tree (wt)

FSA: ripple-carry (rc), Ladner-Fischer (lf), Brent-Kung (bk)

GP adder. Thus a trivial CNF is reported which does not yield a resolution proof. The
size of the algebraic proofs is measured by the number of PAC rules [90].

In the experiments of Table C.2 we list the time to verify large multiplier designs. We
are able to verify multipliers of input size 2048, consisting of more than 50 million AIG
nodes in around 19h. Certifying and checking these benchmarks is around three times
slower. For example certifying “kojvnkv-2048” needs 34h wall-clock time. Checking
the (uncompressed) proof, which has a size of 1.4 TB, needs 20h.

C.8 Conclusion

In this paper we combine SAT and computer algebra to verify large unsigned, signed
and truncated integer multipliers. Our theory describes polynomial reasoning over more
general rings. We formulate and prove soundness and completeness.
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C.8 Conclusion

We show how modular reasoning can be simulated by integer reasoning and revisit
and apply existing D-Gröbner bases theory from the literature. Modular arithmetic is
required to specify truncated multipliers. It also improves performance substantially.
We formalize variable elimination too.

Our main contribution consists of extracting complex final stage adders, which are
substituted by simple adders. Correctness of this substitution is proven by SAT and
correctness of the simplified multiplier by our dedicated reduction engine.

Our experiments show that the combination of these ideas allow us to scale up
verification to large multipliers of 2048 bits. We are also able to verify complex
multipliers an order of magnitude faster than the previous state-of-the-art. Furthermore,
we produce proof certificates in contrast to other approaches. These proofs are checked
independently to validate the verification results.

In future work we want to apply our approach to synthesized multipliers where
technology mapping is applied and to other arithmetic circuits beyond integer multipli-
ers. Another intriguing research direction is to integrate both polynomial and clausal
reasoning in a common proof format.
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Abstract Verifying multiplier circuits is an important problem which in practice still
requires substantial manual effort. The currently most effective approach uses poly-
nomial reasoning. However parts of a multiplier, i.e., complex final stage adders are
hard to verify using computer algebra. In our approach we combine SAT and computer
algebra to substantially improve automated verification of integer multipliers. In this
paper we focus on the implementation details of our new dedicated reduction engine,
which not only allows fully automated adder substitution, but also employs polynomial
reduction efficiently. Our tool is furthermore able to generate proof certificates in the
practical algebraic calculus and we also investigate the size of these proofs for one
specific multiplier architecture.

D.1 Introduction

Formal verification of arithmetic circuits is extremely important to help to prevent issues
like the famous Pentium FDIV bug. There have been many attempts since then to verify
such circuits, but even today the problem of formally verifying arithmetic circuits, and
especially multiplier circuits, is still considered to be hard and cannot be applied fully
automated. In principle, theorem provers in combination with SAT are able to certify
industrial multipliers [54]. However, such approaches lack automation.
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Currently the most successful automated approach uses polynomial reasoning [31,61,
79, 80, 106] and in recent years has seen significant progress. The approach of [79, 80]
employs local cancellation of vanishing monomials in converging cones, which allows
verifying a large variety of multiplier architectures much more efficiently than previous
work. The authors of [31, 106] eliminate redundant polynomials by identifying full- and
half-adders in the multipliers. This technique is able to verify large simple multipliers,
but fails on even slightly more complex multiplier architectures.

In our method [62] we combine two approaches, i.e., SAT and computer algebra.
We observe that final stage adders of multipliers are a real challenge for the algebraic
approach as some adder designs rely on sequences of OR-gates, which lead to an
explosion of the polynomial representation of the intermediate results. Contrarily SAT
solvers can easily verify the equivalence of adder circuits. Therefore we apply adder
substitution and replace complex final stage adders by simpler adders and verify the
correctness of the substitution using SAT solvers. The correctness of the simplified
multiplier is shown using computer algebra. Our method is an order of magnitude faster
than related work and is able to verify circuits with input bit-width 2048.

Our reduction engine AMULET [62] detects complex final stage adders and applies
adder substitution fully automatically. A bit-level miter in conjunctive normal form
(CNF) as well as a rewritten multiplier is generated. In the verification phase AMULET

uses the structure of the polynomial representation of circuits and thus is more efficient
in circuit verification than computer algebra systems [38, 102] used in our previous
work. Additionally we apply preprocessing based on variable elimination.

Furthermore AMULET efficiently produces certificates in the PAC format [90],
which allow checking the correctness of the verification results. None of the related
work [31, 79, 80, 106] produces certificates.

This paper provides supplementary material for an invited talk at Vampire’19 of the
second author based on [61, 62]. We discuss the implementation of AMULET and
present the underlying algorithms of [62] in more detail. Additionally we provide a
generalization of our incremental approach of [61]. We further show that we are able to
generate proof certificates of quadratic length for simple multipliers.

D.2 Algebraic approach

We consider acyclic gate-level circuits C which implement integer multiplication. The
circuits have 2n input bits a0, . . . , an−1, b0, . . . , bn−1 ∈ {0, 1}, as well as 2n output
bits s0, . . . , s2n−1 ∈ {0, 1} and further a number of internal logical gates denoted by
g0, . . . , gk ∈ {0, 1}. Let R be a commutative ring with unity and let R[X] be the
polynomial ring over R and the set of variables

X = { a0, . . . , an−1, b0, . . . , bn−1, s0, . . . , s2n−1, g0, . . . , gk}.

A term τ = xd1
1 · · ·xdr

r is a product of powers of variables for certain d1, . . . , dr ∈ N.
A monomial is a multiple of a term cτ , with c ∈ R and a polynomial p is a finite sum of
monomials.
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An order ≤ is fixed on the set of terms such that 1 ≤ τ and σ1 ≤ σ2 ⇒ τσ1 ≤ τσ2
for all terms τ, σ1, σ2. Such an order is a lexicographic term order if for all terms
σ1 = xd1

1 · · ·xdr
r , σ2 = xe1

1 · · ·xer
r it holds that σ1 < σ2 iff there exists i with dj = ej

for all j < i, and di < ei. The largest term (w.r.t. ≤) in a polynomial p = cτ + · · · is
called the leading term lt(p) = τ . The leading coefficient and leading monomial of p
are defined accordingly. Furthermore we call p− cτ the tail of p.

The specification of a circuit describes the desired relation between the outputs and
inputs of a circuit. If for all possible inputs the circuit computes the desired output, we
say that the circuit fulfills its specification and thus is correct. Formal verification aims
to derive whether a circuit fulfills its specification or not. In the algebraic verification
approach we model each logical gate by a polynomial. Correctness of the circuit is
shown by deriving that the specification, also encoded as a polynomial L, is implied by
the gate polynomials.

The polynomial ring R is fixed with the specification. Although we model integer
multiplication, we showed in [62] that it is beneficial to use more general polynomial
rings which allow modular reasoning.

Definition D.1. The specification Un of n-bit unsigned integer multipliers in the ring
Z22n [X] is given as

Un =
2n−1∑
i=0

2isi −
(n−1∑
i=0

2iai
)(n−1∑

i=0
2ibi

)
(D.1)

As discussed in [62] modular reasoning also allows us to define the specification
of truncated multipliers, i.e., a truncated multiplier only returns the n least significant
output bits.

Definition D.2. The specification Tn of n-bit truncated multipliers in the ring Z2n [X] is
given as

Tn =
2n−1∑
i=0

2isi −
(n−1∑
i=0

2iai
)(n−1∑

i=0
2ibi

)
=

n−1∑
i=0

2isi −
n−1∑
i=0

n−1−i∑
j=0

2i+jaibj . (D.2)

After fixing the specification and thus the coefficient ring R, each logical gate in the
circuit is encoded as a polynomial, such as:

u = ¬v implies 0 = −u+ 1− v
u = v ∨ w implies 0 = −u+ v + w − vw
u = v ∧ w implies 0 = −u+ vw
u = v ⊕ w implies 0 = −u+ v + w − 2vw.

(D.3)

The polynomial equations in (D.3) are chosen in such a way that the possible solutions
with u, v, w ∈ {0, 1} of the polynomials inR[X] are the solutions of the gate constraints
and vice versa. Note, the polynomials above are defined in the ring Z[X] and thus the
structure may differ for different coefficient rings R. We order the terms according to a
reverse topological lexicographic term order, such that the output variable of a gate is
always greater than the variables attached to the input edges of that gate.
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Definition D.3. By G(C) ⊆ R[X] we denote the set of circuit polynomials which
contains for each gate of C the corresponding polynomial of (D.3). We further have
Boolean value constraints x(1 − x) = 0 for x ∈ X , encoding that x is a Boolean
variable. Let B(Y ) = {y(1− y) | y ∈ Y } ⊆ R[X] for Y ⊆ X , be the set of Boolean
value constraints for Y .

Definition D.4. A nonempty subset I ⊆ R[X] is called an ideal if ∀ p, q ∈ I : p+q ∈ I
and ∀ p ∈ R[X] ∀ q ∈ I : pq ∈ I . A set P = {p1, . . . , ps} ⊆ R[X] is called a basis of
I if I = {p1q1 + · · ·+psqs | q1, . . . , qs ∈ R[X]}. We say I is generated by P and write
I = 〈P 〉. The sum of two ideals I and J is defined as I + J = {p+ q | p ∈ I, q ∈ J}.

In [62] we showed that the question whether L is implied by the gate polynomials
of C and the Boolean value constraints can be answered by deciding a so-called ideal
membership problem: “Given q ∈ R[X] and a (finite) set of polynomials P ⊆ R[X],
decide whether q ∈ 〈P 〉.”

Definition D.5. Let P ⊆ R[X]. If for a certain term order, all leading terms of P
only consist of a single variable with exponent 1 and are unique and further all leading
coefficients are multiplicatively invertible in R, then we say P has unique monic leading
terms (UMLT). Let X0(P ) ⊆ X be the set of all variables that do not occur as leading
terms in P . We further define B0(P ) = B(X0(P )).

It is easy to see that for an acyclic circuit C the set G(C) has UMLT for a fixed
reverse topological term order. Further X0(P ) contains only circuit inputs ai, bi.

Definition D.6. Let C be a circuit and let J(C) = 〈G(C) ∪ B0(C)〉 ⊆ R[X], with
B0(C) = B0(G(C)).

Corollary D.7. [62] A circuit C fulfills L iff L ∈ J(C).

The theory of Gröbner bases [25] offers a decision procedure for the ideal membership
problem. For our purpose we use the more general theory of D-Gröbner bases [9], where
the coefficient domain D is a principal ideal domain (PID). Let p, q, r ∈ D[X] and
let P ⊆ D[X]. A basis P of an ideal I ⊆ D[X] is a D-Gröbner basis of I iff
∀q ∈ I ∃p ∈ P : lm(p) | lm(q). Every ideal of D[X] has a D-Gröbner basis, and there
is an algorithm (Thm. 10.14 of [9]) which, given an arbitrary basis of an ideal, computes
a D-Gröbner basis of it in finitely many steps.

We say q D-reduces to r w.r.t. p if there exists a monomialm′ in q withm′ = m lm(p)
and r = q−mp. The remainder r of the D-reduction of q by P is such that q− r ∈ 〈P 〉
and r is D-reduced w.r.t. P . If P is a D-Gröbner basis, then r = 0 iff q ∈ 〈P 〉.

For the specifications listed in Def. D.1 and Def. D.2 we fixed the polynomial rings
to Zl[X] for l ∈ N. In general Zl is not a PID, but we showed in [62] that the ideal
membership problem in Zl[X] can be converted to an ideal membership problem in the
ring Z[X], with Z being a PID. Whenever we want to decide whether a polynomial
q ∈ I ⊆ Zl[X] we can instead check whether q ∈ I + 〈l〉 ⊆ Z[X]. For the latter we
have the concept of D-Gröbner bases available. And since G(C) has UMLT we can
directly derive a D-Gröbner basis for J(C) + 〈l〉.
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Lemma D.8. [62] Let l ∈ N. Then G(C) ∪ B0(C) ∪ {l} is a D-Gröbner basis for
J(C) + 〈l〉 ⊆ Z[X].

D.2.1 Incremental Verification

In [61] we introduced an incremental verification algorithm, which splits the verification
problem into smaller more manageable subproblems by partitioning the circuit into
column-wise slices and splitting the word-level specification into multiple smaller
specifications which relate the partial products, incoming carries, sum output bit and the
outgoing carries of each slice. However this algorithm is tailored to multiplication of
unsigned bit-vectors. In this section we show how to apply this procedure to different
multiplier specifications. As the number of output bits varies for different multipliers,
e.g., in Def. D.2, we denote the number of output bits by the constant m and fix l = 2m
in this section.

Definition D.9. Let Ii := {gate g | g is in input cone of si} be the input cone of each
output bit si for 0 ≤ i < m. A slice Si is defined as the difference of consecutive cones
Ii, i.e., S0 := I0 and Si+1 := Ii+1 \

⋃i
j=0 Sj .

Definition D.10 (Sliced Gröbner Bases). Let Gi(C) be the set of circuit polynomials of
the gates in a slice Si. The terms are ordered such that the requirements of Lemma. D.8
are fulfilled. We define by X0(Gi) the set of variables that do not occur as leading terms
in Gi(C) and further define B0(Gi) = B(X0(Gi)).

Corollary D.11. Gi(C)∪B0(Gi)∪{2m} is a D-Gröbner basis for 〈Gi(C)∪B0(Gi)〉+
〈2m〉.

Corollary D.11 follows directly from Lemma. D.8. It is easy to see that 〈Gi(C) ∪
B0(Gi)〉 contains all the Boolean value constraints B(Gi) for the gate variables in Si,
thus we may use them in the reduction process to eliminate exponents greater than 1 in
the intermediate reduction results. After splitting the circuit, we are now going to split
the word-level specification of a multiplier.

Definition D.12. Let C be a multiplier circuit which is sliced according to Def. D.9 and
let L be the specification of C. For slice Si with 0 ≤ i < m let Pi =

∑
j+k=i αjkajbk

be the partial product sum of column i, where the constant αjk is the coefficient of the
term ajbk in L.

Definition D.13. Let C be a multiplier circuit. A sequence of m + 1 polynomials
C0, . . . , Cm over the variables of C is called a carry sequence if for all 0 ≤ i ≤ m it
holds that

−Ci + Ci+1 + αisi + Pi ∈ J(C)
where the constant αi is the coefficient of si in L. We call the polynomials −Ci +
Ci+1 + αisi + Pi the carry recurrence relations for the sequence C0, . . . , Cm.

It remains to fix the boundary polynomial Cm, where we simply choose Cm = 0.
Our incremental algorithm is shown in Alg. 8 and it follows from the proof of Thm.6
in [61] that Alg. 8 is correct.
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Partial Product Generation
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an−1, . . . , a0 bn−1, . . . , b0
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. . .s′mcm+1

Figure D.1: The components of a multiplier.

Algorithm 8: Multiplier Checking Algorithm
Input :Circuit C with m output bits, sliced Gröbner bases Gi
Output :Determine whether C is a correct multiplier

1 l← 2m, Cm ← 0;
2 for i← m− 1 to 0 do
3 Ci ← Remainder(Ci+1 + αi2isi − 2iPi, Gi(C) ∪B(Gi) ∪ {l})
4 return C0 = 0

D.3 SAT

Computer algebra is able to verify simple multipliers very efficiently. However more
complex multiplier architectures still impose quite a challenge and lead to a monomial
blow-up in the intermediate reduction results. The reason for this blow-up are certain
adder structures, which are part of the multipliers. During preparation for the SAT Race
2019 [67] we observed that checking the equivalence of different adder circuits is rather
trivial for SAT solvers. We make use of this observation in the verification procedure
and combine computer algebra and SAT. We summarize the main idea, as presented
in [62].

Generally multipliers can be decomposed into three components [85], which are
shown in Fig. D.1. In the first component partial product generation (PPG) the partial
products aibj as contained in L are derived. This can for example be achieved using
simple AND-gates or using a more complex Booth encoding. In the second stage partial
product accumulation (PPA) the partial products are reduced to two layers using full-
and half-adders. In the last stage the output of the circuit is computed using an adder
circuit. Hence we call this component final stage adder (FSA).

Adder circuits can be split into two groups. Either the carries are computed simulta-
neously with the sum bits or they are calculated separately before the sum to decrease
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Figure D.2: GP adder (left) and equivalent RCA (right).

the latency of carry computation. A scheme for both adder types can be seen in Fig. D.2.
Adders of the first group are usually based on a sequence of half- and full-adders, which
gives them a simple but inefficient structure, e.g., ripple-carry adders. Adders of the
second group are also called generate-and-propagate (GP) adders. In a GP adder with
inputs x0, . . . , xm, y0, . . . , ym, cin and outputs s′0, . . . , s

′
m, cout the output bits s′i are

calculated as s′i = pi ⊕ ci, with pi = xi ⊕ yi. The carries ci are recursively generated
using the equation ci = (xi−1 ∧ yi−1) ∨ (ci−1 ∧ pi−1) with cm+1 = cout and c0 = cin.
The precise derivation of the carries ci (recursively, unrolled or mixed) depends on
the architecture of the adders, but is generally computed using sequences of OR-gates.
These sequences of OR-gates make the GP adders hard to verify using the algebraic
approach as the following example shows.

Example D.14. Let o = o2 ∨ x0, o2 = o1 ∨ x1, o1 = x3 ∨ x2 represent a sequence of
three OR-gates, which can be simplified to o = x0 ∨ x1 ∨ x2 ∨ x3. The corresponding
polynomial representation o = x0 + x1 − x0x1 + x2 − x0x2 − x1x2 + x0x1x2 +
x3 − x0x3 − x1x3 + x0x1x3 − x2x3 + x0x2x3 + x1x2x3 − x0x1x2x3 contains 24 − 1
monomials.

In our approach we identify whether the FSA is a GP adder, using the equations
s′i = pi ⊕ ci and pi = xi ⊕ yi. The algorithm is described in detail in Sect. D.4,
where we present our tool AMULET. If we detect that the FSA is a GP adder, we
substitute the FSA by a simple ripple-carry adder (RCA), which has the same inputs
x0, . . . , xm, y0, . . . , ym, cin than the original FSA. We do not change the first two stages
PPG and PPA. To prove that the RCA is equivalent to the GP adder we generate a
bit-level miter in CNF, which is verified by a SAT solver. However, if the FSA is not a
GP adder we do not apply adder substitution. After substitution we verify the rewritten
AIG in AMULET using computer algebra. Figure D.3 shows the original multiplier
(purple) as well as the RCA and the bit-level miter (green). The dashed boxes depict
which components of the extended multiplier are verified using SAT (red) and computer
algebra (blue).
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Figure D.3: Reasoning techniques used to verify the extended multiplier circuit.

D.4 AMulet

In this section we explain implementation details of our tool AMULET. Our tool,
which is written in C reads multipliers given as And-Inverter-Graphs (AIG) [70] and
automatically applies adder substitution and verification. Additionally we are able to
generate proof certificates.

D.4.1 Adder Substitution

Our algorithm, which identifies whether the FSA is a GP adder and, if necessary, replaces
the FSA by a RCA is shown in Alg. 9. It reads the original multiplier and returns a
circuit in the AIG format as well as a CNF. To identify GP adders we highly relate
on their structure as presented in Sect. D.3. In particular we rely on the fact that the
outputs s′i are always outputs of XOR-gates and that the carries ci are never outputs of
XOR-gates.

In the initialization phase AMULET reads the given multiplier and for each node in
the AIG we introduce a unique variable. Variables in AMULET are organized in an
ordered array, where the indices match the literal (divided by 2) of the AIG node. As
there is a one-to-one correspondence between variables and AIG nodes we will use
both terms interchangeably. We further identify whether the variable is an output or an
internal gate of an XOR gate, using syntactic pattern matching.

The variable τ of line 2 acts as an error-flag. In line 3 we identify whether the output
s2n−1 of the multiplier is the carry output cout of the FSA, which is not always the case.
In some multiplier architectures the output s2n−1 is computed as an XOR, whose inputs
are the carry output cout of the FSA and some output from the PPA step, which is usually
again an XOR gate. Thus in line 3 we identify whether s2n−1 is an XOR gate. If not,
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Algorithm 9: Adder substitution in AMULET

Input :Circuit C in AIG format
Output :Rewritten Circuit C ′ in AIG format, bit-level miter as CNF F

1 Init(C);
2 τ ← 1;
3 cout, τ ←Identify-Carry-Out(s2n−1);
4 if τ = 0 then
5 return C, 0;
6 j ← 2n− 2, σ ← 1;
7 while σ and j ≥ 0 do
8 σ ← Check-if-XOR (sj);
9 σ, cj , pj ← Identify-pj-and-cj (sj , σ);

10 σ, xj , yj ←Mark-Adder-Inputs (pj , σ);
11 j ← j − 1;

12 cin ← cj ;
13 τ ← Follow-and-Mark-Paths(cout, X, Y, cin);
14 for i← j + 1 to 2n− 2 do
15 τ ← Follow-and-Mark-Paths(si, X, Y, cin, τ );

16 if τ = 0 then
17 return C, 0;
18 R← Generate-AIG-RCA(X,Y, cin);
19 M ← Generate-Miter(C,R);
20 F ←Miter-to-CNF(M );
21 C ′ ← Generate-Rewritten-AIG(C,R);
22 return C ′, F

then s2n−1 = cout. If on the other hand s2n−1 is an XOR gate we examine the inputs
of s2n−1 and identify which child is not an XOR gate. This child is then identified as
cout. If neither input is an XOR gate, we cannot clearly identify cout of the FSA and set
τ = 0. In that case the algorithm terminates and returns the original multiplier and an
empty bit-level miter.

In the while-loop we identify the inputs x0, . . . , xm, y0, . . . , ym, cin of the FSA.
We do not know the concrete value of m in advance, as it depends on the multiplier
architecture. Hence we recursively iterate over the outputs of the multiplier. We start the
loop at the output s2n−2, since s2n−1 was used to identify the carry output of the FSA.
In line 8 we check if the output sj is an XOR gate. If so, we identify the propagate bit pj
and the carry bit cj in the next step. Here we rely on the fact that pj is an XOR gate and
cj is not an XOR gate. Using pj we mark the inputs xj , yj of the adder in the next step.

As shown in Fig. D.1 not all output bits of the multiplier are computed by the FSA.
Smaller output bits may already be computed in the PPA step. Hence at some point we
are not able to identify pj , cj or xj , yj anymore, which we capture in σ. If the FSA is
not a GP adder the loop will directly stop after the first iteration. The carry-in cin of the
FSA is set to the smallest cj , which was identified.

In lines 13 to 15 we mark all gates which belong to the FSA. We start at the carry
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output cout resp. sum outputs sj+1, . . . , s2n−1 and follow all paths in the input cones
until we either reach a marked input xi, yi or cin. We mark the visited variables. If at
some point we reach the input variables ai, bi of the multiplier the FSA is not a GP
adder, i.e., we were not able to clearly identify the boundaries of the FSA. Consequently
adder substitution was not successful and the initially given AIG is returned without
generating a bit-level miter. If on the other hand all paths stop at the marked inputs or at
cin, we have successfully identified and marked all gates belonging to a GP adder and
apply adder substitution.

We generate an equivalent RCA in line 18. A RCA is simply a sequence of full-
adders, cf. Fig. D.2 and the AIG encoding of a full-adder can be seen in Fig. D.5b. After
the RCA is generated, the bit-level miter is defined. It contains all the gates which are
identified to belong to the GP adder and the gates of the RCA. Furthermore we add
XOR gates, whose inputs are corresponding pairs of output bits of the two adders. These
XOR gates are summed up by a sequence of OR-gates, cf. Fig. D.3. If the two adders
are equivalent, all equivalent pairs of output bits compute the same result. Thus the
outputs of the XOR gates are 0, consequently all OR-gates are 0 and the output of the
miter is 0.

The equivalence of the adders is verified using a SAT-solver. Hence the bit-level
miter is translated into a CNF F in line 20. More precisely, the propositional formulas
represented by each AIG node are translated into CNF, which is rather straightforward.
If for example an AIG node represents x = a∧ b, the equivalent propositional formula is
¬(x↔ a∧b) = > which can be translated to the CNF (x∨a∨b)∧(x∨a)∧(x∨b) = >.
We iterate over each node and output the corresponding clauses in DIMACS format.
The final clause which is added, is the assumption that the output of the miter is 1. Thus
for a correct adder substitution the SAT solver has to return that the CNF is UNSAT.

In the rewritten multiplier, we keep all nodes of the original multiplier, which are not
marked to be an element of the FSA and replace the subgraph defining the GP adder
by the AIG of the RCA. The rewritten AIG C ′ as well as the CNF F are returned by
AMULET.

D.4.2 Verification

After applying adder substitution the multiplier is verified. The pseudo-code can be
seen in Alg. 10. During initialization, which is similar to Alg. 9, we fix the specification
polynomial L ∈ Zl[X] and thus the constant l. As there are now more data structures
involved, in particular representation of polynomials, let us briefly discuss our design
decisions. The variables are organized as an ordered array. Terms are represented as
ordered linked lists of variables. In general terms will be used multiple times during
the reduction process, thus they are organized in a hash table. Monomials contain a
coefficient and a term. Since the values of the coefficients exceed 264, we use the GMP
library [44] for number representation. Polynomials are represented as sorted linked
lists of monomials. In the data structure slice we store the gates which are assigned to a
slice and the corresponding gate polynomials.

We use our incremental verification approach, cf. Alg. 8. Hence we define the slices
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Algorithm 10: Outline of verification flow in AMULET

Input :Substituted Circuit C in AIG format
Output :Determine whether C is a multiplier

1 L, l← Init(C);
2 for i← 0 to 2n− 1 do
3 Si ← Define-Slices(i);
4 Order-Slices (Si);
5 Gi(C)← Init-Polynomials-of-Slices (Si);

6 Ω← Search-for-Booth-Encoding (C);
7 for i← 0 to 2n− 1 do
8 Local-Elimination (Gi(C), l);
9 Global-Elimination (Ω);

10 C0 ← Incremental-Reduction (L, Gi(C));
11 return C0 = 0

a b
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−x+ ab
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−x+ ab− a− b+ 1

Figure D.4: All polynomial encodings covered by AIG nodes.

as differences of consecutive input cones as introduced in Def. D.9. However in certain
cases not all gates are assigned to the correct slices. To this end we merge and promote
gates as described in [61]. Additionally we identify which nodes are carry nodes, i.e.,
which nodes are used as inputs of nodes in bigger slices.

After the slices are defined we fix the reverse topological lexicographic term ordering
in line 4. The gates inside the slices are ordered according to their reverse topological
appearance and slices are ordered in descending order. Thus also the total order of the
variables is reverse topological. As a consequence the polynomials Gi(C), which are
introduced in line 5, automatically form a D-Gröbner basis. Each AIG node represents
an AND-gate between two inputs, which may or may not be inverted. Consequently
three different polynomials are possible, as can be seen in Fig. D.4. For each node
we introduce the corresponding polynomial with x, a, b replaced by the corresponding
variables. We further add for each output si a linking polynomial −si + gk to clearly
mark which AIG node represents an output bit. All these polynomials mark our initial
constraint set, i.e., the set G(C) of Def. D.3.

We apply syntactic pattern matching to identify whether the partial products are
generated using a Booth encoding. Patterns which define Booth encoding usually
stretch over more than one slice and we want to eliminate these nodes during “Global-
Elimination” to reduce the size of the carries.

Before we apply “Global-Elimination” we locally eliminate variables in the sliced
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Algorithm 11: Local-Elimination
Input :Ordered sliced Gröbner bases Gi, constant l
Output :Simplified ordered sliced Gröbner bases Gi

1 p0, . . . , pm ← Ordered-List-of-Polynomials(Gi(C));
2 τ ← 1;
3 while τ do
4 τ ← 0;
5 for j ← 0 to m do
6 if Check-for-Elimination(pj) then
7 q ← Find-Parent-Polynomial(p0, . . . , pj−1);
8 q ← D-reduction(q, pj , l);
9 Gi(C)← Gi(C) \ {pj};

10 τ ← 1;

11 return Gi(C)

Algorithm 12: D-reduction in AMULET

Input :Two polynomials p and q ∈ Z[X], constant l
Output :Remainder r of D-reducing p modulo q

1 pd ← Divide-by-lm(p, q);
2 pm ←Multiply(pd, q, l);
3 r ← Add(p, pm, l);
4 return r

Gröbner bases Gi(C). We described in [62] a procedure which allows us to locally
eliminate variables without violating the D-Gröbner basis property.

Theorem D.15 ( [62]). Let P ⊆ Z[X] be a D-Gröbner basis of 〈P 〉 with UMLT. Let
q ∈ P be a polynomial with lt(q) = z and no other polynomial p ∈ P contains z. Then
P \ {q} is a D-Gröbner basis with UMLT for the ideal J = I ∩ Z[X \ {z}].

We use the conclusion of Thm.D.15 as follows. Assume z ∈ X shall be eliminated
and let p, q ∈ Gi(C) be such that lt(p) = z and z is contained in q. To eliminate z of
Gi(C), we D-reduce q by p and subsequently delete the polynomial p.

The pseudo-code for “Local-Elimination” is shown in Alg. 11. We iterate over
the polynomials pj in Gi(C) and check whether the variable of the leading term is a
candidate for local elimination, i.e., we check if the variable is contained in exactly one
other polynomial of the same slice and if it is not marked as a carry variable. If both
checks succeed, we search for the polynomial q, which contains the leading term of pj
and apply D-reduction of q by pj . Since the polynomials are ordered, we only have to
consider polynomials pi > pj in this search.

Algorithm 12 shows how D-reduction is implemented in AMULET. In “Divide-
by-lm” we use the UMLT property. Let v = lt(q) . We iterate over the monomials
m in p and check whether v is contained in m. If v is contained in m we generate a
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monomial m′ which consists of all variables of m different from v. Furthermore we set
coeff(m′) = coeff(m). All these generated monomials m′ are summed up and define
the polynomial pd. The operations “Multiply” and “Add” correspond to the elementary
polynomial operations. For addition we use the fact that polynomials are ordered lists
of monomials. We iterate over the two polynomials simultaneously and merge them
in an interleaved way. More precisely, we start at the leading monomials of p and pm
and compare them. If the monomials are different, we add the larger monomial to r. If
the monomials are equal we generate a new monomial, which has the same term and
the coefficient is the sum of the two coefficients. This way we ensure that r is again
ordered. For multiplication we multiply each monomial of pd with each monomial of q
and sort the calculated monomials. In both operations we directly divide the calculated
coefficients by the constant l in order to achieve reduction by l. We further handle
reduction by B(Gi) implicitly, i.e., we replace xi by x during multiplication too, for all
i > 0.

Example D.16. Let p = −a+ 2bc− bd and q = −b+ 2xy ∈ Z4[X]. The intermediate
results of Alg. 12 are pd = 2c− d, pm = −2bc+ bd− dxy and r = −a− dxy.

Let us continue the discussion of Alg. 11. The polynomial q is replaced by the
remainder of the D-reduction step and the polynomial pj is eliminated from the sliced
Gröbner basis Gi(C). We repeat variable elimination until no more polynomial in
Gi(C) can be considered for local elimination, i.e., all variables of its leading term are
either carries or contained in multiple polynomials of the same slice. The rewritten
Gröbner basis Gi(C) is returned.

Now consider Alg. 10, where we repeat “Local-Elimination” for all sliced Gröbner
bases Gi(C). In “Global-Elimination” we eliminate the variables which were previously
marked, independently how often they occur of whether they are carries. To this end
we have to iterate over all polynomials in G(C), finding their parent polynomials for
D-reduction.

After variable elimination we apply the incremental checking algorithm as presented
in Alg. 8. We start with s2n−1 and apply D-reduction by the polynomials in G2n−1(C).
In order to consider each polynomial of a slice only once for D-reduction, we D-reduce
by the polynomials in Gi(C) in reverse topological order. After we applied D-reduction
by all polynomials of a slice we add to the remainder Ci the partial products and output
bit of the next smaller slice in order to derive Ci + αi−12i−1si−1 − 2iPi−1. After
reducing by G0(C), we check whether the final result is 0.

D.5 Proof Generation

Formal verification derives correctness of a given system. However, the process of
verification as well as the implementation might not be bug-free. A common approach
to increase the confidence in automated reasoning tools is to generate proof certificates,
which are checked by independent proof checkers.

For example, providing certificates of unsatisfiability is mandatory in the SAT com-
petition since 2013. Generating and checking proofs efficiently is a lively research
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topic in the SAT community and several proof formats such as RUP [41], DRUP [49],
DRAT [42] and LRAT [37] are available.

In order to provide proof certificates for reasoning tools using computer algebra we
developed in [90] a proof format, called practical algebraic calculus (PAC), which is
based on the polynomial calculus [34] and captures whether a polynomial is contained
in the ideal generated by a given set of polynomials.

Our tool AMULET is able to generate proof certificates in the PAC format [90]
to validate the result of Alg. 10. These proofs can be checked by our independent
proof checker PACTRIM [90]. We write proofs as sequences, where each rule is of the
following form:

d + : pi, pj , pi + pj ;
pi, pj appearing earlier in the proof
or are contained in G(C) ∪ {l}
and pi + pj being reduced by B(X)

d ∗ : pi, q, qpi;

pi appearing earlier in the proof or
or is contained in G(C) ∪ {l}
and q ∈ R[X] being arbitrary
and qpi being reduced by B(X)

These rules model the properties of an ideal, as given in Def. D.4. Thus every conclusion
polynomial p = pi + pj or p = qpi is an element of 〈G(C) ∪ {l}〉. We extend the proof
rules by an optional deletion information d, similar to clause deletion in [49]. If d occurs
in a proof rule the antecedents pi and pj are deleted from the inference set, which helps
to reduce the memory usage of PACTRIM.

We do not explicitly write down proof rules when reducing a Boolean value constraint.
Similar to verification, reduction by B(X) is computed implicitly, e.g., ∗ : x, x, x; is a
valid proof rule.

Definition D.17. The length of a PAC proof is defined as the number of generated
proof rules. The size is determined as the total number of monomials in the conclusion
polynomials, counted with repetition and degree defines the maximum degree seen in
the conclusion polynomials.

PAC proofs are generated in AMULET as follows. The set of polynomials G(C) ∪
{l}, which are defined in line 5 of Alg. 10 determines the initial constraint set. The
specification L defines the target polynomial, i.e., the polynomial which is checked
whether it is inferred by the proof rules. Proof rules have to be generated whenever
polynomials are manipulated, that is for variable elimination, either locally or globally
and during incremental reduction in Alg. 10.

For variable elimination we produce proof rules which simulate D-reduction of a
polynomial p by a polynomial q, cf. Alg. 12. Note that p and q are both contained
in G(C) and thus appear earlier in the proof. In general two rules are generated, a
multiplication rule and an addition rule:

(d) ∗ : q, pd, pm; d + : p, pm, r;
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In AMULET reducing the polynomials pm and r by the constant l is handled implicitly.
However to generate a complete PAC proof, we need to generate explicit proof rules
which model D-reduction of pm and r by the constant l.

After a polynomial q was used for D-reduction during “Local-Elimination” we know,
that we do not have to consider q anymore, as p was the only polynomial containing the
leading variable of q. Thus we can delete q from the constraint set, which we indicate
by the optional parameter “d”. For “Global-Elimination” we have to be more careful
with deletion, as the polynomial q may be used multiple times for elimination. In both
cases we eliminate p as we want to continue with the rewritten polynomial r.

For monitoring the incremental reduction we also have to generate proof rules which
simulate D-reduction of p by q. However in contrast to variable elimination, p is not
part of the constraint set and thus the addition rule would raise an error. On the other
hand recall that all elements of an ideal can be represented as a linear combination
of the generators of the ideal, cf. Def D.4. To simulate the linear combination we
generate a multiplication PAC rule (d) ∗ : pd, q, pm; for each D-reduction step and store
the computed factor pm. After finishing D-reduction of a slice Si, we sum up all the
generated factors pm to derive the carry recurrence relations. After deriving all carry
recurrence relations we sum them up and if the circuit is correct the final polynomial is
the specification of the circuit. In both cases we sum up the polynomials in a tree-like
approach, i.e., ((p1 +p2)+(p3 +p4)) which is more beneficial compared to summing up
the polynomials in order (((p1 + p2) + p3) + p4) as this keeps the number of monomials
in the intermediate summands smaller.

D.6 Proof Size

Proof complexity aims to analyze computational resources and allows us to reason
about the performance of solvers. In this section we want to elaborate the efficiency of
AMULET and investigate the complexity of the generated proofs. In particular we are
interested in the proof length, proof size and degree.

Proof complexity for multiplier circuits is for example studied in [8], where it is shown
that verifying ring properties, e.g., commutativity of multiplication, admit polynomial
resolution proofs for simple multipliers. Motivated by this result we experimentally
show in [90] that checking commutativity of simple multipliers generates PAC proofs
of quadratic length and cubic size. However these proofs are generated using existing
computer algebra systems [102].

In this section we investigate the complexity of the proofs generated by AMULET

for specific family of multipliers, more precisely btor-multipliers, which implement
multiplication of unsigned integers. These multipliers are generated by Boolector [83]
and have a simple architecture as can be seen in Fig. D.5a for input bit-width 4. They are
also used in the experiments of [90] and correspond to the array multipliers as defined
in [8]. In contrast to [8, 90] we investigate the complexity for verifying the correctness
of the circuit. For the proof length and degree we can give a precise bound while for
proof size we derive an upper bound.
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Figure D.5: The architecture of btor-multipliers and their representation as AIGs.

Lemma D.18. Let C be a n-bit btor-multiplier. C contains n half-adders and n2 − 2n
full-adders.

Proof. As Fig. D.5a shows, we can clearly identify rows and columns in the btor-
multipliers. Let Abi denote the sequence of all partial products ajbi for 0 ≤ j ≤ n− 1.
The first row of full- and half-adders (as seen from the circuit inputs) in C sum up the
partial products Ab0 and Ab1. In row k for k ≥ 2 the partial products Abk are added to
the sum-outputs of the adders of row k − 1. Thus a btor-multiplier consists of n − 1
rows.

In row k with k ≥ 2 the adders sum up two bit-vectors of length n, which requires
n adders. As we do not have an incoming carry the first adder is a half-adder and the
remaining n−1 adders are full-adders. In the first row the partial product a0b0 is directly
processed to be output s0. Thus only 2n− 1 bits are summed up, which requires 2 half-
adders and n−2 full-adders. Consequently btor-multipliers have (n−2)(n−1)+n−2 =
n2 − 2n full-adder and n− 2 + 2 = n half-adders.

Lemma D.19. Let C be a btor-multiplier of input bit-width n. The number of variables
is 8n2 − 7n and the size of G(C) is 8n2 − 9n.

Proof. The total number of variables consists of the input variables a0, . . . , an−1,
b0, . . . , bn−1, output variables s0, . . . , s2n−1 and the internal variables g0, . . . , gk. It
is easy to see that we need 4n variables for the inputs and outputs. The internal
nodes either represent partial products or they represent internal nodes of full- and half-
adders, cf. Fig. D.5d,D.5b and D.5c. Generating a partial product needs one variable
pij = aibj , thus n2 variables are needed to identify the partial products. According
to Lemma D.18 btor-multipliers have n half-adders, each consisting of 3 nodes and
n2 − 2n full-adders consisting of 7 nodes. Hence the total number of variables is
4n+ n2 + 3n+ 7(n2 − 2n) = 8n2 − 7n.

Each variable, despite of the 2n input variables, generates either a gate polynomial or
a linking polynomial. Thus we have 8n2 − 9n polynomials.

For proof length we measure the number of generated PAC rules. Because of the
specific structure of btor-multipliers D-reduction by the constant l = 22n is not necessary.
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Thus each D-reduction step in variable elimination and in the incremental reduction
algorithm produces at most two proof rules, namely one multiplication rule and one
addition rule. Furthermore the partial products are generated using AND-gates, thus
“Global-Elimination” is not necessary and proof rules are only generated in “Local-
Elimination” and “Incremental-Reduction”. Hence each gate constraint in G(C) is
considered only once for D-reduction and thus we have an upper bound of 2(8n2−9n) =
16n2 − 18n proof rules. This bound is not tight as the following lemma shows.

Theorem D.20. The proof length of n-bit btor-multipliers produced in AMULET is
16n2 − 20n− 1.

Proof. In “Local-Elimination” all AIG nodes gk, which occur in the linking polynomials
−si + gk are eliminated. The variable gk which links s2n−1 is not eliminated, as it acts
as a carry. Since the coefficient of the variables gk in the linking polynomials is 1, only
the addition rule is required for D-reduction. We have 2n− 1 such rules.

In the full- and half-adders the variables with only one parent get eliminated, that is g1
and g4 in Fig. D.5b and g1 in Fig. D.5c. In total 2(n2−2n)+n = 2n2−3n variables are
eliminated and each of these eliminations requires two rules. Hence “Local-Elimination”
totally requires 2n− 1 + 2(2n2 − 3n) = 4n2 − 4n− 1 proof rules.

For “Incremental-Reduction” we need to consider the multiplication rules as well
as the summation rules. After variable elimination 8n2 − 9n − (2n − 1) − (2n2 −
3n) = 6n2 − 8n + 1 polynomials remain in G(C). Each of them, except for the
single polynomial −s0 + a0b0 in S0 produces a multiplication rule. Thus 6n2 − 8n
multiplication rules are generated.

The 6n2 − 8n factors plus the polynomial −s0 + a0b0, are summed up slice-wise
to produce the carry recurrence relations. The sum of these carry recurrence relations
produces the multiplier specification. Thus 6n2− 8n additions are necessary. Collecting
all the generated proof rules leads to the final number of 4n2− 4n− 1 + 2(6n2− 8n) =
16n2 − 20n− 1 proof rules.

Theorem D.21. The degree of the PAC proof of n-bit btor-multipliers is 3.

Proof. The degree of the polynomials in the initial constraint set is at most 2, since the
degree of the polynomials induced by AIG nodes is 2 and the linking polynomials have
degree 1.

The degree of the PAC proof can only increase in multiplication rules. In the remainder
of the proof we will heavily use the annotation of the variables as in Fig. D.5b and
Fig. D.5c.

In “Local Elimination” we eliminate g1 and g4 from the full-adders and g1 from
the half-adders. As they have the same internal structure, we only discuss elimination
of g1 from half-adders. To eliminate g1, the polynomial p = −s + (1 − c)(1 − g1)
is D-reduced by q = −g1 + (1 − x)(1 − y). Hence “Divide-by-lm” of Alg. 12
yields pd = c− 1. Consequently, the resulting polynomial of multiplying q and pd is
pm = −g1c+ g1 + xyc− xy − xc+ x− yc+ y + c− 1 and has degree 3.

In the slicing algorithm btor-multipliers are partitioned in such a way, that all nodes
of a full- and half-adder belong to the same slice. Thus the internal nodes of full- and
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half-adders are reduced in sequence, which has the consequence, that summing up
the factored gate polynomials of internal adder nodes yields the adder specifications
2(1− c) + s = x+ y + z for full-adders and 2c+ s = x+ y for half-adders. We use
this observation to determine the degree of the factors.

We first discuss half-adders. After local elimination of g1 half-adders are modeled by
the polynomials −s+ (c− 1)(xy − x− y) and −c+ xy. The following multiplication
rules are generated during incremental reduction. The constant α depends on the slice in
which the half-adder belongs. Both conclusion polynomials have degree 3 and adding
them yields the specification of a half-adder.

∗ : −s +( c−1)( xy−x−y ) , α , −αs+αcxy−αcx−αcy−αxy+αx+αy ;
∗ : −c+xy , α ( xy−x−y +2 ) , −αcxy+αcx+αcy−2αc+αxy ;

For full-adders the following factors are generated. All of them have at most degree 3.

∗ : −s +( g5−1)( g3x−g3−x ) , α ,
−αs+αg5g3x−αg5x−αg5g3−αg3x+αg3+αx ;

∗ : −c+(1−g5 )(1−g2 ) , −2α ,
2αc−2αg5g2+2αg5+2αg2−2α ;

∗ : −g5+g3x , α ( g3x−g3−2g2−x + 2) ,
−αg5g3x+αg5g3+2αg5g2+αg5x−2αg5−2αg3g2x+αg3x ;

∗ : −g3 +( g2−1)( yz−y−z ) , α(−2g2x +1 ) ,
2αg3g2x−αg3+αg2 yz−αg2y−αg2z−αyz+αy+αz ;

∗ : −g2+yz , α ( yz−y−z +2 ) ,
−αg2 yz+αg2y+αg2z−2αg2+αyz ;

All polynomials, which model partial products are only multiplied by constants. Thus
we never generated a polynomial which has a degree larger than 3.

In contrast to proof length and degree we are only able to determine an upper bound
for proof size.

Theorem D.22. The proof size of n-bit btor-multipliers is in O(n2 log(n)).

Proof. As in the previous proofs we distinguish between “Local Elimination” and
“Incremental Reduction”. Eliminating gk from the 2n linking polynomials −si + gk
needs only one addition. The conclusion polynomial has at most 5 monomials, since
each gate constraint contains at most 5 monomials.

Elimination of g1 and g4 in the full-adders and g1 in the half-adders produces one
multiplication rule and one addition rule. In the proof of Thm. D.21 we listed the
conclusion polynomial pm of the multiplication, which has size 10. Adding pm to
−s + (1 − g1)(1 − c) yields a polynomial with 7 monomials. Since we eliminate
two variables from each full-adder and one variable from each half-adder, we eliminate
2n2−3n variables. Each elimination produces 17 monomials. Thus “Local Elimination”
produces at most 5(2n) + 17(2n2 − 3n) = 34n2 + 41n monomials.

In “Incremental Reduction” we need to consider the multiplication rules as well as
the addition rules which add up the polynomials slice-wise and then totally to gain the
word-level specification.
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The n2 polynomials defining the partial products are multiplied by constants 2i, thus
each conclusion polynomial has 2 monomials. We have already written down each
multiplication rule for the full- and half-adders in the proof of Thm. D.21. Counting
the monomials yields 32 monomials for each full-adder and 12 monomials for each
half-adder. Thus in total 2n2 + 32(n2 − 2n) + 12n = 34n2 − 52n monomials are
needed in the multiplication rules.

After the factors are generated, they are added up in a tree-like approach, as discussed
at the end of Sect. D.5. If m polynomials are added, the depth of the corresponding
addition tree is dlog(m)e+ 1.

First the polynomials within one slice are summed up. The biggest slice is Sn−1,
which contains n−2 full-adders, 1 half-adder and n partial products. Thus in total 6n−8
polynomials are added. For simplicity we drop the constant and assume 6n polynomials
are added. The depth of the tree is dlog(6n)e + 1 < dlog(6)e + dlog(n)e + 1 <
dlog(n)e+ 4.

It can be seen in the proof of Thm. D.21, that each polynomial contains at most 8
monomials. Thus the initial layer of the addition tree has at most 48n monomials. Let
us assume adding two polynomials does not cancel any monomials. Thus in layer i of
the addition tree, the polynomials have 2i · 8 monomials. Since each layer has 1

2i (6n)
polynomials, the total number of monomials for each layer is 48n. Adding up one slice
produces at most 48n(dlog(n)e+ 4) = 48ndlog(n)e+ 192n monomials. Since we have
2n slices, we have at most 96n2dlog(n)e+ 384n2 monomials.

We add up these carry recurrence relations to gain the word-level specification. We
have 2n carry recurrence relations and each of them contains one monomial for the output
variable si, at most n− 1 monomials for the incoming carries and n− 1 monomials for
the outgoing carries and at most n partial products and one constant monomial. Adding
two consecutive carry recurrence relations cancels the matching outgoing and incoming
carries. Thus after adding two initial polynomials, the resulting polynomials contains
2 monomials for the output bits, at most 2n − 2 monomials related to carries and at
most 2n partial products and a constant. Let m = dlog(2n)e ≤ dlog(n)e+ 1. We have
m+ 1 addition layers and each layer contains 2n

2i polynomials. Thus the upper bound of
monomials is

m∑
i=0

2n
2i (

output︷︸︸︷
2i +

carry in︷ ︸︸ ︷
n− 1 +

carry out︷ ︸︸ ︷
n− 1 +

p.products︷︸︸︷
2in +

constant︷︸︸︷
1 ) =

2n
m∑
i=0

(n+ 1) + 2n(2n− 1)
m∑
i=0

1
2i <

2n(n+ 1)(dlog(n)e+ 2) + 4n2(2− 1
4n) =

2n2dlog(n)e+ 2ndlog(n)e+ 12n2 + 3n.

Altogether our upper bound yields the polynomial 98n2dlog(n)e+2ndlog(n)e+464n2−
8n and thus we are in O(n2 log(n)).
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We could clearly improve this bound, as we now considered all 2n slices to contain
the same number of polynomials as the largest slice. Furthermore monomials do cancel
when the polynomials within a slice are summed up. The real proof size as well as
the estimated upper bound can be seen in Fig. D.6. We further added the function
50n2 log(n) in the plots, which also seems to be sufficient as an upper bound. In
Fig. D.7 we show the relative errors of the upper bounds.
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Figure D.6: Proof size for n = [2, 512].
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Figure D.7: Relative errors of upper bounds for n = [2, 512].
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D.7 Conclusion

In this paper we presented our tool AMULET, a state-of-the-art tool to automatically
verify and certify the correctness of large gate-level integer multipliers. We gave an
introduction into the problem of arithmetic circuit verification and discussed our state-
of-the-art solving method which combines SAT and computer algebra. Certain parts,
more precisely complex final stage adders, of the multiplier are detected and replaced by
simple ripple-carry adders. The correctness of the replacement is checked by SAT solvers
and the rewritten multiplier is verified using computer algebra. We presented details
of the underlying algorithms to detect final stage adders and rewrite the multipliers,
originally introduced in [62]. Furthermore we reconsidered our incremental verification
algorithm and discussed the procedure of generating proof certificates. For one specific
simple type of multipliers we showed that we are able to generate proof certificates with
length inO(n2) and size inO(n2 log(n)). In the future we want to be able to extend our
methods to synthesized multipliers where technology mapping is applied. Investigating
floating points and other word-level operators is interesting future work too.
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Abstract Currently the most efficient automatic approach to verify gate-level mul-
tipliers combines SAT solving and computer algebra. In order to increase confidence
in the verification, proof certificates are generated. However, due to different solving
techniques, these certificates require two different proof formats, namely DRUP and
PAC. A combined proof has so far been missing. Correctness of this approach can
thus only be trusted up to the correctness of compositional reasoning. In this paper we
show how to generate a single proof in one proof format, which then allows us to certify
correctness using one simple proof checker. We further investigate empirically the effect
on proof generation and checking time as well as on proof size. It turns out that PAC
proofs are much more compact and faster to check.
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E.1 Introduction

Fully automated verification of gate-level multiplier circuits is still considered to be
hard. The currently most effective approach relies on computer algebra [31, 62, 80].
Whereas the authors of [31, 80] employ only algebraic reasoning, we further combine
Boolean satisfiability (SAT) solving [62]. We conjectured in [62], that certain final
stage adders are a real challenge for the computer algebra approach. On the other hand,
these adders can easily be verified using SAT solvers. In our approach we are replacing
complex adders by simple ripple carry adders (RCA). The correctness of the substitution
is proved by SAT solvers and the rewritten multiplier is verified using the computer
algebra approach.

We increase the trust in the verification result by generating certificates in [62], which
can be checked by independent proof checkers. Since our technique relies on two
different reasoning techniques, also two proof certificates in different proof formats
are produced. The polynomial reduction algorithm produces an algebraic proof in the
practical algebraic calculus (PAC) [90] and SAT solvers produce clausal proofs in the
delete reverse unit propagation (DRUP) proof format [47]. These proofs are checked by
two different proof checkers, leaving a hole in the certification argument. Compositional
reasoning using interactive theorem proving [54] could close this gap but is not fully
automatic.

In this work we present how these two proof formats used in [62] can be merged into
one common proof format. Although this paper is tailored to the use case of [62], the
proposed methods are not limited to this particular application.

We are able to convert a DRUP proof into a PAC proof. On the other hand, our results
for converting a PAC proof into a DRUP proof can be considered to provide a lower
bound on the proof size. In the conversion we use a satisfiability modulo theories (SMT)
encoding and thus are not able to track any rewriting employed by SMT solvers as a
DRUP proof.

Our experiments generate proofs in a single proof format. It turns out that PAC proofs
are superior to DRUP proofs, as DRUP proofs are around three orders of magnitude
larger than PAC proofs. Additionally, as already mentioned, our DRUP proofs do not
yet cover all necessary proof steps.

E.2 Preliminaries

We recapitulate the two proof formats DRUP and PAC and further summarize the
state-of-the-art [62] for automatic verification of unsynthesized multiplier circuits.

E.2.1 Algebra and the PAC format

In this section we introduce basic concepts of algebra [35] and describe the PAC proof
format [90].

A nonempty subset of polynomials I ⊆ Z[X] is called an ideal if ∀ p, q ∈ I : p+q ∈ I
and ∀ p ∈ Z[X] ∀ q ∈ I : pq ∈ I . A set P = {p1, . . . , ps} ⊆ Z[X] is called a basis of
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I if I = {p1q1 + · · ·+ psqs | q1, . . . , qs ∈ Z[X]}. We then say I is generated by P and
write I = 〈P 〉.

Let f ∈ Z[X] and P ⊆ Z[X]. We are interested whether the polynomial equation
f = 0 is implied by the equations p = 0 with p ∈ P . This question is also called ideal
membership problem: Given f and P as above decide whether f ∈ 〈P 〉.

We focus on gate-level circuit verification, where all variables x ∈ X represent logic
gates and thus take only values in {0, 1}. This is enforced by Boolean value constraints
of the form x(1 − x) = 0. Let B(X) = {x(1 − x) | x ∈ X} ⊆ Z[X] be the set of
Boolean value constraints for X . Each gate of the circuit is encoded by a polynomial
relation, called gate polynomial, which are collected in P . Consequently the ideal
membership problem we actually want to solve is formulated as: Given f ∈ Z[X] and
P ⊆ Z[X], decide whether f ∈ 〈P ∪B(X)〉.

The practical algebraic calculus (PAC) format allows us to capture the derivation of an
equation f = 0 from a given set of polynomials equations P and thus f ∈ 〈P ∪B(X)〉.

Proofs are sequences of proof rules, which model the ideal properties, where each
rule has the following form:

+ : pi, pj , pi + pj ;
pi, pj appearing earlier in the proof
or are contained in P
and pi + pj being reduced by B(X)

∗ : pi, q, qpi;
pi appearing earlier in proof or in P
and q ∈ Z[X] being arbitrary
and qpi being reduced by B(X)

As described in [62] “being reduced by B(X)” means, that each occurrence of xdi
with d > 1 is immediately replaced by xi, e.g., x ∗ x = x, thus ∗ : x, x, x; is a valid
proof rule.

Example E.1. Let P = {−x + 3z, 2xz} ⊆ Z[x, y, z] and let f = −2x ∈ Z[x, y, z].
The proof shows f ∈ 〈P ∪B(X)〉:

* : -x+3z, 2x, -2x+6xz;

* : 2xz, -3, -6xz;
+ : -2x+6xz, -6xz, -2x;

E.2.2 SAT and the DRUP format

We briefly introduce the SAT problem and its common proof formats, following [47].

• A literal l is either a positive Boolean variable x or its negation x.

• A clause C is a finite disjunction of literals. If a clause contains only one literal,
we call it a unit clause.

• A formula in conjunctive normal form (CNF) F is a finite conjunction of clauses.
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• An assignment τ is a function that consistently maps the literals of F to v ∈
{true, false}, such that τ(x) = v ⇔ τ(x) = ¬v, where ¬true = false and
¬false = true.

The SAT problem seeks for an assignment such that a formula F evaluates to true. A
formula evaluates to true if and only if every clause in the formula evaluates to true.
A clause C evaluates to true if there exists l ∈ C with τ(l) = true. If this is the
case, we say the formula is satisfiable. If no satisfying assignment can be found, it is
unsatisfiable.

A clause C is redundant w.r.t. a formula F , if F ∧ C is satisfiable iff F is satisfiable.
Redundant clauses are for example derived using resolution [92]: Given two clauses
C1 = (a ∨ x0 ∨ . . . ∨ xm) and C2 = (a ∨ y0 ∨ . . . ∨ yn), the clause C = (x0 ∨ . . . ∨
xm ∨ y0 ∨ . . . ∨ yn) can be resolved.

A further technique used in SAT solvers is called unit propagation: If a formula F
contains a unit clause C = l, remove all clauses containing l and all occurrences of l.

If a formula is satisfiable a satisfying assignment can act as witness. However if
the formula is unsatisfiable more involved reasoning is required to derive proofs of
unsatisfiability, also called refutation. Standard refutation proof formats are either
resolution proofs or clausal proofs. Clausal proofs are easier to generate and are more
compact than resolution proofs.

The most basic clausal proof format is reverse unit propagation (RUP) [41]. Let C
denote the negation of a clause C. If for example C = a∨ b∨x then C = a∧ b∧x. We
say C is a RUP clause if F ∧ C evaluates to false. A RUP proof is a sequence of RUP
clauses containing the empty clause. A delete reverse unit propagation (DRUP) [49]
proof extends RUP by adding deletion information to decrease the cost of proof valida-
tion [99]. DRUP can further be extended to the deletion resolution asymmetric tautology
(DRAT) [42] format, which extends DRUP by allowing introduction of new variables.

Clausal DRUP proofs are checked through unit propagation. As a side effect a
resolution proof [47] can be produced. The TraceCheck format is a common proof
format for resolution proofs. It has the format “idx clause 0 antecedents 0”, where the
antecedents are the indices of the clauses used in the resolution. Lines with trailing
double zeros mark initial clauses.

Example E.2. This is an unsatisfiable CNF in DIMACS format (left) with DRUP
(middle) and TraceCheck (right) proofs.

p cnf 3 5 -2 0 1 1 -2 -3 0 0
1 -2 -3 0 d 3 0 2 1 2 0 0
1 2 0 d 1 -2 -3 0 3 -1 -2 0 0
-1 -2 0 d -1 -2 0 4 -1 2 0 0
-1 2 0 0 5 3 0 0

3 0 6 -2 0 3 1 5 0
7 0 4 2 6 0

E.2.3 State-of-the-art Circuit Verification

Multipliers are usually made up of three stages: (i) generation of partial products (PPG),
(ii) accumulation of the partial products (PPA) and (iii) a final stage adder (FSA).
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E.3 From DRUP to PAC

AMULET
substitution

AMULET
certify MATCHSPEC PACTRIM

PICOSAT DRUP2PAC

Gen
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.aig
.cnf

.aig

.trace

.pac .pac

.spec

.pac
.equal

.polys

.polys .pac

7 | 3

7 | 3

Figure E.1: Converting a DRUP proof into a PAC proof.

According to the state-of-the-art [62] the first two stages are easy for computer
algebra, but some final stage adders, more precisely generate-and-propagate adders, are
challenging for the computer algebra approach. However these adders are very easy for
SAT solvers. In our technique of [62] we are given multipliers as And-Inverter-Graphs
(AIG). We identify whether the final stage adder is a generate-and-propagate adder and
if necessary substitute it with a simple RCA.

To verify that the original FSA is substituted with an equivalent RCA, a bit-level
miter in CNF is generated, and checked by a SAT solver, which also produces a DRUP
proof for certification. Correctness of the rewritten circuit is shown using computer
algebra. For details see [31, 62, 80]. A PAC proof is computed alongside the polynomial
reduction. In the toolflow of [62] the PAC proof is split into the “.polys” and “.pac”
files, where “‘.polys” contains the initial set of polynomials P and “.pac” contains the
PAC proof rules.

E.3 From DRUP to PAC

The necessary steps to merge the DRUP and the PAC proof of [62] into one single PAC
proof are shown Fig. E.1.

Converting the DRUP proof into a PAC proof needs algebraic reasoning over the CNF
encoding derived during adder substitution. As only the gate polynomials are contained
in the constraint set we need to deduce the CNF encoding in PAC. Figure E.2 shows an
AIG node and the corresponding encodings as propositional formulas and polynomial
equations. Since in a satisfiable CNF every clause needs to evaluate to true, the CNF
can be split into a system of “clausal equations” (on the right) encoding this property.
We derive the corresponding system of polynomial equations from the initial polynomial
relation by simple polynomial operations.

Example E.3. Using the fact that x2−x = 0, b2−b = 0 and a2−a = 0 we multiply the
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a b

x

Propostional Formula Polynomial Relation

(x↔ a ∧ b) = > −x+ a(1− b) = 0

CNF (x ∨ a ∨ b) = > (1− x)a(1− b) = 0
(x ∨ a) = > x(1− a) = 0
(x ∨ b) = > xb = 0

Figure E.2: Different encodings of the AIG node x = a ∧ b.

polynomial equation−x+a(1−b) by different factors to derive the desired polynomials.

0 = (−x+ a(1− b))(−ba+ a) = (1− x)a(1− b)
0 = (−x+ a(1− b))(b− 1) = x(1− a)
0 = (−x+ a(1− b))(−a) = xb

We added to the original tool AMULET of [62] the ability to derive such polynomial
encodings of CNFs during adder substitution.

The generated CNF miter of the adder substitution is given to the SAT solver PI-
COSAT [11]. We do not use CADICAL [15] as [62], because PICOSAT allows us to
directly generate a resolution proof in the TRACECHECK format. The TRACECHECK

proof alongside with the original CNF is passed on to our tool DRUP2PAC. In DRUP2PAC

we encode the resolution proof as a PAC proof, by re-enacting the resolution steps in
the given traces using algebraic reasoning. The following example shows the encoding
of one resolution step.

Example E.4. Consider TraceCheck proof of Ex. E.2. Let a =1, b =2 and c =3. We
encode the first resolution step of rule 6 (resolving clause 3 and 1). Thus from a ∨ b ∨ c
and a ∨ b we resolve the clause b ∨ c. The corresponding PAC encoding is:

* : b*a, c, c*b*a;
+ : -c*b*a+c*b, c*b*a, c*b;

However we do not want to derive the empty clause, as this corresponds to deriving
the constant polynomial 1. Hence whenever we encounter the unit clause encoding the
assumption of the miter in a trace, we remove it from the trace.

As a further optimization we internally apply bit-flipping, as for instance proposed
in [94], on the algebraic level to keep the size of the intermediate polynomials small. It
can be seen in the polynomial encoding of the CNF in Fig. E.2, that each positive literal
l in a clause introduces a factor (1− l) in the corresponding polynomial encoding of
the clause. As the PAC format uses only the expanded form of polynomials, expanding
clauses with multiple positive literals leads to a tremendous growth in the polynomial
encoding. In order to overcome this issue, we introduce for each literal li a bit-flipping
polynomial −fi − li + 1 = 0 in the constraint set and internally flip variables in the
CNF such that only negative literals are contained. We monitor the bit-flipping in the
clausal polynomials by generating corresponding PAC rules and add the bit-flipping
polynomials to the constraint set.
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AMULET
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7 | 3
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AIG SMT CNF Check

Figure E.3: Converting a PAC proof into a DRUP proof.

After translating the full TRACECHECK proof we derive for each pair of miter inputs
the equations si(s′i − 1) = 0 and s′i(si − 1) = 0 using unit propagation. Encoding unit
propagation in PAC is very similar to encoding resolution. Subtracting these polynomials
leads to si − s′i = 0 for each pair of input bits. We report these pairs in “.equal”.

We certify the rewritten AIG using AMULET. At this point the specification which
we derived in the PAC proof uses the outputs s′i of the RCA. Our final tool MATCHSPEC

generates PAC rules which replace every occurrence of s′i by the corresponding bit si
using the equations si − s′i = 0. As a last step the generated proof and the original
specification (in terms of si) is checked using PACTRIM.

E.4 From PAC to DRUP

We have seen how to encode a DRUP proof into PAC. However, not only is PAC more
complex than DRUP (and DRAT), but PAC neither has certified proof checkers, while
DRAT and thus DRUP can be translated to LRAT, for which such checkers exist [37].
Therefore it is natural to ask, whether it is possible to translate PAC proofs into DRUP.

In this section we give a positive but impractical answer. The first hurdle is to encode
the specification into CNF. This can in principle be achieved using SMT over the theory
of bit-vectors for a large enough bit-width followed by bit-blasting. However, at this
point, we are not able to track rewriting within SMT solvers, which leaves a gap in
the proof. A further issue of our encoding is that we only translate each PAC rule
individually to SMT and CNF. We do not include a check that the specification of the
circuit is derived at the end, which is another gap in our proof. Thus our resulting DRUP
proof is far from being a complete proof, in the sense of covering every rewriting step.
The size of these proofs can only be considered as an empirically derived lower bound.

Note that our translation introduces new variables and thus technically needs extended
resolution (ER), thus actually DRAT. But we continue to use DRUP instead of DRAT to
describe our approach. Our tool flow can be seen in Fig E.3. We apply adder substitution
and certify the rewritten multiplier as in [62]. In our tool PAC2SMT we abstract the
polynomial proof to a bit-vector proof. To this end we encode the PAC proof as an SMT
problem over the theory of quantifier-free fixed size bit-vectors. Note that each variable
in the PAC proof represents the input or output of a gate. As a consequence we encode
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each variable in the PAC proof as a single bit and the coefficients are encoded as bit
vectors. The length of the bit-vectors depends on the highest coefficient in the PAC
proof.

Example E.5. Consider the following PAC rule

+ : 3x− z, 2y − 3x, 2y − z;

Checking the correctness of this rule can be encoded as:

(set-logic QF_BV)
(declare-fun x () (_ BitVec 1))
(declare-fun y () (_ BitVec 1))
(declare-fun z () (_ BitVec 1))
(assert
(let (($v0 (bvadd (bvand #b011 ((_ sign_extend 2) x))

(bvand #b111 ((_ sign_extend 2) z)))))
(let (($w0 (bvadd (bvand #b010 ((_ sign_extend 2) y))

(bvand #b101 ((_ sign_extend 2) x)))))
(let (($p0 (bvadd (bvand #b010 ((_ sign_extend 2) y))

(bvand #b111 ((_ sign_extend 2) z)))))
(let (($e0 (= (bvadd $v0 $w0) $p0)))

(not $e0))))))
(check-sat)

In our encoding of the PAC rules we include the following optimization when single
bits are multiplied with bit-vectors.

(bvand #b011 ((_ sign_extend 2) x)) =
(bvmul #b011 ((_ zero_extend 2) x)).

We encode each rule of the PAC proof as a bit-vector equation and assume that
the conjunction of all these equations is unsatisfiable. The SMT encoding is given to
BOOLECTOR [83], which additionally is able to generate AIGs from bit-vector formulas.
As discussed above, BOOLECTOR applies rewriting steps, which are not covered in the
DRUP proof. Using the tool AIG2CNF from the Aiger library [16] we translate the AIG
into a CNF. Nodes from AIGs can easily be encoded in CNF, as indicated in Fig. E.2.

At this point we have two CNF encodings. The first CNF is directly produced
by AMULET and encodes the bit-level miter proving the correctness of the adder
substitution. The second CNF encodes the translated PAC proof. Both CNFs are encoded
to deliver a refutation, i.e., for a correct multiplier both CNFs should be unsatisfiable.
More precisely each CNF encodes a miter, thus both CNF contain one unit clause
Ci = li which represents the assumption for the miter output.

The CNFs are merged by collecting all clauses, except the clause encoding the output
assumption. The two output clauses C0 = l0, C1 = l1 are merged into the clause l0 ∨ l1,
thus either l0 or l1 needs to be true to satisfy the CNF. As we expect that both l0 and l1
are false, the clause l0 ∨ l1 should be unsatisfiable, and thus the whole CNF too. The
merged CNF is solved using the SAT solver CADICAL [15], which is instructed to
generate a DRUP proof. Finally this proof is checked using DRAT-TRIM [99].
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Table E.1: Proof Generation and Checking.

architecture n
[62]

DRUP PAC
total

PAC DRUP
gen chk size gen chk size gen chk total size aig smt cnf check total size

btor 8 - - - 0 0 1 181 0 - - - - 0 1 7 4 12 831 546
sp-ar-cl 8 0 0 471 0 0 1 746 0 0 0 0 37 167 0 1 28 14 43 2 211 172
sp-bd-ks 8 0 0 504 0 0 1 846 0 0 0 1 57 079 0 1 23 12 36 1 964 878
sp-dt-lf 8 0 0 515 0 0 1 675 0 0 0 1 53 850 0 1 20 11 32 1 842 288
bp-ct-bk 8 0 0 413 0 0 1 976 0 0 0 1 46 115 0 1 185 155 340 4 420 593
bp-wt-cl 8 0 0 759 0 0 2 092 0 0 0 1 67 951 0 1 143 137 282 4 317 440
btor 16 - - - 0 0 5 181 0 - - - - 0 3 136 177 316 11 079 431
sp-ar-cl 16 0 0 1 299 0 0 7 962 0 2 2 3 185 588 0 7 300 264 570 19 317 884
sp-bd-ks 16 0 0 2 140 0 0 8 356 0 2 2 4 209 249 0 7 283 290 579 17 989 961
sp-dt-lf 16 0 0 1 167 0 0 7 787 0 1 1 2 136 349 0 6 279 277 562 18 153 668
bp-ct-bk 16 0 0 1 029 0 0 7 205 0 1 1 2 128 720 0 7 TO - - -
bp-wt-cl 16 0 0 2 902 0 0 7 946 0 30 11 41 614 742 0 7 TO - - -
btor 32 - - - 0 0 21 629 0 - - - - 0 32 2 887 TO - -
sp-ar-cl 32 0 0 14 927 0 1 33 834 1 133 31 164 1 597 897 0 56 TO - - -
sp-bd-ks 32 0 0 17 528 0 1 34 958 1 20 8 28 817 956 0 54 TO - - -
sp-dt-lf 32 0 0 3 138 0 1 33 451 1 2 3 5 321 720 0 52 TO - - -
bp-ct-bk 32 0 0 2 276 0 1 27 312 1 1 2 3 217 128 0 49 TO - - -
bp-wt-cl 32 1 1 46 502 0 1 30 561 2 3 133 242 3 375 5 536 176 0 55 TO - - -
btor 64 - - - 2 2 88 317 4 - - - - 2 410 TO - - -
sp-ar-cl 64 2 1 65 317 2 3 139 338 8 TO - - - 2 577 TO - - -
sp-bd-ks 64 1 0 44 921 2 3 142 138 6 56 18 74 1 440 943 2 586 TO - - -
sp-dt-lf 64 0 0 28 772 2 3 138 539 6 10 10 19 816 572 3 561 TO - - -
bp-ct-bk 64 0 0 19 891 2 3 105 579 5 8 7 15 459 262 2 423 TO - - -
bp-wt-cl 64 8 6 42 199 2 3 118 573 19 TO - - - 2 515 TO - - -

PPG: simple (sp), Booth (bp) PPA: array (ar), Dadda tree (dt), compressor tree (ct), Wallace tree (wt) TO = 3600 sec
FSA: carry look-ahead (cl), Ladner-Fischer (lf), Brent-Kung (bk) Benchmarks are generated by the Arithmetic Module Generator [53].
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E.5 Experiments

Our experiments were conducted on Intel Xeon E5-2620 v4 CPUs running at 2.10
GHz (with turbo-mode disabled). The time in Table E.1 is listed in rounded seconds
(wall-clock time) and we measure the time from starting the tools until they finished or
an error occurred, e.g., the time limit was reached, set to 3600 sec (1h), or the memory
limit of 128 GB. Our experimental data, source code and benchmarks are available at
http://fmv.jku.at/drup2pac/.

We consider various multiplier architectures used in our experiments in [62]. Bench-
marks are generated with the Arithmetic Module Generator [53] and BOOLECTOR [83].
Except for the “btor” benchmarks from BOOLECTOR, the selected architectures contain
generate-and-propagate final stage adders, thus adder substitution was required and
applied as in [62] and hence a DRUP as well as a PAC proof were generated. These
proofs are translated as explained in Sect. E.3 and Sect. E.4.

The first block shows the time for generating and checking the proofs as in [62]. For
“DRUP” and “PAC” we present the time it takes to generate the corresponding proof
and the time to check proofs using DRAT-TRIM [99] and PACTRIM [90]. Additionally
we depict the sizes of the proofs. The proof size of DRUP proofs is measured by the
number of added RUP clauses [47]. The size of PAC proofs is defined by the number of
applied PAC rules [90].

The second block “PAC” shows the time for generating a single PAC proof as de-
scribed in Sect. E.3. Almost all of the time in proof generation is used by converting the
DRUP proof to a PAC proof, e.g., for “bp-wt-cl-32” our tool DRUP2PAC needs 3130
seconds. We are able to generate and check PAC proofs up to bit-width 32. The growth
in the proof size depends highly on the benchmark, more precisely it depends on the
generated DRUP proof. For instance for 32 bit, the increment of the PAC proofs is
between factor 10 and factor 1600.

The third block “DRUP” lists the time for generating and checking a single DRUP
proof as described in Sect. E.4. Column “aig” shows the time needed for adder substi-
tution and generating the PAC proof. In column “smt” we present the time needed to
generate an SMT proof as well as the time BOOLECTOR [83] needs to generate a CNF
out of the SMT proof. The following column “cnf” lists the time we need to combine
and solve the CNFs using CADICAL. We are only able to generate and check DRUP
proofs up to 16 bit. The size of the DRUP proofs compared to the single PAC proofs
increases drastically. Especially for the “btor” benchmarks, where no initial DRUP
proof is generated, converting the PAC proof to the DRUP proof increases the size by
three orders of magnitude. These are still not complete DRUP proofs. Neither rewriting,
nor the extensions to encode bit-blasting (both requiring DRAT) are accounted yet.

E.6 Conclusion

State-of-the-art verification techniques of arithmetic circuits rely on SAT as well as
computer algebra. However they lack a proof certificate in a single proof format. With
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E.6 Conclusion

two proof formats we argue that additional manual compositional reasoning would be
required to certify the verification. In this paper we present how to translate the clausal
reasoning proof format DRUP into the algebraic proof format PAC and vice versa in
order to produce one single proof certificate.

Translating DRUP proofs to PAC proofs requires algebraic reasoning. We include bit-
flipping techniques in order to reduce the size of polynomials. As a further optimization
we use the TRACECHECK format as input format, in order to directly determine the
necessary polynomial equations.

To obtain DRUP from PAC proofs we encode the PAC proofs as an SMT problem,
which then is translated into CNF using bit-blasting by an SMT solver. However, this
intermediate step leaves gaps in the proof, since we are not able to track internals of
SMT solving. Even though far from being complete proofs, they serve as empirically
derived lower bounds on such clausal proofs. These proofs are three orders of magnitude
larger than the corresponding PAC proofs.

As future work we want to be able to close the gap in generating DRUP proofs.
Generating smaller proofs by applying more sophisticated reasoning is interesting as
well.
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Abstract Generating and checking proof certificates is important to increase the trust
in automated reasoning tools. In recent years formal verification using computer algebra
became more important and is heavily used in circuit verification. An existing proof
format which covers algebraic reasoning is the practical algebraic calculus. In this paper
we present two independent proof checkers PACHECK and PASTÈQUE. The checker
PACHECK checks algebraic proofs more efficiently than PASTÈQUE, but the latter is
formally verified using the proof assistant Isabelle/HOL. Furthermore, we introduce
extension rules to simulate essential rewriting techniques required in practice. For
efficiency we also make use of indices for existing polynomials and include deletion
rules too.

F.1 Introduction

Formal verification aims to guarantee the correctness of a given system with respect
to a certain specification. However, the verification process might not be error-free. In
order to increase the trust in verification results, it is a common approach to generate
simple proof certificates, which can be checked by a stand-alone proof checker. For
example, in the SAT competition certificates of unsatisfiability are required since 2013

181



F

Paper F. Submitted 2020

and different resolution and clausal proof formats, such as DRUP, DRAT, and LRAT,
are available [36, 41, 42, 47, 49].

Automated reasoning techniques based on computer algebra [21,50,58,59,60] provide
the state of the art in verifying gate-level multipliers [31, 62, 80]. The practical algebraic
calculus (PAC) [90] is a proof format to represent certificates for validating results of
such algebraic techniques. It is based on the polynomial calculus (PC) [34] and allows
us to capture that a polynomial can be derived from a given set of polynomials using
algebraic ideal theory. In contrast to PC, PAC proofs can be checked efficiently, for
example using our tool PACTRIM [90].

In this paper we add an indexing scheme to PAC and also propose deletion and exten-
sion rules. Our paper contains no new theory, beside the more technical formalization of
extensions. This allows us to merge and check proofs obtained from SAT and Computer
Algebra [63], the current state-of-the-art, in a uniform (and now precise) manner. The
purpose of this system description is to define the new version of PAC and present
our new checkers PACHECK and PASTÈQUE. Furthermore, PASTÈQUE in contrast
to PACHECK is verified in Isabelle/HOL, but PACHECK is faster and more memory
efficient (also compared to PACTRIM).

F.2 Practical Algebraic Calculus

In this section we briefly introduce the algebraic notion following [35]. Let X be the
set of variables {x1, . . . , xn} and further let G ⊆ Z[X] and f ∈ Z[X]. Algebraic
proof systems reason about polynomial equations. The aim is to show that the equation
f = 0 is implied by the equations g = 0 for every g ∈ G, i.e., every common root of
the polynomials g ∈ G is also a root of f . In algebraic terms, this question means to
derive whether f belongs to the ideal generated by G. A nonempty subset I ⊆ Z[X]
is called an ideal if ∀u, v ∈ I : u + v ∈ I and ∀w ∈ Z[X], ∀u ∈ I : wu ∈ I .
If G = {g1, . . . , gm} ⊆ Z[X], then the ideal generated by G is defined as 〈G〉 =
{q1g1 + · · ·+ qmgm | q1, . . . , qm ∈ Z[X]}.

For a given set G ⊆ Z[X], a model is a point u = (u1, . . . , un) ∈ Zn such that
∀g ∈ G : g(u1, . . . , un) = 0. Here, by g(u1, . . . , un) we mean the element of Z
obtained by evaluating the polynomial g for x1 = u1, . . . , xn = un.

PAC proofs [90] are sequences of proof rules. We introduce the semantics of PAC as
a transition system. Let P denote a sequence of polynomials, which can be accessed
via indices. We write P (i) = ⊥ to determine that the sequence P at index i does not
contain a polynomial.

The initial state is (X = Var (G ∪ {f}), P ) where P contains all polynomials of G.
As already discussed [90] we are in general only interested in models of the Boolean
domain, that is x ∈ {0, 1} for x ∈ X . In our previous work, we added the set of
Boolean-value constraints B(X) = {x2 − x | x ∈ X} to G and had to include steps
in the proofs that operate on these Boolean-value constraints. Instead, we now handle
operations on Boolean-value constraints implicitly to reduce the number of proof steps.
That is, when checking the correctness, we immediately cancel exponents greater than
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letter ::= ‘a ’ | ‘b ’ | . . . | ‘z ’ | ‘A ’ | ‘B ’ | . . . | ‘Z ’
number ::= ‘0 ’ | ‘1 ’ | . . . | ‘9 ’

constant ::= (number)+

variable ::= letter (letter | number)∗

term ::= variable (‘* ’ variable)∗

monomial ::= constant | [ constant ‘* ’ ] term
polynomial ::= [ ‘- ’ ] monomial (‘+ ’ | ‘- ’ monomial)∗

index ::= constant
input ::= (index polynomial ‘; ’)∗

add_rule ::= index ‘+ ’ index ‘, ’ index ‘, ’ polynomial ‘; ’
mul_rule ::= index ‘* ’ index ‘, ’ polynomial ‘, ’ polynomial ‘; ’
del_rule ::= index ‘d ’ ‘; ’
ext_rule ::= index ‘= ’ variable ‘, ’ polynomial ‘; ’

proof ::= (add_rule | mul_rule | del_rule | ext_rule)∗

target ::= polynomial ‘; ’

Figure F.1: Syntax of input polynomials, target, and proofs in PAC-format.

one in the polynomials. The following two rules model the properties of ideals as
introduced above.

ADD (i, j, k, p) (X,P ) =⇒ (X,P (i 7→ p))
provided P (j) 6= ⊥, P (k) 6= ⊥, P (i) = ⊥, and p = P (j) + P (k) ∈ Z[X].

MULT (i, j, q, p) (X,P ) =⇒ (X,P (i 7→ p))
provided P (j) 6= ⊥, P (i) = ⊥, q ∈ Z[X], and p = q · P (j) ∈ Z[X].

If in either one of the above rules p is also the target polynomial f , we know that
f ∈ 〈G〉. In the original PAC format introduced in [90], it was necessary to explicitly
provide the antecedents P (i) and P (j). In our new format, we use indices i and j to
access polynomials, similar to LRAT [36]. The new syntax is given in Fig. F.1 and we
provide an example in the appendix. Naming polynomials by indices reduces proof
size and makes parsing more efficient, because only the conclusion polynomials of each
rule and the initial polynomials of G have to be stated explicitly. However, introducing
indices for polynomials has the effect that the semantics of P changes from sets to
multisets, as in DRAT [42], and it becomes possible to introduce the same polynomial
under different names.

We extend our original proof rules [90] by adding a deletion and an extension rule.
In the deletion rule we remove polynomials from P which are not needed anymore in
subsequent steps to reduce the memory usage of our tools.
DELETE(i) (X,P ) =⇒ (X,P (i 7→ ⊥))

F.2.1 Extension

In our previous work [63], we converted DRUP proofs to the PAC format and en-
countered the need to extend the initial set of polynomials G to reduce the size of the
polynomials in the PAC proof. We included polynomials of the form −fx + 1 − x,
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which introduced the variable fx as the negation of the Boolean variable x. However,
at that point we did not use proper extension rules, but simply added these extension
polynomials to the initial polynomials G. This may affect the models, because any
arbitrary polynomial can be added as initial constraints. To prevent this issue we add an
extension rule to PAC, which preserves the original models on the original variable set
X .
EXT (i, v, p) (X,P ) =⇒ (X ∪ {v}, P (i 7→ −v + p))

provided P (i) = ⊥ and v /∈ X and p ∈ Z[X] and p2 − p = 0.

With this extension rule, variables v can act as placeholders for polynomials p, i.e.,
−v + p = 0, which enables more concise proofs. The variables v are not allowed to
occur earlier in the proof. Furthermore, to preserve Boolean models, we require p2 = p
in order to guarantee that v2 = v holds. We provide the following fact (also proved in
Isabelle but without using Gröbner bases theory).

Proposition F.1. The rule EXT preserves the original models on X .

Proof. We show that adding the polynomial pv := −v + p does not affect models of
P ⊆ Z[X]. For that we use the theory of Gröbner bases [25]. Let “<” be a lexicographic
term ordering, H a Gröbner basis of 〈P 〉 w.r.t. “<”, and “<v” be an extension of “<”
by adding v as largest element. Thm. 3 of [76] shows that H ∪ {pv} is a Gröbner
basis w.r.t. “<v” for 〈Pv〉 := 〈P (i 7→ pv)〉 ⊆ Z[X ∪ {v}], the extended ideal, and
〈Pv〉 ∩ Z[X] = 〈H ∪ {pv}〉 ∩ Z[X] = 〈H〉 = 〈P 〉 follows.

F.3 Pacheck

We implemented PACHECK as an extension of PACTRIM [90]. It consists of approxi-
mately 1 700 lines of C code and is published [65] as open source under MIT license.
The default mode supports the extended version of PAC, as presented in this paper,
for the new syntax using indices. It also automatically reduces exponents. PACHECK

is backwards compatible to our original format of PAC [90] and all features including
reasoning with exponents are supported. However, extension rules are only supported
for Boolean models.

PACHECK reads the three input files <input>, <proof>, and <target> and then
verifies that the polynomial in <target> is contained in the ideal generated by the
polynomials in <input> using the rules provided in <proof>. The polynomial arith-
metic needed for checking the proof rules is implemented from scratch. In PACHECK

polynomials are stored as ordered linked lists of monomials, where a monomial consists
of a coefficient and a term. The coefficients are represented using the GMP library [44]
for representing large integers. Terms are ordered linked list of variables (identified as
strings).

We order variables in terms lexicographically using strcmp. All internally allocated
terms in linked lists are shared using a hash table. It turns out that the order of variables
has an enormous effect on memory usage, since different variable orderings induce

184



F

F.4 Pastèque

different terms (e.g., given the monomials xyz and x′yz, sharing of yz is possible
for the order x′ > x > y > z, whereas no sharing occurs for y > x > z > x′).
For one example with more than 7 million proof steps, using -1*strcmp as sorting
function leads to an increase of 50% in memory usage. Terms in polynomials are sorted
lexicographically too.

In the initial phase of PACHECK each polynomial from <input> is sorted and stored
as an inference. Inferences consist of a given index and a polynomial and are stored in a
hash table. In the default mode, the index acts as the hash value. Thus it is possible to
add the same polynomial twice. If the original format of PAC is used, a hash value is
computed based on the input polynomial.

Proof checking is applied on-the-fly. We parse each rule of <proof> and immediately
apply the necessary checks discussed in Sect. F.2. If the rule is either ADD or MULT we
have to compute whether the conclusion polynomial of the rule is equal to the arithmetic
operation performed on the antecedent polynomials.

We modified the algorithm of polynomial addition in PACTRIM and now assume
the monomials of polynomials to be sorted. Addition of polynomials is performed by
merging their monomials in an interleaved way. In PACTRIM we pushed the monomials
of both polynomials on a stack and then sorted and merged them. Normalization of
the exponents is not necessary in the ADD rule, but we still use this technique for
multiplication of polynomials, where we multiply each monomial of the first polynomial
with each monomial of the second monomial. In the MULT rule we normalize exponents
larger than one, before testing equality. Furthermore, we check whether the conclusion
polynomial of the rules ADD or MULT matches the polynomial in <target> in order
to identify whether the target polynomial was derived.

The original version of PACTRIM [90] did not allow deletion of inferences. As a
consequence the set of polynomials increased with each proof rule, leading to memory
exhaustion for very large proofs. In PACHECK we now support deletion of inferences.
A partial solution for deletion was already used [62] and lead to a drop of the memory
usage. However, in contrast to our new version, individual inferences could not be
deleted (only both antecedents of a proof step could be). Extension variables were not
supported in PACTRIM [90] either.

F.4 Pastèque

To further increase trust in the verification, we implemented a verified checker called
PASTÈQUE in the proof assistant Isabelle/HOL [84]. It follows a “refinement” approach,
starting with an abstract specification of ideals, which we then refine with the Isabelle
Refinement Framework [72] to the transition system from Sect. F.2, and further down to
executable code using Isabelle’s code generator [45]. The Isabelle files have been made
available [40]. The generated code consists of 2 800 lines Standard ML (2 400 generated
by Isabelle, 400 for the parser) and is also available [65] under MIT license.

On the most abstract level, we start from Isabelle’s definition of ideals. The specifi-
cation states that if “success” is returned, the target is in the ideal. Then we formalize
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PAC and prove that the generated ideal is not changed by the rules. Proving that
PAC respects the specification on ideals was not obvious due to limited automation
and development of Isabelle library of polynomials (e.g., neither “Var (1) = ∅” nor
“p 6= 0 =⇒ X ∈ Var (X × p)” are present). However, Sledgehammer [18] automati-
cally proved many of these simple lemmas.

While the input format identifies variables as strings, Isabelle only supports natural
numbers as variables. Therefore, we use an injective function to convert between
the abstract specification of polynomials (with natural numbers as variables) and the
concrete manipulations (with strings as variables). The code does not depend on this
function, only the correctness theorem does. Injectivity is only required to check that
extension variables did not occur before.

In the third refinement stage, SEPREF [71] changes data structures automatically,
such as replacing the set of variables X by a hash-set. Finally, we use the code generator
to produce code. This code is combined with a trusted parser and can be compiled using
the Standard ML compiler MLTON [98].

The implementation is less sophisticated than PACHECK’s. In particular, sharing is
not considered (like sharing of variables in every polynomial) as it can be executed
partially by the compiler, although this is not guaranteed by the Standard ML semantics.
Some sharing could be performed by the garbage collector. We tried to enforce sharing
by using MLTON’s shareAll function and by using a hash map during parsing1, but
performance was worse.

PASTÈQUE is one order of magnitude slower than PACHECK. First, this is due to
Standard ML. While Isabelle’s code generator to LLVM [74] produces much faster
code, we need integers of arbitrary large size, which is not supported currently, and
sharing must be done entirely manually, which is challenging due to the separation logic
used by SEPREF. Second, there is no axiomatization of file reading and hence parsing
must be applied entirely before calling the checker in order for the correctness theorem
to apply. This is more memory intensive and less efficient than interleaving parsing and
checking. PASTÈQUE can be configured via the uloop option to either use the main
loop generated by Isabelle (parsing before calling the generated checker) or instead use
a hand-written copy of the main loop, the unsafe loop, where parsing and checking is
interleaved and the checking functions are verified in Isabelle. The performance gain is
large (on sparcl-64 with 32 GB RAM, the garbage collection time decreased from
over 700 s to 25 s), but the correctness theorem does not apply anymore.

F.5 Evaluation

In our experiments we used an Intel Xeon E5-2620 v4 CPU at 2.10 GHz (with turbo-
mode disabled) with a memory limit of 128 GB. The time is listed in rounded seconds
(wall-clock time). We measure the wall-clock time from starting the tools until they are
finished. In our experiments we aim to highlight the benefits of the new proof format and

1We used a hash map that assigns a variable to “itself” (i.e., the same string, but potentially at a different
memory location) and normalize every occurrence
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multiplier steps deg
PACHECK PASTÈQUE

no delete no index default uloop

(106) sec MB sec MB sec MB sec MB sec MB

btor-128 0.4 3 5 273 11 100 5 92 22 3 886 17 1 773
btor-256 1.6 3 25 1 144 62 435 25 364 105 21 157 79 4 364
btor-512 6.3 3 138 4 956 402 1 972 141 1 461 531 64 412 416 22 292
sparrc-128 0.6 4 6 454 16 148 6 136 31 5 002 23 1 608
sparrc-256 2.3 4 29 1 858 96 651 27 541 139 32 525 102 8 769
sparrc-512 9.4 4 146 7 683 617 2 965 134 2 171 608 64 412 471 25 632

sparcl-32 1.6 256 23 773 35 353 21 352 122 39 107 116 7 667
spdtlf-32 0.3 46 2 122 3 73 2 72 11 1 657 11 1 054
bpctbk-32 0.2 25 1 86 2 51 1 51 8 1 546 7 1 030
bpwtcl-32 5.6 764 193 4 324 289 1 428 180 1 426 732 58 494 753 64 413

Table F.1: Proof Checking (in bold the fastest version).

provide a comprehensive comparison between our two tools. Source code, benchmarks
and experimental data are available [65].

For the experiments of Table F.1 we generated PAC proofs as in previous work [62,63]
in order to validate the correctness of multiplier circuits. The multipliers are either
generated with the AMG [53], BOOLECTOR [83] or GENMUL [81].

For the upper part of Table F.1 we generated proof certificates with AMULET [62] to
validate the correctness of simple multiplier circuits [62]. We modified AMULET to
generate proofs in our new PAC format.

Our previous approach [62] to tackle complex multipliers relies on SAT solving
(see also Sect. F.2.1) and requires to translate DRUP proofs into PAC [63] to obtain
a single proof certificate. Experiments for these proof certificates are shown in the
lower part of Table F.1. As already discussed, the proofs need extension rules and we
modified the tools [63] to generate extension rules as presented in this paper. The second
column shows the number of generated proof steps and the third the highest degree of
the polynomials in the proof steps.

The effect of deleting rules and using indices in PACHECK can also be seen in
Table F.1. Deletion rules reduce the memory usage by at least a factor two, although the
effect on runtime is limited. Using indices reduces the runtime by around 30%. Note
that in our earlier experiments [63] the proof checking time is slightly faster than in the
column “no index”, because we did not use proper extension rules, which requires the
additional checks p ∈ Z[X] and p2 = p.

Furthermore, we can compare the performance of PACHECK and PASTÈQUE. The
memory usage for PASTÈQUE depends on the garbage collector, which likely explains
the peak around 64 GB (half of the available memory). The performance of the veri-
fied checker is sobering. PASTÈQUE is both much slower and more memory hungry.
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Checkers of SAT certificates [48, 73] have the same level of efficiency as state-of-the-art
checkers [88], likely because little to no garbage collection is required.

F.6 Conclusion and Future Work

We presented our proof checkers PACHECK and PASTÈQUE which are able to check
PAC proofs efficiently. Our new proof format includes an extension rule, which is able
to capture rewriting techniques. Furthermore, we added a deletion rule and used indices
for polynomials. Our experiments showed that these optimizations cut memory usage
in half and reduce the runtime by around 30%. PACHECK was four times faster than
PASTÈQUE and used an order of magnitude less memory, whereas PASTÈQUE was
formally verified in Isabelle.

In the future we want to capture more general extension rules in PAC as the calculus
from Section F.2 allows. We imagine that it can be extended in two ways. First, we
could relax the condition p2 = p. This condition is necessary to have v2 = v, but
could be lifted even if it means that vn cannot be simplified to v anymore, requiring to
manipulate exponents. Second, we currently restrict the extension to the form v = p
where p contains no new variables. The correctness theorem does not rely on that and
we leave it as future work to determine whether lifting one of these restrictions can lead
to shorter proofs.

In the newest version of our tools [62] no redundant proof steps are generated, hence
no backward proof checking is necessary unlike SAT certificates, but which might still
be interesting in other applications. Another idea for future work is to bridge the gap
between C and Isabelle, by verifying the C code directly.
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F.7 Appendix

We show an example of a PAC proof, which demonstrates the usage of our tools.

Example F.2. Let x̄ ∨ ȳ and y ∨ z be two clauses. From these clauses we are able to
derive the clause x̄ ∨ z using resolution. We show how this derivation can be covered in
PAC.

At first we translate the clauses into polynomials using De Morgan’s laws and using
the fact that a logical AND can be represented by multiplication. For example, from
x̄ ∨ ȳ = > ⇔ x ∧ y = ⊥ we derive the polynomial equation xy = 0.

We translate the given clauses, which builds our input <res.input> and the target
<res.target>. For the PAC proof in <res.proof> we introduce an extension
variable fz , which models the negation of z, i.e. −fz + 1− z = 0. We use this extension
to reduce the size of the conclusion polynomials. The PAC proof shows only some
possible deletion rules, adding more deletion rules is possible. The files of this example
are available [65].

<res.input> <res.proof>
1 x*y; 3 = fz, -z+1;
2 y*z-y-z+1; 4 * 3, y-1, -fz*y+fz-y*z+y+z-1;

5 + 2, 4, -fz*y+fz;
2 d;
4 d;

<res.target> 6 * 1, fz, fz*x*y;
-x*z+x; 1 d;

7 * 5, x, -fz*x*y+fz*x;
8 + 6, 7, fz*x;
9 * 3, x, -fz*x-x*z+x;

10 + 8, 9, -x*z+x;

We give these files to PACHECK and PASTÈQUE and these are the results:

$ pacheck res.input res.proof res.target
[pacheck] Pacheck Version 001
[pacheck] Practical Algebraic Calculus Proof Checker
[pacheck] Copyright (C) 2020, Daniela Kaufmann, JKU
[pacheck] compressed mode with indices assumed
[pacheck] checking target enabled
[pacheck] reading target polynomial from ’res.target’
[pacheck] read 8 bytes from ’res.target’
[pacheck] reading original polynomials from ’res.input’
[pacheck] found 2 original polynomials in ’res.input’
[pacheck] read 20 bytes from ’res.input’
[pacheck] reading polynomial algebraic calculus proof from

’res.proof’
[pacheck] found and checked 8 inferences in ’res.proof’
[pacheck] read 219 bytes from ’res.proof’
[pacheck] found 1 target polynomial inference
[pacheck] proof length 10 (number of polynomials)
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[pacheck] proof size 25 (on average 2.5 terms per polynomial)
[pacheck] proof degree 3 (internal maximum degree 3)
[pacheck] searched 32 inferences 0.1 average collisions
[pacheck] 10 inferences, 3.2 average searches
[pacheck] original inferences 2 (20% of total rules)
[pacheck] inference rules 8 (80% of total rules)
[pacheck] addition inference rules 3 (38% of inference rules)
[pacheck] multiplication inference rules 4 (50% of inference

rules)
[pacheck] extension rules 1 (12% of inference rules)
[pacheck] deletion inference rules 3 (30% of total rules)
[pacheck] maximum 9 of total 10 terms (90%)
[pacheck] searched 52 terms 81% hits 0.3 average collisions
[pacheck] maximum 2229 bytes allocated (0.0 MB)
[pacheck] maximum resident set size 4481024 bytes (4.3 MB)
[pacheck] process time 0.000 seconds
[pacheck] TARGET CHECKED

$ pasteque res.input res.proof res.target
c polys parsed
c ******************
c pac parsed
c spec parsed
c Now checking
s SUCCESSFULL
c
c
c ***** stats *****
c parsing polys file init (nonGC):

0.000 s = 0.000 s (usr) 0.000 s (sys)
c parsing pac file init (nonGC):

0.000 s = 0.000 s (usr) 0.000 s (sys)
c full init (nonGC): 0.000 s = 0.000 s (usr) 0.000 s (sys)
c time solving (nonGC): 0.000 s = 0.000 s (usr) 0.000 s (sys)
c time GC: 0.000 s = 0.000 s (usr) 0.000 s (sys)
c time solving(full): 0.000 s
c Overall (nonGC): 0.001 s = 0.001 s (usr) 0.000 s (sys)
c overall GC: 0.000 s = 0.000 s (usr) 0.000 s (sys)
c Overall(full): 0.001 s
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