
Blockedness in Propositional Logic:
Are You Satisfied With Your Neighborhood?∗

Benjamin Kiesl Martina Seidl Hans Tompits Armin Biere
TU Wien, Austria JKU Linz, Austria TU Wien, Austria JKU Linz, Austria

kiesl@kr.tuwien.ac.at martina.seidl@jku.at tompits@kr.tuwien.ac.at biere@jku.at

Abstract

Clause-elimination techniques that simplify formu-
las by removing redundant clauses play an impor-
tant role in modern SAT solving. Among the types
of redundant clauses, blocked clauses are particu-
larly popular. For checking whether a clause C is
blocked in a formula F , one only needs to con-
sider the so-called resolution neighborhood of C,
i.e., the set of clauses that can be resolved with C.
Because of this, blocked clauses are referred to as
being locally redundant. In this paper, we discuss
powerful generalizations of blocked clauses that are
still locally redundant, namely set-blocked clauses
and super-blocked clauses. We furthermore present
complexity results for deciding whether a clause is
set-blocked or super-blocked.

1 Introduction
Every once in a while, you hear about neighbors who are just
not the kind of neighbors you would wish for. For instance,
the grumpy dude next door who starts mowing his lawn on
an early Sunday morning while you are still lying in bed. Or,
the student in the apartment below yours, who regularly de-
cides around midnight that now might be the perfect time for
listening to some not so calm rock music. Whatever it is that
makes them such pleasant neighbors, in case they decide to
leave your neighborhood, you rarely find anyone shedding
tears over their departure.

In this paper, we show that bad neighbors also play a sig-
nificant role in modern SAT solving. They might not rob you
of your well-earned sleep, but—rather subtly—they present
themselves in the form of locally redundant clauses. Here,
redundant means that we can remove these clauses from a
formula in conjunctive normal form without causing any sor-
row, i.e., without affecting the formula’s satisfiability. Local
means that we do not need to consider the whole formula
to find out that these clauses are redundant—it suffices to
consider only their resolution neighborhood, i.e., the set of
clauses they can be resolved with.

∗This work has been supported by the Austrian Science Fund
(FWF) under projects W1255-N23 and S11408-N23.

Among the types of locally redundant clauses, blocked
clauses [Kullmann, 1999] are of particular interest. Infor-
mally, a clauseC is blocked in a CNF-formula F if it contains
a literal l such that all possible resolvents of C upon l are tau-
tologies. The elimination of blocked clauses can significantly
boost the performance of SAT solvers [Manthey et al., 2013;
Järvisalo et al., 2010]. Moreover, blocked clauses yield the
basis for blocked-clause decomposition [Heule and Biere,
2013], a technique that splits a formula into two parts that
become solvable by blocked-clause elimination. Blocked-
clause decomposition is successfully used for gate extrac-
tion, for efficiently finding backbone variables, and for the
detection of implied binary equivalences [Iser et al., 2015;
Balyo et al., 2014]. The winner of the SATRace 2015 com-
petition, abcdSAT [Chen, 2015], uses blocked-clause decom-
position as core technology.

These success stories provide the motivation for having a
closer look at locally redundant clauses in general, and at
blocked clauses in particular. In this paper, we discuss pow-
erful generalizations of blocked clauses that are still locally
redundant: set-blocked clauses and super-blocked clauses.
The latter kind of clauses actually constitutes the most gen-
eral concept of a locally redundant clause. Rounding off the
picture, we furthermore discuss the complexity of deciding
whether a clause is set-blocked or super-blocked.

The rest of this paper is structured as follows. After intro-
ducing the necessary preliminaries in Section 2, we recapitu-
late popular kinds of locally redundant clauses in Section 3.
Afterwards, Section 4 contains our discussion of set-blocked
clauses and super-blocked clauses, and Section 5 contains
complexity results related to checking these redundancy no-
tions. Section 6 concludes our paper with an outlook on fu-
ture work.

This paper is an abridged version of a paper that ap-
peared in the proceedings of IJCAR 2016, the Eight Inter-
national Joint Conference on Automated Reasoning [Kiesl et
al., 2016].

2 Preliminaries
We consider propositional formulas in conjunctive normal
form (CNF), which are defined as follows. A literal is ei-
ther a variable x (a positive literal) or the negation ¬x of a
variable x (a negative literal). For a literal l, we define its
complement l̄ as ¬x if l = x and as x if l = ¬x. Accordingly,

for a set L of literals, we define L̄ = {l̄ | l ∈ L}. A clause
is a disjunction of literals. A formula in CNF is a conjunc-
tion of clauses. We identify a clause with a set of literals and
a formula with a set of clauses. A tautology is a clause that
contains both l and l̄ for some literal l. For a literal, clause, or
formula F , var(F) denotes the set of variables occurring in
F . For convenience, we often treat var(F) as a variable if F
is a literal. For a set L of literals and a formula F , we denote
by FL the set of all clauses in F that contain a literal of L,
i.e., FL = {C | C ∈ F,C ∩ L 6= ∅}. In case L is a singleton
set of the form {l}, we sometimes write Fl instead of F{l}.

An assignment is a partial function from a set of variables
to the truth values 1 (true) and 0 (false). Given an assign-
ment α and a literal l, αl is the assignment obtained from
α by flipping the truth value of l, i.e., αl(v) = 1 − α(v) if
v = var(l) and αl(v) = α(v) otherwise. A literal l is sat-
isfied by an assignment α if l is positive and α(var(l)) = 1
or if it is negative and α(var(l)) = 0. A clause is satisfied
by an assignment α if it contains a literal that is satisfied by
α. Finally, a formula is satisfied by an assignment α if all of
its clauses are satisfied by α. A formula is satisfiable if there
exists an assignment that satisfies it. Two formulas are logi-
cally equivalent if they are satisfied by the same assignments.
Two formulas F and F ′ are satisfiability equivalent if F is
satisfiable if and only if F ′ is satisfiable.

Given two clauses C and D together with a literal l ∈ C
such that l̄ ∈ D, the clause (C \ {l})∪ (D \ {l̄}) is called the
resolvent of C and D upon l. Given a formula F and a clause
C, the resolution neighborhood, RNF (C), of C in F is the
set of all clauses in F that can be resolved with C:

RNF (C) = {D ∈ F | ∃l ∈ D such that l̄ ∈ C}.
The variables in var(C) are called local variables
and the variables in var(RNF (C)) \ var(C) are the
external variables, denoted by extF (C).

Next, we recapitulate the formal notion of clause redun-
dancy [Kiesl et al., 2016]. Intuitively, a clause C is redundant
w.r.t. a formula F if neither its addition to F nor its removal
from F changes the satisfiability or unsatisfiability of F .
Definition 1 A clause C is redundant w.r.t. a formula F if the
formulas F \ {C} and F ∪ {C} are satisfiability equivalent.
A redundancy property is a set of pairs (F,C) where C is
redundant w.r.t. F . Finally, for two redundancy properties P1

and P2, P1 is more general than P2 if P2 ⊆ P1. Accordingly,
P1 is strictly more general than P2 if P2 ⊂ P1.
Consider, for example, the formula F = {(a∨b), (¬a∨¬b)}.
The clause C = (¬a ∨ ¬b) is redundant w.r.t. F since the
formulas F \ {C} and F ∪ {C} are satisfiability equivalent
(although they are not logically equivalent). Moreover, the
set {(F,C) | F is a formula and C is a tautology} is a redun-
dancy property since for every formula F and every tautology
C, F \ {C} is satisfiability equivalent to F ∪ {C}.

Note that C is not redundant w.r.t. F if and only if F \{C}
is satisfiable and F ∪ {C} is unsatisfiable. To prove that C
is redundant w.r.t. F , it therefore suffices to show that the
satisfiability of F \{C} implies that of F ∪{C}. Redundancy
properties as defined above yield not only the basis for clause-
elimination but also for clause-addition procedures [Järvisalo
et al., 2012].

3 Local Redundancy Properties
In this section, we discuss some well-known redundancy
properties from the literature to motivate the definition of so-
called local redundancy properties. The simplest example
of a redundant clause is a tautology. As every assignment
satisfies exactly one of the two complementary literals con-
tained in a tautology, tautologies are always true and there-
fore redundant w.r.t. every formula. Because of this, the set
{(F,C) | F is a formula and C is a tautology} is a redun-
dancy property. To decide whether a clause is a tautology
w.r.t. a formula F , we only need to look at C itself.

Another example for redundant clauses are so-called
clauses with pure literals [Davis and Putnam, 1960]. A lit-
eral is pure in a formula if its complementary literal does
not occur in the formula. In contrast to tautologies, clauses
with pure literals are not guaranteed to be satisfied by ev-
ery assignment. Still, we can easily see that they are redun-
dant: Let C be a clause containing a literal l that is pure in
a formula F and assume we have some assignment α that
satisfies F \ {C} but falsifies C. We can then turn α into
a satisfying assignment αl of F ∪ {C} by flipping the truth
value of l. None of the clauses in F \ {C} can be falsified
by this since they do not contain the literal l̄, which is the
only literal whose truth value is negatively affected by setting
l to true. The corresponding redundancy property is the set
{(F,C) | C contains a literal that is pure in F}.

The redundancy of a clause with pure literals is based on
the fact that we can make one of its literals true without fal-
sifying other clauses. In the case of pure literals, this is
guaranteed since there are no clauses that contain the com-
plementary literal. The more general blocked clauses [Kull-
mann, 1999] guarantee redundancy even in cases where other
clauses might contain the complementary literal:

Definition 2 A clause C is blocked by a literal l ∈ C in a
formula F if, for each clause D ∈ Fl̄, C ∪ (D \ {l̄}) is a
tautology.

We say that a clause is blocked in F if one of its literals blocks
it in F . The following is an example of a blocked clause:

Example 1 Consider the clause C = (a∨b) and the formula
F = {(¬a ∨ c), (¬b ∨ ¬a)}. The literal b blocks C in F
since the only clause in F that contains ¬b is the clause D =
(¬b ∨ ¬a), and C ∪ (D \ {l̄}) = (a ∨ b ∨ ¬a) is a tautology.

To see that blocked clauses are redundant, let C be a clause
that is blocked by a literal l in a formula F and assume that
some assignment α satisfies F \ {C} but falsifies C. Like
with pure literals, we can then easily turn α into a satisfying
assignment αl of C by flipping the truth value of l. This flip-
ping could possibly falsify some of the clauses in F \ {C}
that contain l̄, but the condition that l blocks C guarantees
that these clauses stay satisfied: Let D be such a clause that
contains l̄. Then, since C ∪ (D \ {l̄}) is a tautology, either D
is itself a tautology (and therefore trivially satisfied) or it con-
tains a literal l′ 6= l such that l̄′ ∈ C. In the latter case, since
α falsifies C, it must satisfy l′ and since αl agrees with α on
all literals but l, αl is a satisfying assignment of F ∪ {C}.
Hence, C is redundant w.r.t. F . We illustrate this argument
on a concrete example:

a ∨ bx ∨ b ∨ ¬a
¬b ∨ ¬x
¬b ∨ a

Figure 1: The clause (a ∨ b) from Example 3 and its resolution
neighborhood.

Example 2 Consider again the clause C = (a ∨ b) and the
formula F = {(¬a ∨ c), (¬b ∨ ¬a)} from Example 1. We
already know that b blocks C in F . Now, let α denote the
assignment that falsifies the variables a, b, and c. Clearly,
α satisfies F but falsifies C. We would expect that the as-
signment αb, obtained from α by flipping the truth value of b,
satisfies not only C but also all clauses of F . This is indeed
the case. The only clause that could have been falsified by
flipping the truth value of b is the clause D = (¬b∨¬a). But
D stays true since αb satisfies ¬a, which is not a coincidence:
C ∪ (D \ {¬b}) is a tautology and must therefore be satisfied
by αb. Moreover, we know that α falsifies C. Therefore, αb

must satisfy D \ {¬b} = (¬a).

A closer look at blocked clauses reveals two things. First,
the redundancy property of blocked clauses (i.e., the set
{(F,C) | C is blocked in F}) is more general than the redun-
dancy properties of tautologies and pure literals. If a clauseC
is a tautology, then C ∪ (D \ {l}) is a tautology for every D,
implying that C is blocked. If C contains a literal that is pure
in a formula F , then Fl̄ = ∅ and thus it vacuously holds that
C ∪ (D \ {l}) is a tautology for all D ∈ Fl̄. Therefore, tau-
tologies and clauses with pure literals are blocked clauses.

Second, to detect whether a clause C is blocked in a for-
mula F , it suffices to consider only those clauses of F that
contain a literal l̄ such that l ∈ C, i.e., the clauses in RNF (C).
The question arises whether there exist redundant clauses that
are not blocked but whose redundancy can be identified by
considering only their resolution neighborhood. As shown in
the next example, this is indeed the case:

Example 3 Consider C = (a ∨ b) and let F be a formula
such that RNF (C) = {(x∨ b∨¬a), (¬b∨¬x), (¬b∨a)} (cf.
Figure 1). Clause C is not blocked in F but redundant: Sup-
pose there exists an assignment α that satisfies F but falsifies
C. Then, α must satisfy either x or ¬x. If α(x) = 1, then C
can be satisfied by flipping the truth value of a, resulting in
assignment α′ = αa. Since α′(x) = 1, the clause (x∨b∨¬a)
stays satisfied. In contrast, if α(x) = 0, we can satisfy C by
the assignment α′′, obtained from α by flipping the truth val-
ues of both a and b: The fact that α′′(b) = 1 guarantees
that (x ∨ b ∨ ¬a) stays satisfied whereas α′′(x) = 0 and
α′′(a) = 1 guarantee that both (¬b ∨ ¬x) and (¬b ∨ a) stay
satisfied. Since flipping the truth values of literals in C does
not affect the truth of clauses outside the resolution neigh-
borhood RNF (C) of C, we obtain in both cases a satisfying
assignment of F .

If a clause C is redundant w.r.t. a formula F and this re-
dundancy can be identified by considering only its resolution
neighborhood in F , then C is redundant w.r.t. every formula
F ′ in which it has the same resolution neighborhood as in F .
Such a redundancy is called local [Kiesl et al., 2016]:

Definition 3 A redundancy property P is local if, for ev-
ery clause C and any two formulas F, F ′ with RNF (C) =
RNF ′(C), it holds that either {(F,C), (F ′, C)} ⊆ P or
{(F,C), (F ′, C)} ∩ P = ∅.
In the next section, we present redundancy properties that are
strictly more general than blocked clauses while still being
local.

4 Set-Blocking and Super-Blocking
We now turn our attention to the local redundancy proper-
ties of set-blocked clauses and super-blocked clauses [Kiesl
et al., 2016]. Both strictly generalize blocked clauses. Super-
blocked clauses even constitute the most general local redun-
dancy property. The idea behind set-blocked clauses is to al-
low for flipping the truth values of more than one literal:

Definition 4 Let F be a formula and C a clause. A non-
empty set L ⊆ C blocks C in F if, for each clause D ∈ FL̄,
(C \ L) ∪ L̄ ∪D is a tautology.

We say that a clause is set-blocked in F if there exists a
set that blocks it in F . Moreover, we write SET for the set
{(F,C) | C is set-blocked in F}.
Example 4 Let C = (a ∨ b) and F = {(¬a ∨ b), (¬b ∨ a)}.
Then, C is set-blocked by L = {a, b}: Clearly, FL̄ = F
and C \ L = ∅. Therefore, for D1 = (¬a ∨ b) we get that
(C \ L) ∪ L̄ ∪ D1 = (a ∨ b ∨ ¬a) is a tautology and for
D2 = (¬b∨ a) we get that (C \L)∪ L̄∪D2 = (a∨ b∨¬b)
is a tautology as well. Note that C is not blocked in F .

Given an assignment α that satisfies F \ {C} but falsifies C,
the existence of a blocking set L guarantees that we can turn
α into a satisfying assignment αL of F ∪{C} by flipping the
truth values of all the literals in L. Since (C \ L) ∪ L̄ ∪D is
a tautology for every D ∈ FL̄, at least one of the following
holds: (i) D is itself a tautology and thus satisfied by αL, or
(ii) D contains a literal of L which is satisfied by αL since
its truth value is flipped, or (iii) D contains a literal l which is
satisfied since l̄ ∈ C is falsified by α and the truth value of l is
not flipped. Hence, αL satisfies F ∪{C} and thus set-blocked
clauses are redundant.

In order for a clause to be set-blocked, it is required that
every assignment that satisfies F \ {C} but falsifies C can be
turned into a satisfying assignment of F \ {C} by flipping
the truth values of the literals in the blocking set L. This
involves some inflexibility as we are not allowed to choose
different blocking sets for different assignments. Consider
the following example:

Example 5 Let C = (a∨b) and F = {(¬a∨x), (¬b∨¬x)}.
The clause C is not set-blocked in F but redundant w.r.t. F .
Suppose an assignment α satisfies F but falsifies C. We can
easily turn α into a satisfying assignment of F ∪ {C}: If α
satisfies x, flip the truth value of a. If α falsifies x, flip the
truth value of b. In both cases, all clauses in F stay satisfied.

We obtain a more general redundancy property if we allow
blocking sets to depend on the assignment at hand. In par-
ticular, on the assignment over the external variables. This
gives rise to the notion of super-blocking. In the following,

for a formula F and an assignment α, we denote by F |α the
set of clauses obtained from F by removing all clauses that
are satisfied by α. Recall that the external variables, extF (C),
are the variables that are contained in RNF (C) but not in C.

Definition 5 A clause C is super-blocked in a formula F if,
for every assignment τ over the variables in extF (C), C is
set-blocked in F |τ .

We write SUP for the set {(F,C) | C is super-blocked in F}.
For instance, the clauseC in Example 5 is not set-blocked but
super-blocked in F since it is set-blocked in F |α and F |α′ for
α(x) = 1 and α′(x) = 0. Likewise for the clause C and the
corresponding formula F in Example 3. By removing the
clauses that are satisfied by a certain assignment, we use the
fact that the truth of clauses in the resolution neighborhood
cannot only be established by literals whose variables occur
in C, but also by the truth of literals over the external vari-
ables. Finally, note that if a clause is set-blocked in F , then
it is also set-blocked in every F ′ ⊆ F and thus in every F |α.
Hence we get:

Proposition 1 Super-blocking is strictly more general than
set-blocking, i.e., it holds that SET ⊂ SUP.

One can show that super-blocked clauses constitute the most
general local redundancy property [Kiesl et al., 2016]:

Theorem 2 The set SUP is the most general local redun-
dancy property.

5 Complexity Results
In this section, we discuss complexity results for deciding
whether a clause is set-blocked or super-blocked. We fur-
thermore consider the complexity of deciding restricted vari-
ants of set-blocking and super-blocking that are obtained by
bounding the size of blocking sets. As the redundancy prop-
erties of set-blocked clauses and super-blocked clauses are
local, we consider only a clause and its resolution neighbor-
hood as input to the corresponding decision problems.

Formally, the set-blocking problem is the following deci-
sion problem: Given a clause C and a formula F such that
every D ∈ F contains a literal l̄ with l ∈ C, decide whether
C is set-blocked in F . The super-blocking problem is defined
analogously.

Clearly, the set-blocking problem is in NP: For a non-
empty literal set L ⊆ C, we can check in polynomial time
whether it blocks C in F—we just have to iterate over all
clauses in FL̄ and check whether (C \ L) ∪ L̄ ∪ D is a tau-
tology. The following is thus an NP-procedure for deciding
set-blockedness: Guess a non-empty set L ⊆ C and check
if it blocks C in F . Hardness for the complexity class NP
can be shown via a reduction from the satisfiability problem
of propositional logic. The set-blocking problem is thus NP-
complete.

Deciding whether a clause is super-blocked is harder:
Membership and hardness for ΠP

2 can respectively be shown
by an encoding to and a reduction from 2-QBF (∀∃-SAT).
The intuition behind this is that super-blocking is “for-all-
exists” in nature—a clause C is super-blocked in a formula
F if for all assignments α over the external variables, there

|L| unrestricted |L| ≤ k for k ∈ N+

Super-Blocking ΠP
2 -complete co-NP-complete

Set-Blocking NP-complete P

Table 1: Summary of Complexity Results

exists a non-empty set L ⊆ C of literals such that C is set-
blocked in F |α.

Although the set-blocking problem is NP-complete in
the general case, we can obtain a restricted variant of set-
blocking by only allowing blocking sets whose cardinalities
are bounded by a constant. Then, the resulting problem of
testing whether a clause C is blocked by some non-empty set
L ⊆ C, whose size is at most k for k ∈ N+, turns out to be
polynomial: For a finite set C and k ∈ N+, there are only
polynomially many non-empty subsets L ⊆ C with |L| ≤ k.
To see this, observe (by basic combinatorics) that the ex-
act number of such subsets is given by the sum

∑k
i=1

(|C|
i

)
,

which reduces to a polynomial with degree at most k.
Hence, the number of non-empty subsets L ⊆ C with

|L| ≤ k is polynomial in the size of C. To decide whether
a clause is set-blocked by a set of size at most k we thus
just have to iterate over polynomially many candidate sets
and check, in polynomial time, whether they block C. Like-
wise, bounding the size of the blocking sets in the definition
of super-blocked clauses by a constant makes the correspond-
ing decision problem simpler: Deciding super-blocking for
bounded blocking sets is co-NP-complete.

The complexity results are summarized in Ta-
ble 1 (from [Kiesl et al., 2016]). Note that the cardinality |L|
of blocking sets is of course bounded by the length of the
clauses. This is particularly interesting for formula instances
with (uniform) constant or maximal clause length.

6 Conclusion

We discussed local redundancy properties and considered set-
blocked clauses and super-blocked clauses, which generalize
blocked clauses while still being locally redundant, meaning
that their redundancy can be identified by considering only
their resolution neighborhood. In fact, super-blocked clauses
constitute the most general local redundancy property. De-
ciding whether a clause is set-blocked is NP-complete and
deciding whether a clause is super-blocked is ΠP

2 -complete.
Bounding the size of the blocking sets by a constant makes
the corresponding decision problems go down one level in
the polynomial hierarchy. The locality of redundancy prop-
erties is particularly interesting when dealing with formu-
las in which the resolution neighborhoods of clauses are
small compared to the size of the whole formula. Concern-
ing future work, we plan to implement clause-elimination
techniques based on set-blocked clauses and super-blocked
clauses. Moreover, we want to investigate whether these no-
tions can be lifted to the level of quantified Boolean formulas.

References
[Balyo et al., 2014] Tomas Balyo, Andreas Fröhlich, Marijn

Heule, and Armin Biere. Everything you always wanted
to know about blocked sets (but were afraid to ask). In
Carsten Sinz and Uwe Egly, editors, Proc. of the 17th Int.
Conference on Theory and Applications of Satisfiability
Testing (SAT 2014), volume 8561 of LNCS, pages 317–
332, Cham, 2014. Springer.

[Chen, 2015] Jingchao Chen. Fast blocked clause decompo-
sition with high quality. CoRR, abs/1507.00459, 2015.

[Davis and Putnam, 1960] Martin Davis and Hilary Putnam.
A computing procedure for quantification theory. Journal
of the ACM, 7(3):201–215, 1960.

[Heule and Biere, 2013] Marijn Heule and Armin Biere.
Blocked clause decomposition. In Ken McMillan, Aart
Middeldorp, and Andrei Voronkov, editors, Proc. of the
19th Int. Conference on Logic for Programming, Artificial
Intelligence, and Reasoning (LPAR-19), volume 8312 of
LNCS, pages 423–438, Heidelberg, 2013. Springer.

[Iser et al., 2015] Markus Iser, Norbert Manthey, and
Carsten Sinz. Recognition of nested gates in CNF for-
mulas. In Marijn Heule and Sean Weaver, editors, Proc.
of the 18th Int. Conference on Theory and Applications of
Satisfiability Testing (SAT 2015), volume 9340 of LNCS,
pages 255–271, Cham, 2015. Springer.

[Järvisalo et al., 2010] Matti Järvisalo, Armin Biere, and
Marijn Heule. Blocked clause elimination. In Javier Es-
parza and Rupak Majumdar, editors, Proc. of the 16th Int.
Conference on Tools and Algorithms for the Construction
and Analysis of Systems (TACAS 2010), volume 6015 of
LNCS, pages 129–144, Heidelberg, 2010. Springer.

[Järvisalo et al., 2012] Matti Järvisalo, Marijn Heule, and
Armin Biere. Inprocessing rules. In Bernhard Gramlich,
Dale Miller, and Uli Sattler, editors, Proc. of the 6th Int.
Joint Conference on Automated Reasoning (IJCAR 2012),
volume 7364 of LNCS, pages 355–370, Heidelberg, 2012.
Springer.

[Kiesl et al., 2016] Benjamin Kiesl, Martina Seidl, Hans
Tompits, and Armin Biere. Super-blocked clauses. In
Nicola Olivetti and Ashish Tiwari, editors, Proc. of
the 8th Int. Joint Conference on Automated Reason-
ing (IJCAR 2016), volume 9706 of LNCS, pages 45–61,
Cham, 2016. Springer.

[Kullmann, 1999] Oliver Kullmann. On a generalization of
extended resolution. Discrete Applied Mathematics, 96-
97:149–176, 1999.

[Manthey et al., 2013] Norbert Manthey, Tobias Philipp, and
Christoph Wernhard. Soundness of inprocessing in clause
sharing SAT solvers. In Matti Järvisalo and Allen
Van Gelder, editors, Proc. of the 16th Int. Conference
on Theory and Applications of Satisfiability Testing (SAT
2013), volume 7962 of LNCS, pages 22–39, Heidelberg,
2013. Springer.

	Introduction
	Preliminaries
	Local Redundancy Properties
	Set-Blocking and Super-Blocking
	Complexity Results
	Conclusion

