
Verifying Large Multipliers by
Combining SAT and Computer Algebra

Daniela Kaufmann Armin Biere Manuel Kauers
Johannes Kepler University Linz, Altenbergerstr. 69, 4040 Linz, Austria

daniela.kaufmann@jku.at armin.biere@jku.at manuel.kauers@jku.at

Abstract—We combine SAT and computer algebra to sub-
stantially improve the most effective approach for automatically
verifying integer multipliers. In our approach complex final
stage adders are detected and replaced by simple adders. These
simplified multipliers are verified by computer algebra techniques
and correctness of the replacement step by SAT solvers. Our new
dedicated reduction engine relies on a Gröbner basis theory for
coefficient rings which in contrast to previous work no longer are
required to be fields. Modular reasoning allows us to verify not
only large unsigned and signed multipliers much more efficiently
but also truncated multipliers. We are further able to generate
and check proofs an order of magnitude faster than in our
previous work, relative to verification time, while other competing
approaches do not provide certificates.

I. INTRODUCTION

Automated formal verification of arithmetic circuits, most
prominently multiplier circuits, remains an important problem,
which in practice still requires substantial manual effort. Cur-
rently the most effective approach for automatically verifying
integer multipliers is based on polynomial reasoning using
computer algebra techniques [5], [12], [17], [18], [28].

However, parts of multipliers, i.e., final stage adders, are a
real challenge for the computer algebraic approach. In certain
adder designs carries are computed by complex tree structures,
leading to an explosion of intermediate results. Contrarily SAT
solvers can easily verify the equivalence of adders. Therefore
we replace complex final stage adders by simpler adders and
verify the correctness of the replacement using SAT solvers.
The simplified multiplier is verified using computer algebra.

Our new dedicated reduction engine makes use of the
structure of the polynomial representation of circuits and is
more capable in multiplier verification than computer algebra
systems [6], [26] used in our previous work. Additionally it
efficiently produces certificates, which validate the correctness
of the verification. In previous work we used Q as coefficient
domain. Our experiments show that it is beneficial to use more
general rings to support modular arithmetic [25]. We summa-
rize the theory and provide arguments for the correctness of the
algebraic approach over more general rings. As a consequence
we are able to verify not only unsigned and signed multipliers
more efficiently but also truncated multipliers.

Recently significant progress has been made in fully au-
tomated verifying integer multipliers using computer algebra.
The authors of [17], [18] presented a method allowing local

Supported by Austrian Science Fund (FWF), NFN S11408-N23 (RiSE),
P31571-N32, SFB F5004, LIT AI Lab funded by the state of Upper Austria.

cancellation of vanishing monomials in converging gate cones.
This approach is empirically much more successful than previ-
ous work in verifying a large variety of multiplier architectures
but its formal exposition has room for improvement. The
technique of [5], [28] eliminates redundant polynomials by
identifying and rewriting half- and full-adders in the circuit.
This approach is able to verifying large clean multiplier
circuits, but fails on complex multiplier architectures. None
of these methods produces certificates. Contrarily theorem
provers in combination with SAT are able to certify industrial
multipliers [11], however this approach is not fully automated.

II. SPECIFYING MULTIPLIER CIRCUITS

A circuit implements a logical function and the specification
of a circuit is a desired relation between the inputs and the
outputs of a circuit. We say that a circuit fulfills a specification
if for all inputs it produces outputs that match this desired
relation. The goal of verification is to formally prove that the
circuit fulfills its specification and hence deriving correctness.

We consider acyclic gate-level circuits C with inputs
a0, . . . , ak−1, outputs s0, . . . , sm−1 in {0, 1}, and a number
of internal logical gates g1, . . . , gl ∈ {0, 1}. Thus we fix X to
denote the variables a0, . . . , ak−1, g1, . . . , gl, s0, . . . , sm−1. In
the algebraic verification approach every input and output of
a gate in the circuit is labeled by a variable and for each gate
there is a polynomial describing the relation of the input and
output variables of the gate. Correctness of the circuit is shown
by proving that the specification, encoded as a polynomial L,
is implied by the polynomial relations of the gates.

Part of the specification is the ring to which the polynomial
L belongs. The circuit polynomials are also considered as
elements of this ring. In our previous work [12] we chose the
ring Q[X]. We will now generalize the formulation of circuit
verification using computer algebra to other polynomial rings.
Our experiments show that by doing so we gain an enormous
speed-up in the computation time. Although not formally
introducing the theory, related work also relies on more general
rings than Q[X]. Furthermore by generalizing the theory to
arbitrary polynomial rings we are able to verify different types
of multipliers, which we now present. We fix a polynomial
ring R[X] and state the corresponding specification of the
multipliers as an element of R[X].

Definition 1. Let ϕ : X → {0, 1} ⊆ R denote an assignment
of all variables X . We extend ϕ to an evaluation of polyno-
mials in the natural way, i.e., ϕ : R[X]→ R.

daniela.kaufmann@jku.at
armin.biere@jku.at
manuel.kauers@jku.at

To capture multiplication of unsigned integers we consider
circuits with two unsigned binary input bitvectors A =
an−1, . . . , a0 and B = bn−1, . . . , b0 ∈ {0, 1}n and an output
bitvector S = s2n−1, . . . , s0 ∈ {0, 1}2n, calculating A·B = S.

In previous work [22] we verified unsigned integer multi-
pliers, which most naturally are specified over Z.

Definition 2. The word-level specification Un of n-bit un-
signed integer multipliers in the ring Z[X] is given as

Un =

2n−1∑
i=0

2isi −
(n−1∑

i=0

2iai

)(n−1∑
i=0

2ibi

)
(1)

A common way to represent signed integers is using two’s
complement. The value w of a bitvector K = kn−1, . . . , k0 of
length n in two’s complement is given as

w = −2n−1kn−1 +
n−2∑
i=0

2iki.

Thus in specifying signed multipliers we interpret A, B and
S as signed bitvectors in two’s complement representation.

Definition 3. The specification Sn of n-bit signed integer
multipliers in the ring Z[X] is given as

Sn = −22n−1s2n−1 +
2n−2∑
i=0

2isi

−
(
−2n−1an−1 +

n−2∑
i=0

2iai

)(
−2n−1bn−1 +

n−2∑
i=0

2ibi

)
.

Our experiments will show that it is beneficial to use mod-
ular arithmetic to reduce the size of intermediate verification
results. For now we still keep Z as coefficient domain for the
specification of unsigned and signed multipliers. Theorem 3
and 4, in addition with Lemma 3 and Lemma 4, will then
allow us to use Z22n [X] too, because for any assignment ϕ
the range of the specification does not exceed ±22n.

In contrast to the multipliers presented so far a truncated
multiplier returns only n output bits for input bitwidth n. In the
result of multiplying two integers the n most significant bits
are simply discarded. Thus a truncated multiplier calculates
A · B = S mod 2n. We define the specification of truncated
multipliers to be an element of the ring Z2n [X], because Z2n

is the ring whose multiplication we wish to describe.

Definition 4. The specification Tn of n-bit truncated multi-
pliers in the ring Z2n [X] is given as

Tn =

n−1∑
i=0

2isi −
n−1∑
i=0

n−1−i∑
j=0

2i+jaibj

Our theory is not limited to these multiplication instances.
A further example would be Galois field multipliers, where
the specification is an element of Z2[X]/〈p〉, for a given irre-
ducible polynomial p [16], [27]. Other possible (though per-
haps useless) choices are rings of the form Zm[X1, . . . , Xk]/I
for some given m ∈ N and some given ideal I .

III. ALGEBRA

In our previous work [12] we outlined the underlying theory
of circuit verification using computer algebra for polynomial
rings over fields. In this section we generalize the theory to
be applicable in more general polynomial rings. To this end
let R be a commutative ring with unity and let R[X] with
X = {x1, . . . , xr} be the polynomial ring over R. By R× we
denote the set of multiplicatively invertible elements of R.

Definition 5. A term τ = xd1
1 · · ·xdr

r is a product of powers
of variables for certain d1, . . . , dr ∈ N. We denote the set of
terms by [X]. A monomial is a multiple of a term cτ , with
c ∈ R and a polynomial p is a finite sum of monomials.

On the set of terms an order ≤ is fixed such that for all terms
τ, σ1, σ2 it holds that 1 ≤ τ and σ1 ≤ σ2 ⇒ τσ1 ≤ τσ2. Such
an order is called a lexicographic term order if for all terms
σ1 = xd1

1 · · ·xdr
r , σ2 = xe11 · · ·xerr we have σ1 < σ2 iff there

exists an index i with dj = ej for all j < i, and di < ei.
For a polynomial p = cτ + · · · the largest term τ (w.r.t. ≤)
is called the leading term lt(p) = τ . Furthermore lc(p) = c
is called the leading coefficient and lm(p) = cτ is called the
leading monomial of p. Then we call p− cτ the tail of p.

In the circuit the semantics of the logic gates imply poly-
nomial relations among the variables, such as:

u = ¬v implies 0 = −u+ 1− v
u = v ∧ w implies 0 = −u+ vw
u = v ∨ w implies 0 = −u+ v + w − vw
u = v ⊕ w implies 0 = −u+ v + w − 2vw.

(2)

The polynomial equations are chosen in such a way that the
possible solutions with u, v, w ∈ {0, 1} of the polynomials are
the solutions of the gate constraints and vice versa. As the left
side is always zero, we take the freedom to write f instead of
0 = f . Note that the coefficients 1,−1 and 2 are elements of
the ring R, where 1 represents the unity of R, −1 represents
its additive inverse, and 2 = 1 + 1. On the set of terms we
fix a lexicographic term order, called reverse topological term
order, such that the output variable of a gate is always greater
than the variables attached to the input edges of that gate.

By G(C) ⊆ R[X] we denote the set of circuit polynomials
which contains for each gate of C the corresponding polyno-
mial of (2). To encode that each variable x ∈ X represents
a boolean value, we further have boolean value constraints
x(1 − x) = 0. Let B(Y) = {y(1 − y) | y ∈ Y } ⊆ R[X] for
Y ⊆ X , be the set of boolean value constraints for Y . By L
we denote the polynomial in R[X] which models the specified
relation between the input and outputs of the circuit.

Definition 6. A nonempty subset I ⊆ R[X] is called an ideal
if ∀ p, q ∈ I : p + q ∈ I and ∀ p ∈ R[X] ∀ q ∈ I : pq ∈ I .
A set P = {p1, . . . , ps} ⊆ R[X] is called a basis of I if
I = {p1q1 + · · · + psqs | q1, . . . , qs ∈ R[X]}. We say I is
generated by P and write I = 〈P 〉. The sum of two ideals I
and J is defined as I + J = {p+ q | p ∈ I, q ∈ J}.

Note, if I = 〈P 〉 and J = 〈Q〉 are ideals generated by
P,Q ⊆ R[X], then I + J = 〈P 〉+ 〈Q〉 = 〈P ∪Q〉.

We show that the question whether L is implied by the
gate polynomials of C and the boolean value constraints can
be answered by a so-called ideal membership test:

“ Given a polynomial q ∈ R[X] and a (finite) set of
polynomials P ⊆ R[X], decide whether q ∈ 〈P 〉.”

Definition 7. Let P ⊆ R[X]. If for a certain term order,
all leading terms of P only consist of a single variable with
exponent 1 and are unique and further lc(p) ∈ R× for all p ∈
P , then we say P has unique monic leading terms (UMLT).
Let X0(P) ⊆ X be the set of all variables that do not occur as
leading terms in P . We further define B0(P) = B(X0(P)).

Example 1. The set P = {−x + 2y, y − z} ⊆ Z[x, y, z]
has UMLT for the lexicographic term order x > y > z.
Correspondingly X0(P) = {z} and B0(P) = {−z2 + z}.

In the following these X0(P) will represent inputs of a
circuit and accordingly B0(P) are the boolean value con-
straints only on its inputs. Note, in our application the leading
coefficients of the polynomials in G(C) are only ±1. However
we prefer the more general statement of Def. 7, allowing that
Thm. 1 and Thm. 2 also work for more general settings.

Definition 8. Let P ⊆ R[X] be a finite set of polynomials
with UMLT. A polynomial q ∈ R[X] can be deduced from P
if q ∈ 〈P 〉+ 〈B0(P)〉. In this case we write P `R q.

Definition 9. For a given set P ⊆ R[X], a model is an
assignment ϕ such that for all p ∈ P we have ϕ(p) = 0.
For a set P ⊆ R[X] and a polynomial q ∈ R[X], we write
P |=R q if every model for P is also a model for {q}, i.e.,
P |=R q ⇐⇒ ∀ϕ : ∀p ∈ P : ϕ(p) = 0⇒ ϕ(q) = 0.

Note, that for the purpose of this paper, these notions of
syntactic “deduction” and semantic “models” are restricted to
our application where variables take only boolean values.

Theorem 1 (Soundness). Let P ⊆ R[X] be a finite set of
polynomials with UMLT and q ∈ R[X], then

P `R q ⇒ P |=R q.

Proof. If P `R q then q ∈ 〈P 〉+ 〈B0(P)〉 by definition. This
means there are u1, . . . , um ∈ R[X] and v1, . . . , vr ∈ R[X]
with q = u1p1 + · · · + umpm + v1b1 + · · · + vrbr, where
pi ∈ P and bi = xi(xi− 1) ∈ B0(P) ⊆ B(X) for i = 1 . . . r.
Any assignment ϕ vanishes on B(X), i.e., ϕ(bi) = 0. If ϕ is
also a model of P then ϕ(pi) = 0 too and as a consequence
ϕ(q) = 0. Therefore P |=R q, as claimed. �

Completeness is not obvious. Consider for instance that
{2x} |=Z x but x 6∈ 〈2x〉 in Z[X]. Requiring P to have UMLT
turns out to be essential (which {2x} does not have in Z[X],
because 2 /∈ Z×).

Lemma 1. If P |=R p and P |=R q then P |=R q ± p.

Lemma 2. Let P ⊆ R[X] be a finite set of polynomials with
UMLT. Then for all q ∈ R[X] there exists p ∈ 〈P 〉+〈B0(P)〉
and r ∈ R[X0(P)] with q = p + r, such that the monomials
in r have only exponents 1.

Proof. Since P has UMLT, we can replace every occurrence
of a leading variable of P in q by the corresponding tail.
This process has to terminate because the tail of a polynomial
contains only smaller variables and the number of variables in
P is finite. Thus at some point only variables in X0(P) are
left which do not occur as leading terms. If these variables
occur with exponent larger than one we can use B0(P) to
reduce their exponent to 1, which yields r. All reduction steps
to obtain r can be captured by adding polynomials f · g with
f ∈ R[X] and g ∈ P ∪B0(P). Their sum gives p. �

Example 2. Let P ⊆ Z[x, y, z] be as in Ex. 1 and assume
q = 2x2 + xy + z2 ∈ Z[x, y, z]. Consequently

p = (−2x−5y)(−x+2y) + (10y+10z)(y − z)− 11(−z2+z)
= 2x2 + xy + z2 − 11z ∈ 〈P 〉+ 〈B0(P)〉 and

r = 11z ∈ Z[X0(P)].

Theorem 2 (Completeness). Let P ⊆ R[X] be a finite set of
polynomials with UMLT. Then for every q ∈ R[X] we have

P |=R q ⇒ P `R q.

Proof. Suppose we have P |=R q. Then our goal is to show
q ∈ 〈P 〉+ 〈B0(P))〉. First, by applying Lemma 2, we obtain
p ∈ 〈P 〉+ 〈B0(P)〉 and r ∈ R[X0(P)] with q = p+ r. Thus
P `R p by definition. Using Thm. 1 we derive P |=R p and
accordingly P |=R q − p = r by Lemma 1. Now assume
r 6= 0 and let m be a monomial of r which contains the
smallest number of variables. Consider the assignment ϕ that
maps x ∈ X0(P) to 1 if it appears in m and to 0 otherwise.
Therefore ϕ(r) 6= 0 since exponents of variables in r are all
one. This assignment on X0(P) admits a unique extension to
X which vanishes on P (e.g., if −x + t ∈ P with leading
monomial −x, then choose ϕ(x) = ϕ(t)). This contradicts
P |=R r. Thus r = 0 and q = p+ r ∈ 〈P 〉+ 〈B0(P))〉. �

It is easy to see that for an acyclic circuit C the set G(C)
has UMLT for the fixed reverse topological term order. As
a consequence Theorem 1 and 2 can be applied and show
that deciding the correctness of circuits can been reduced to
deciding ideal membership problems for R[X].

Definition 10. I(C) = {f ∈ R[X] : G(C) |=R f}.

It also easily follows that I(C) is an ideal and contains all
the relations that hold among the values at the different signals
(gates and inputs) of the circuit. Thus we are particularly
interested whether the specification polynomial L is in I(C).

Definition 11. A circuit C fulfills L iff L ∈ I(C).

Definition 12. Write B0(C) = B0(G(C)) for an acyclic
circuit C and define J(C) = 〈G(C) ∪B0(C)〉 in R[X].

Note that J(C) is generated by the gate polynomials G(C)
and the boolean value constraints on the variables X0(G(C))
not occurring as leading term in G(C). Further, by definition,
q ∈ J(C) iff G(C) `R q. Thus J(C) contains exactly those
polynomial constraints “deducible” from the circuit.

Corollary 1. For all acyclic circuits C, it holds I(C) = J(C).

Proof. By the choice of term order, G(C) satisfies the nec-
essary conditions of Thm. 1 and Thm. 2 and applying them
allows to conclude q ∈ I(C)⇔ q ∈ J(C). �

Corollary 2. A circuit C fulfills L iff L ∈ J(C).

In order to improve efficiency through modular reasoning
(replacing Z by Z22n) we show that the specifications for
unsigned and signed multipliers remain correct for Z22n too.

Lemma 3. For all assignments ϕ : X → {0, 1} it holds that
ϕ(Un) ∈ [−22n + 1, 22n − 1] in Z.

Proof. The maximum of ϕ(Un) is reached for the assignment
ϕmax with ϕmax(s) = 1 for all s ∈ S and ϕmax(x) = 0 for
x ∈ A ∪B. Consequently

ϕmax(Un) =
2n−1∑
i=0

2i = 22n − 1 < 22n.

The minimum of ϕ(Un) is reached for the assignment ϕmin

with ϕmin(s) = 0 for all s ∈ S and ϕmin(x) = 1 for x ∈
A ∪B. It follows (assuming of course n > 0) that

ϕmin(Un) = −(2n − 1)2 = −22n + 2n+1︸︷︷︸
>2

−1 > −22n. �

Lemma 4. For all assignments ϕ : X → {0, 1} it holds that
ϕ(Sn) ∈ [−22n + 1, 22n − 1] in Z.

Proof. The maximum of ϕ(Sn) is reached for the assignment
ϕmax with ϕmax(si) = 1 for all 0 ≤ i ≤ 2n − 2 and
ϕmax(s2n−1) = 0 and ϕmax(aj) = 1 for all 0 ≤ j ≤ n − 2
and ϕmax(an−1) = 0 and ϕmax(bj) = 0 for all 0 ≤ j ≤ n−2
and ϕmax(bn−1) = 1. Then

ϕmax(Sn) = 22n−1 − 1 + 2n−1(2n−1 − 1).

By transforming the inequality we gain the desired result.

22n−1 + 22n−2 − 2n−1 − 1 < 22n

22n−2(2 + 1− 4)− 2n−1 − 1 < 0

The minimum of ϕ(Sn) is reached for the assignment ϕmin

with ϕmin(si) = 0 for all 0 ≤ i ≤ 2n−2 and ϕmin(s2n−1) = 1
and ϕmin(aj) = ϕmin(bj) = 0 for all 0 ≤ j ≤ n − 2 and
ϕmin(an−1) = ϕmin(bn−1) = 1. It follows that

ϕmin(Sn) = −22n−1 − (−2n−1)2

= −3 · 22n−2 > −4 · 22n−2 = −22n. �

Theorem 3. G(C) |=Z Un iff G(C) |=Z22n
Un.

Theorem 4. G(C) |=Z Sn iff G(C) |=Z22n
Sn.

IV. D-GRÖBNER BASES

The question whether a circuit fulfills a given specification
can be answered by an ideal membership test. The theory of
Gröbner bases [4] offers a decision procedure for this problem.
For the polynomial rings applied in Sect II, we use the more
general theory of D-Gröbner bases [2], where the coefficient
ring is a principal ideal domain (PID). Let D be a PID.

Some facts about the theory of D-Gröbner bases are:
• Let p, q, r ∈ D[X]. We say q D-reduces to r w.r.t. p if

there exists a monomial m′ in q with m′ = m lm(p) and
r = q−mp. If m′ = lm(q), we call this top-D-reduction.

• Let q ∈ D[X] and P ⊆ D[X]. The remainder r of the
D-reduction of q by P is such that q − r ∈ 〈P 〉 and
r is D-reduced w.r.t. P . If r is calculated using only
top-D-reductions, then r is top-D-reduced w.r.t. P .

• Let q ∈ D[X] and P ⊆ D[X] with UMLT. If lc(p) = ±1
for p ∈ P , then D-reduction of q w.r.t. p amounts to
replacing every occurrence of lt(p) in q by the tail of p.

• A basis P of an ideal I ⊆ D[X] is called a D-Gröbner
basis of I iff ∀q ∈ I ∃p ∈ P : lm(p) | lm(q).

• Every ideal of D[X] has a D-Gröbner basis, and there is
an algorithm (Thm 10.14 of [2]) which, given an arbitrary
basis of an ideal, computes a D-Gröbner basis of it in
finitely many steps. It is based on repeated computation
of so-called S-polynomials and G-polynomials.

Definition 13. Let g1, g2 ∈ D[X]. Assume

lcm(lc(g1), lc(g2))= b1lc(g1)= b2lc(g2) with bi ∈ D and
lcm(lt(g1), lt(g2)) = s1lt(g1) = s2lt(g2) with si ∈ [X] and

lcm the least common multiple. Further pick c1, c2 ∈ D such
that c = gcd(lc(g1), lc(g2)) = c1 lc(g1) + c2 lc(g2), with gcd
the greatest common divisor. Then define

spol(g1, g2) := b1s1g1 − b2s2g2
gpol(g1, g2) := c1s1g1 + c2s2g2

Lemma 5. [Cor. 10.12 in [2]] A set P ⊆ D[X] is a D-Gröbner
basis of 〈P 〉 iff for all pairs (p1, p2) ∈ P × P the remainder
of D-reducing spol(p1, p2) w.r.t. P is zero and gpol(p1, p2)
top-D-reduces to zero w.r.t. P .

Lemma 6. [Thm.11 in [15]] Let p1, p2 ∈ D[X] be such
that lcm(lt(p1), lt(p2)) = lt(p1) lt(p2). If lc(p1) | lc(p2) then
spol(p1, p2) and gpol(p1, p2) (top-)D-reduce to zero.

A. D-Gröbner bases applied to Multiplier Verification

We use Lemma 6 to derive a D-Gröbner basis of the ideal
J(C). The following theorem shows that we neither have to
compute S-polynomials nor G-polynomials.

Theorem 5. Let R be a PID and J(C) = 〈G(C) ∪ B0(C)〉
be as in Def. 12. Then G(C) ∪ B0(C) is a D-Gröbner basis
of J(C) for R = D.

Proof. Since G(C) has UMLT, G(C)∪B0(C) has UMLT and
thus it holds by Lemma 6, (top-)D-reduction of spol(p, q) and
gpol(p, q) by {p, q} gives the remainder zero for any choice
p, q ∈ G(C) ∪B0(C) and by Lemma 5 the claim follows. �

For the multiplier circuits described in Sect II we chose
the polynomial rings Zl[X] with l ∈ N. For example for the
truncated multiplier we set l = 2n. Unless l is a prime, the
ring Zl has zero divisors and is therefore not a PID. However
the ideal membership test in the ring Zl[X] can be reduced to
an ideal membership test in the ring Z[X], and Z is a PID.

Lemma 7. Let l ∈ N and let I ⊆ Z[X] be an ideal. There
is a bijective correspondence from q ∈ I + 〈l〉 ⊆ Z[X] to
[q] ∈ {[p] | p ∈ I} ⊆ Z[X]/〈l〉, where [q] is the equivalence
class of q. Furthermore Z[X]/〈l〉 ∼= Zl[X].

Proof. The first claim follows from Prop. 4.3.a Chap. 10
of [1], with π : q 7→ [q]. The second claim follows from the
fundamental theorem of homomorphisms. �

Lemma 7 says that whenever we want to decide whether
a polynomial q ∈ I ⊆ Zl[X] we can instead check whether
q ∈ I + 〈l〉 ⊆ Z[X]. And for the latter we have the concept
of D-Gröbner bases available.

Lemma 8. Let C be an acyclic circuit, l ∈ N. Then G(C) ∪
B0(C) ∪ {l} is a D-Gröbner basis for I(C) + 〈l〉 ⊆ Z[X].

Proof. It remains to show that for all p ∈ G(C) ∪ B0(C)
it holds that spol(p, l) D-reduces to zero and gpol(p, l) top-
D-reduces to zero, which follows from Lemma 6, because
lc(p) = −1 and lt(l) = 1. �

V. VARIABLE ELIMINATION

D-Gröbner bases can be used as a kind of black-box for
deciding the ideal membership of the circuit specification.
However it was shown in [17], [12] that by simply reducing
the specification by the polynomials G(C) ∪B0(C), the size
of the intermediate reduction results increases drastically.

In [12] we presented a theorem which allows to simplify
local parts of Gröbner bases over fields without changing
the rest of the circuit. We extracted specific patterns of the
original multiplier, eliminated the internal variables and only
the corresponding specification of the sub-circuit remained. In
this work we present a more general elimination procedure
which subsumes our proposed rewriting methods of [12]. We
introduce a technical theorem in the fashion of Thm. 4 of [12],
which is applicable in more general polynomial rings.

Definition 14. Let I ⊆ D[X] = D[Y, z] be an ideal. The ideal
I ∩D[Y] of D[Y] is called an elimination ideal of I .

In general computing a D-Gröbner basis for the elimination
ideal means that we explicitly need to compute a D-Gröbner
basis w.r.t. a different term order. However if the D-Gröbner
basis of I has UMLT, we will show that we can instantly
obtain a D-Gröbner basis for the elimination ideal.

Definition 15. Let P ⊆ D[X] be a D-Gröbner basis of 〈P 〉
with UMLT. We say P is reduced for z if the variable z ∈ X
is contained in exactly one polynomial p ∈ P and lt(p) = z.

Lemma 9. Let P be a D-Gröbner basis with UMLT and let
p ∈ P . Let H = P be such that all polynomials h 6= p ∈ H
are D-reduced w.r.t. p. Then H is reduced for lt(p) = z.

Proof. Let f 6= p ∈ P be an arbitrary polynomial containing
z. By definition lt(f) 6= z. Let r be the remainder of D-
reducing f w.r.t. p. Because lc(p) ∈ D×, r is free of z.

Let H = (P \ {f}) ∪ {r}. Since lm(r) = lm(f) it follows
that H is a D-Gröbner basis with UMLT. After repeating the
steps for all f ∈ P , p is the only polynomial containing z. �

Partial Product Generation

Partial Product Accumulation

Final Stage Adder

an−1, . . . , a0 bn−1, . . . , b0

xm ym . . . x0 y0 cin

sk . . . s0sk+1. . .s2n−2s2n−1

s′0
. . .s′mcm+1

Adder substitution

Partial Product Generation

Partial Product Accumulation

Ripple Carry Adder

an−1, . . . , a0 bn−1, . . . , b0

xm ym . . . x0 y0 cin

sk . . . s0sk+1. . .s2n−2s2n−1

s′0
. . .s′mcm+1

Fig. 1. Substituting the final stage adder to gain a simplified multiplier.

Theorem 6. Let I ⊆ D[X] be an ideal. Let P be a D-Gröbner
basis of I with UMLT which is reduced for z. Let p ∈ P be
the polynomial with lt(p) = z. Then P \ {p} is a D-Gröbner
basis with UMLT for the ideal J = I ∩D[X \ {z}].

Proof. We show that ∀f ∈ J ∃q ∈ P \ {p} : lm(q) | lm(f).
Since P is a D-Gröbner basis there exists a polynomial h ∈ P
such that lm(h) | lm(f). Because J is free of z, it follows that
lm(p) - lm(f). Thus h 6= p and consequently h ∈ P \ {p}. �

In our approach we apply variable elimination for circuits C
as follows. Let Y = X \{z}. We successively select variables
z ∈ X for elimination and rewrite G(C) ∪ B0(C) according
to Lemma 9 such that G(C) ∪ B0(C) is reduced for z. By
Thm. 6 removing the polynomial p with lt(p) = z yields a
D-Gröbner basis (G(C) \ {p}) ∪B0(C) for I(C) ∩D[Y].

We derive by the proof of Lemma 8 that (G(C) \ {p}) ∪
B0(C) ∪ {l} is a D-Gröbner basis for (I(C) + 〈l〉) ∩ Z[Y].

VI. COMBINING SAT AND COMPUTER ALGEBRA

In this section we present how to combine the algebraic
verification approach with SAT to successfully verify complex
multiplier circuits given as And-Inverter-Graphs (AIG) [14].

Multipliers can be decomposed into three components [21],
cf. Fig. 1. In the first component partial product generation
(PPG) the partial products aibj (as contained in L) are gen-
erated. This can for example be achieved using quadratically
many AND-gates or using a more complex Booth encoding.

The second component partial product accumulation (PPA)
reduces the partial products to two layers, where full- and
half-adders are arranged in different patterns to sum up the
partial products. Well known accumulation structures are array
accumulation, Wallace trees or compressor trees.

In the final stage adder (FSA) the output of the circuit is
computed. Generally adder circuits can be divided into two
groups, either the carries are computed alongside the sum bits
or they are calculated before the sum. Adders of the first group
are usually based on a sequence of half- and full-adders, which
gives them a simple but inefficient structure. Examples are
ripple-carry adders or carry-select adders. In order to decrease
the latency of carry computation the adder circuits of the
second group precompute the carry bits of the adder. They are
also called generate-and-propagate (GP) adders and examples
are carry-lookahead adders and Kogge-Stone adders.

Adders of the second group are hard to verify using the
algebraic approach, due to the OR trees needed to precompute
carries. Due to the polynomial representation of OR-gates,

Verify

AMulet
substition

AMulet
verify

CADICAL

.aig

.cnf

7 | 3

7 | 3

.aig

Certify

Check

AMulet
substitution

AMulet
certify

CADICAL

PacTrimDRAT-TRIM

.aig

.cnf

.proof

.polys

.pac

.spec

.aig 7 | 3

7 | 3 7 | 3

Fig. 2. Tool chain for verification (left) or certification and checking (right).

cf. (2), this leads to an exponential blow-up in the polynomial
reduction. During preparation for the SAT Race 2019 [13]
we observed that checking the equivalence of different adder
circuits is rather trivial for SAT solvers. We use this obser-
vation in the verification procedure and determine whether
the final stage adder is a GP adder. Figure 2 shows our tool
chain used for verifying (left side) and certifying (right side)
multiplier circuits given as an And-Inverter-Graph (AIG) [14].
We implemented a new dedicated reduction engine AMULET
in C. Adder substitution is automatically applied and, if
necessary, a simplified AIG and miter encoded as propositional
formula in conjunctive normal form (CNF) are returned.

Algorithm 1: Identifying GP adders in AMULET

Input : Circuit C in AIG format
Output: Determine whether C might contain a GP adder

1 j ← 2n− 2, τ ← 1;
2 while τ and j ≥ 0 do
3 τ, cj , pj ← Check-if-XOR-and-Identify-pj-and-cj (sj);
4 xj , yj ←Declare-Adder-Inputs (pj , τ);
5 j ← j − 1;
6 end
7 cin ← cj ;
8 for i← j to 2n− 1 do
9 m← Follow-and-Mark-Paths(si);

10 end
11 return m = 0

Detecting GP adders in non-synthesized multipliers is a
simple task and the pseudo-code is listed in Alg. 1. In a
GP adder with inputs x0, . . . , xm, y0, . . . , ym and outputs
s′0, . . . , s

′
m, cm+1, cf. Fig 1, the outputs s′i are calculated as

s′i = pi ⊕ ci, with pi = xi ⊕ yi. The carries ci are recursively
generated as ci = (xi−1 ∧ yi−1) ∨ (ci−1 ∧ pi−1). The precise
computation of the carries ci (recursively, unrolled or mixed)
depends on the circuit architecture.

If a multiplier contains a GP adder, the most significant
output bit s2n−1 is the carry output of the adder, i.e. s2n−1 =
cm+1 in Fig. 1. Thus the loop in line 2 of Alg. 1 starts at
2n− 2. At first we check whether the output bit si is an XOR-
gate, which can easily be identified in AIGs. If si is an XOR
gate, its inputs are pi and ci. We can clearly identify which is
which, because pi has to be an XOR gate, whereas ci cannot
be an XOR gate. In the next step of the loop (line 4) we mark
the inputs of the XOR gate pi as adder inputs xi and yi.

If si is not an XOR gate or we cannot clearly identify pi
and ci we stop the loop (indicated by τ), because then si is

not computed by the GP adder. As can be seen in Fig. 1, some
smaller output bits are directly computed in the PPA step. We
mark the smallest ci as the carry-in cin of the GP adder.

In the next phase of our algorithm we follow all input paths
of si for j ≤ i ≤ 2n − 1. We now include s2n−1, because it
is the carry-out of the adder. We mark the gates alongside the
paths and stop whenever we reach a marked input xi or yi or
cin. If we encounter a path, which ends at the primary inputs
ai, bi of the multiplier, then we do not consider the final stage
adder as a GP adder.

If we detect a final stage GP adder, we substitute it by a
simple ripple-carry adder, which has the same inputs xi, yi
and cin. We do not change the first two stages of a multiplier,
as depicted in Fig. 1. To prove that the ripple-carry adder
is equivalent to the GP adder we generate a bitlevel miter
in conjunctive normal form, which is verified by a SAT
solver (CaDiCaL [3]). If the final stage adder is not a GP
adder we do not apply adder substitution.

Algorithm 2: Outline of verification flow in AMULET

Input : Substituted circuit C in AIG format
Output: Determine whether C is a multiplier

1 for i← 0 to 2n− 1 do
2 Si ← Define-Cone-of-Influence(i);
3 Order (Si);
4 Search-for-Booth-Encoding (Si);
5 Local-Elimination (Si);
6 end
7 Global-Elimination ();
8 C0 ← Incremental-Reduction ();
9 return C0 = 0

After substitution we verify or certify the rewritten AIG in
AMULET. The outline of the flow is depicted in Alg. 2.

For verification we use our incremental column-wise veri-
fication algorithm of [12]. The goal is to split the verification
approach into smaller more manageable sub-problems by
partitioning the circuit into column-wise slices and by splitting
the word-level specification of a multiplier into multiple poly-
nomials which relate the partial products, incoming carries,
the sum output bit and the outgoing carries of each slice.
The incremental specification presented in [12] is tailored to
unsigned multipliers, but it can easily be adapted to more
general multiplier specifications by adding coefficients.

We first define slices based on the input cones of the outputs
and order the variables in the slices according to their level
seen from the circuit inputs (line 2 in Alg. 2). This ensures that
the variables are topologically sorted and the corresponding
polynomials have UMLT and thus form a D-Gröbner basis.

After sorting we apply syntactic pattern matching to detect
whether the circuit uses Booth encoding. In Booth encoding
consecutive primary multiplier inputs are used as inputs of
XOR-gates which are then combined to form an OR-gate.
These XOR- and OR-gates are input to several gates in multi-
ple slices and to increase cancellation of common monomials,
we identify corresponding variables.

For local variable elimination (line 4) we loop over the gate
polynomials in each slice and eliminate the variables of the

leading terms which only occur in polynomials in the same
slice and which are contained in exactly one other polynomial
inside the slice. We repeatedly apply variable elimination until
all variables of leading terms are either contained in the tails of
multiple polynomials or occur in polynomials of bigger slices.

After reducing the number of variables inside the slices we
eliminate variables which we marked in line 3 of Alg. 2. The
difference to local variable elimination is that we now have to
consider all polynomials from the circuit.

After variable elimination we apply Alg. 2 of [12] and
reduce the column-wise specification by the rewritten sliced D-
Gröbner bases and report whether the final result is zero or not.
Our tool AMULET uses the UMLT property of the D-Gröbner
basis for D-reduction, making it much more efficient than the
computer algebra systems [26], [6] used in our previous work,
which are designed for more general sets of polynomials.
We use the property that every leading monomial contains
at most one variable with exponent 1 and with coefficient −1
and thus D-reduction reduces to replacing every occurrence
of the leading variable by the tail of the polynomial. As a
further optimization we employ reduction by the boolean value
constraints implicitly. Whenever a term in the intermediate
reduction results contains an exponent larger than 1, we
immediately eliminate the exponent, without applying explicit
reduction by the corresponding boolean value constraint.

If we want to certify verification we generate PAC
proofs [23] in AMULET as by-product of the verification
algorithm. These proofs can be checked by our independent
proof checker PACTRIM [23], cf. right side of Fig. 2. We write
proofs as sequences, where each rule is of the following form:

+ : pi, pj , pi + pj ;
pi, pj appearing earlier in the proof
or are contained in G(C)
and pi + pj being reduced by B(X)

∗ : pi, q, qpi;

pi appearing earlier in the proof
or is contained in G(C)
and q ∈ R[X] being arbitrary
and qpi being reduced by B(X)

These rules model the properties of an ideal, given in Def. 6.
As for verification we do not explictely write down proof
rules when reducing a boolean value constraint. In addition
we extend proof rules by a deletion information, similar to
clause deletion in [7]. We changed the proof checker PACTRIM
accordingly. Because of Thm. 1 and Thm. 2 the soundness and
completeness arguments given in [23] can be generalized to
polynomial rings over commutative rings with unity.

Our tool PACTRIM validates the proof that the simplified
AIG fulfills the given specification L by checking that L is
derived and the derivation only uses valid proof rules. In
addition we also check with DRAT-TRIM [24] the proofs
generated by CADICAL for the CNF miter.

VII. EXPERIMENTS

In our experiments we used an Intel Xeon E5-2620 v4 CPU
at 2.10GHz (with turbo-mode disabled) with memory limit of
128 GB. The time is listed in rounded seconds (wall-clock

time) and we measure the time from starting the tools until the
tools are finished or we reach the time or memory limit. The
source code, benchmarks and experimental data are available
at http://fmv.jku.at/amulet.

In our experiments we aim to provide the most compre-
hensive comparison by considering all different multiplier
architectures used in the current state-of-the-art [18]. These
benchmarks are generated with the Arithmetic Module Gen-
erator [10], which allows to generate signed and unsigned
integer multipliers up to bit-width 64. We only have access to
truncated multipliers using SMT models, which we generated
with Boolector [20]. Additionally we generated benchmarks
of large multipliers with GenMul [19] (which only scales up
to 512 bits), Boolector [20] and generator scripts by Arist
Kojevnikov [9]. The multiplier architectures of [9], [20] are
very simple architectures without any optimizations.

In the experiments presented in Table I we verify and certify
different unsigned (u), signed (s) and truncated (t) multiplier
architectures of 64 input bitwidth. Due to shortage of space
we do not present experiments of smaller bitwidths. The time
out for the experiments in this table is set to 3600 sec (1h).

We show the effect of our contributions by either omitting
adder substitution and using only polynomial reduction for ver-
ification (“nosub”), omitting variable elimination (“noelim”) or
using the polynomial ring Z[X] instead of Zl[X] (“nomod”).
Each of the optimizations has a large effect and nearly
every multiplier architecture, despite of the clean multiplier
architecture “sp-ar-rc”, produces a time out in one of the
three columns. For truncated multipliers we would get a wrong
result for “nomod”, which is marked by “NA3”.

In the block “Verify” we measure the time for applying the
tool chain as shown in the left side of Fig. 2. We list the
times AMULET needs for adder substitution (“sub”) and for
verifying (“aig”) as well as the time CADICAL uses to verify
the CNF miter (“cnf”). Column “tot” lists the total time.

We compare our verification results to the most recent
related works [18], [5], [22]. We want to highlight that the
tool of [18] is not yet available, but it enhances the approach
of [17]. Thus we list the experiments of their work [18], which
are run on an Intel Xeon E3-1270 v3 CPU with 3.50 GHz and
thus is a slightly faster CPU than ours. Experiments which are
not available for comparison are marked by “NA2”.

The tool of [5] uses a certain optimization “&atree”. After
contacting the first and last authors of [28] we were told
that this option only works for simple multipliers. Using this
flag on more complex multipliers leads to incompleteness,
which we mark again by “NA3”. If “&atree” is omitted, all
experiments produce a segmentation fault.

It can be seen that in contrast to our previous work [22], we
are able to verify all benchmarks within seconds and we are an
order of magnitude faster than the currently most successful
approach of [18]. The tools of related work are only partially
applicable to verify signed and truncated multipliers, because
the specification used in these tools is fixed to (un)signed
multiplier circuits. We mark non-applicability with “NA1”.

http://fmv.jku.at/amulet

TABLE I
VERIFICATION AND CERTIFICATION TIME

L column: unsigned (u), signed (s) or truncated (t) multiplier specification.

architecture n L nosub nomod noelim Verify [18] [5] [22] Certify Check total proof size
sub cnf aig tot sub cnf aig tot cnf aig tot cnf aig

sp-ar-rc 64 u 1 1 2 0 0 1 1 NA2 0 133 0 0 2 2 0 3 3 5 0 188 290
sp-dt-lf 64 u TO 1 3 0 0 2 2 31 NA3 TO 0 0 2 3 0 3 3 6 34 423 186 170
sp-wt-cl 64 u TO TO 3 0 9 1 11 96 NA3 TO 0 9 2 12 7 3 10 21 264 471 191 623
sp-bd-ks 64 u TO TO 2 0 1 1 3 162 NA3 TO 0 2 2 4 1 3 4 8 78 567 190 915
sp-ar-ck 64 u TO 1 2 0 0 1 1 143 NA3 TO 0 0 2 2 0 3 3 5 1 432 187 251
bp-ar-rc 64 u 1 TO 118 0 0 1 1 53 NA3 TO 0 0 2 2 0 3 3 5 0 161 815
bp-ct-bk 64 u TO TO 100 0 0 1 2 119 NA3 TO 0 0 2 2 0 3 3 5 27 552 138 179
bp-os-cu 64 u 2 TO TO 0 0 2 2 95 NA3 TO 0 0 3 3 0 4 4 7 0 166 967
bp-wt-cs 64 u 1 TO 114 0 0 1 1 75 NA3 TO 0 0 2 2 0 3 3 6 0 161 747
sp-ar-rc 64 s 1 1 2 0 0 1 1 NA1 0 NA1 0 0 2 2 0 3 3 6 0 188 426
bp-wt-cl 64 s TO 3 109 0 10 1 11 NA1 NA3 NA1 0 10 2 12 7 3 10 22 261 650 151 355
btor 64 t 0 NA3 1 0 0 0 1 NA1 NA1 NA1 0 0 1 1 0 1 1 2 0 70 374

NA1: tool not applicable to type L NA2: tool not yet available NA3: incompleteness (see text) TO: 3600 sec

Benchmarks are either generated by the Arithmetic Module Generator of [10] or by Boolector [20] (btor).
PPG: simple (sp), Booth (bp) PPA: Dadda tree (dt), Wallace tree (wt), balanced delay tree (bd), array (ar), compressor tree (ct), overturned-stairs tree (os)
FSA: Ladner-Fischer (lf), carry look-ahead (cl), Kogge-Stone (ks), carry-skip (ck), ripple-carry (rc), Brent-Kung (bk), conditional sum (cu), carry select (cs)

In “Certify” and “Check” we present the time used for
certifying and checking, cf. right side of Fig. 2. The columns of
“Certify” have the same form as “Verify”. In “Check” we list
the times DRAT-TRIM (“cnf”) [24] and PACTRIM (“aig”) [23]
need for proof checking. The column “total” lists the total
time used to certify and check the multipliers. Certifying a
multiplier is around twice as slow than verifying, because
additional polynomial operations are necessary to match the
proof rules. In the last two columns we present the sizes of the
proofs. The proof size of CNFs is measured by the number of
added RUP clauses [8]. A size of 0 means, that the final stage
adder is not a GP adder. Thus a trivial CNF is reported which
does not yield a resolution proof. The size of the algebraic
proofs is measured by the number of PAC rules [23].

In the experiments of Table II we list the time to verify
large multiplier designs. We are able to verify multipliers
of input size 2048, consisting of more than 50 million AIG
nodes in around 19h. Certifying and checking these bench-
marks is around three times slower. For example certifying
“kojvnkv-2048” needs 34h wall-clock time. Checking the
(uncompressed) proof, which has a size of 1.4 TB, needs 20h.

VIII. CONCLUSION

In this paper we combine SAT and computer algebra to
verify large unsigned, signed and truncated integer multipliers.
Our theory describes polynomial reasoning over more general
rings. We formulate and prove soundness and completeness.

We show how modular reasoning can be simulated by
integer reasoning and revisit and apply existing D-Gröbner
bases theory from the literature. Modular arithmetic is required
to specify truncated multipliers. It also improves performance
substantially. We formalize variable elimination too.

Our main contribution consists of extracting complex final
stage adders, which are substituted by simple adders. Correct-
ness of this substitution is proven by SAT and correctness of
the simplified multiplier by our dedicated reduction engine.

TABLE II
VERIFYING BENCHMARKS OF LARGE INPUT SIZE

L column: unsigned (u) multiplier specification.

architecture n L Verify [18] [5] AIG size
sub cnf aig tot

btor 128 u 0 0 9 10 NA2 2 123 k
kjvnkv 128 u 0 0 9 9 NA2 2 195 k
sp-ar-rc 128 u 0 0 10 10 349 2 195 k
sp-dt-lf 128 u 0 2 13 15 490 NA3 195 k
sp-wt-bk 128 u 0 1 18 20 746 NA3 198 k
btor 256 u 1 0 119 120 NA2 19 522 k
kjvnkv 256 u 1 0 84 86 NA2 18 782 k
sp-ar-rc 256 u 1 0 84 86 8 720 20 782 k
sp-dt-lf 256 u 3 6 164 174 12 874 NA3 780 k
sp-wt-bk 256 u 3 3 170 177 21 454 NA3 790 k
btor 512 u 7 0 968 975 NA2 300 2 093 k
kjvnkv 512 u 9 0 774 783 NA2 247 3 138 k
sp-ar-rc 512 u 10 0 770 780 192 640 312 3 138 k
sp-dt-lf 512 u 25 21 1 539 1 585 240 051 NA3 3 133 k
sp-wt-bk 512 u 24 9 1 560 1 594 492 320 NA3 3 157 k
btor 1024 u 97 0 10 623 10 720 NA2 8 323 8 379 k
kjvnkv 1024 u 106 0 5 463 5 570 NA2 3 778 12 567 k
btor 2048 u 1 026 0 89 565 90 591 NA2 150 976 33 536 k
kojvnkv 2048 u 1 057 0 67 733 68 790 NA2 74 514 50 299 k

NA2: tool not yet available NA3: incompleteness (see text)
Benchmarks generated by Boolector [20] (btor), from [9] (kjvnkv) and [19].

PPG: simple (sp) PPA: array (ar), Dadda tree (dt), Wallace tree (wt)
FSA: ripple-carry (rc), Ladner-Fischer (lf), Brent-Kung (bk)

Our experiments show that the combination of these ideas
allow to scale up verification to large multipliers of 2048
bits. We are also able to verify complex multipliers an
order of magnitude faster than the previous state-of-the-art.
Furthermore, we produce proof certificates in contrast to
other approaches. These proofs are checked independently to
validate the verification results.

In future work we want to apply our approach to synthe-
sized multipliers where technology mapping is applied and to
other arithmetic circuits beyond integer multipliers. Another
intriguing research direction is to integrate both polynomial
and clausal reasoning in a common proof format.

REFERENCES

[1] M. Artin. Algebra. Prentice Hall, 1991.
[2] T. Becker, V. Weispfenning, and H. Kredel. Gröbner Bases. Springer,

1993.
[3] A. Biere. CaDiCaL at the SAT Race 2019. In Proc. of SAT Race 2019,

2019. Submitted.
[4] B. Buchberger. Ein Algorithmus zum Auffinden der Basiselemente des

Restklassenringes nach einem nulldimensionalen Polynomideal. PhD
thesis, University of Innsbruck, 1965.

[5] M. Ciesielski, T. Su, A. Yasin, and C. Yu. Understanding Algebraic
Rewriting for Arithmetic Circuit Verification: a Bit-Flow Model. IEEE
TCAD, pages 1–1, 2019.

[6] W. Decker, G.-M. Greuel, G. Pfister, and H. Schönemann. SINGULAR
4-1-0. http://www.singular.uni-kl.de, 2016.

[7] M. Heule, W. A. H. Jr., and N. Wetzler. Trimming while checking
clausal proofs. In Formal Methods in Computer-Aided Design, FMCAD
2013, pages 181–188. IEEE, 2013.

[8] M. J. H. Heule and A. Biere. Proofs for Satisfiability Problems. In All
about Proofs, Proofs for All, volume 55, pages 1–22, 2015.

[9] E. Hirsch, D. Itsykson, A. Kojevnikov, E. Kulikov, and S. Nikolenko.
Report on the Mixed Boolean-Algebraic Solver 1. Tech. Rep., 01 2005.

[10] N. Homma, Y. Watanabe, T. Aoki, and T. Higuchi. Formal Design of
Arithmetic Circuits Based on Arithmetic Description Language. IEICE
Transactions, 89-A(12):3500–3509, 2006.

[11] W. A. Hunt, M. Kaufmann, J. Strother Moore, and A. Slobodova.
Industrial hardware and software verification with acl2. Philosophi-
cal Transactions of The Royal Society A Mathematical Physical and
Engineering Sciences, 375:20150399, 10 2017.

[12] D. Kaufmann, A. Biere, and M. Kauers. Incremental Column-wise
verification of arithmetic circuits using computer algebra. Formal
Methods in System Design, Feb 2019.

[13] D. Kaufmann, M. Kauers, A. Biere, and D. Cok. Arithmetic Verification
Problems Submitted to the SAT Race 2019. In Proc. of SAT Race 2019,
2019. Submitted.

[14] A. Kuehlmann, V. Paruthi, F. Krohm, and M. Ganai. Robust Boolean
reasoning for equivalence checking and functional property verification.
IEEE TCAD, 21(12):1377–1394, 2002.

[15] D. Lichtblau. Effective computation of strong Gröbner bases over
Euclidean domains. Illinois Journal of Mathematics, 56, 11 2013.

[16] J. Lv, P. Kalla, and F. Enescu. Efficient Gröbner Basis Reductions for
Formal Verification of Galois Field Arithmetic Circuits. IEEE TCAD,
32(9):1409–1420, 2013.

[17] A. Mahzoon, D. Große, and R. Drechsler. PolyCleaner: clean your poly-
nomials before backward rewriting to verify million-gate multipliers. In
I. Bahar, editor, ICCAD, page 129. ACM, 2018.

[18] A. Mahzoon, D. Große, and R. Drechsler. RevSCA: Using Reverse
Engineering to Bring Light into Backward Rewriting for Big and Dirty
Multipliers. In Design Automation Conf., 2019. In press.

[19] A. Mahzoon, D. Große, and R. Drechsler. Multiplier Generator GenMul.
http://www.sca-verification.org/, 2019.

[20] A. Niemetz, M. Preiner, C. Wolf, and A. Biere. Btor2 , BtorMC and
Boolector 3.0. In Computer Aided Verification, CAV, volume 10981 of
LNCS, pages 587–595. Springer, 2018.

[21] B. Parhami. Computer Arithmetic - Algorithms and Hardware designs.
Oxford University Press, 2000.

[22] D. Ritirc, A. Biere, and M. Kauers. Column-wise verification of
multipliers using computer algebra. In D. Stewart and G. Weissenbacher,
editors, Formal Methods in Computer-Aided Design, FMCAD 2017,
pages 23–30. IEEE, 2017.

[23] D. Ritirc, A. Biere, and M. Kauers. A Practical Polynomial Calculus
for Arithmetic Circuit Verification. In A. Bigatti and M. Brain, editors,
3rd International Workshop on Satisfiability Checking and Symbolic
Computation (SC2’18), pages 61–76. CEUR-WS, 2018.

[24] N. Wetzler, M. Heule, and W. A. Hunt Jr. DRAT-trim: Efficient Checking
and Trimming Using Expressive Clausal Proofs. In C. Sinz and U. Egly,
editors, Intl. Conference on Theory and Applications of Satisfiability
Testing, volume 8561 of LNCS, pages 422–429. Springer, 2014.

[25] O. Wienand, M. Wedler, D. Stoffel, W. Kunz, and G. Greuel. An
Algebraic Approach for Proving Data Correctness in Arithmetic Data
Paths. In Computer Aided Verification, CAV, volume 5123 of LNCS,
pages 473–486. Springer, 2008.

[26] Wolfram Research, Inc. Mathematica, 2016. Version 10.4.

[27] C. Yu and M. Ciesielski. Formal Analysis of Galois Field Arithmetic
Circuits-Parallel Verification and Reverse Engineering. IEEE TCAD,
38(2):354–365, Feb 2019.

[28] C. Yu, M. J. Ciesielski, and A. Mishchenko. Fast Algebraic Rewriting
Based on And-Inverter Graphs. IEEE TCAD, 37(9):1907–1911, 2018.

http://www.singular.uni-kl.de
http://www.sca-verification.org/

