
Logical Methods in Computer Science
Vol. 14(4:3)2018, pp. 1–23
https://lmcs.episciences.org/

Submitted Feb. 21, 2017
Published Oct. 24, 2018

LOCAL REDUNDANCY IN SAT:

GENERALIZATIONS OF BLOCKED CLAUSES

BENJAMIN KIESL 1, MARTINA SEIDL 2, HANS TOMPITS 1, AND ARMIN BIERE 2

1 Institute of Logic and Computation, TU Wien
e-mail address: kiesl@kr.tuwien.ac.at

e-mail address: tompits@kr.tuwien.ac.at

2 Institute for Formal Models and Verification, Johannes Kepler University
e-mail address: martina.seidl@jku.at

e-mail address: biere@jku.at

Abstract. Clause-elimination procedures that simplify formulas in conjunctive normal
form play an important role in modern SAT solving. Before or during the actual solving
process, such procedures identify and remove clauses that are irrelevant to the solving result.
These simplifications usually rely on so-called redundancy properties that characterize cases
in which the removal of a clause does not affect the satisfiability status of a formula. One
particularly successful redundancy property is that of blocked clauses, because it generalizes
several other redundancy properties. To find out whether a clause is blocked—and therefore
redundant—one only needs to consider its resolution environment, i.e., the clauses with
which it can be resolved. For this reason, we say that the redundancy property of blocked
clauses is local. In this paper, we show that there exist local redundancy properties that
are even more general than blocked clauses. We present a semantic notion of blocking
and prove that it constitutes the most general local redundancy property. We furthermore
introduce the syntax-based notions of set-blocking and super-blocking, and show that the
latter coincides with our semantic blocking notion. In addition, we show how semantic
blocking can be alternatively characterized via Davis and Putnam’s rule for eliminating
atomic formulas. Finally, we perform a detailed complexity analysis and relate our novel
redundancy properties to prominent redundancy properties from the literature.

Key words and phrases: SAT, propositional logic, blocked clauses, redundancy properties.
This is an extended version of the paper “Super-Blocked Clauses” [19] which has appeared in the

Proceedings of the 8th International Joint Conference on Automated Reasoning (IJCAR 2016).
This work has been supported by the Austrian Science Fund (FWF) under projects W1255-N23 and

S11408-N23.

LOGICAL METHODSl IN COMPUTER SCIENCE DOI:10.23638/LMCS-14(4:3)2018
c© LOCAL REDUNDANCY IN SAT
CC© Creative Commons

https://lmcs.episciences.org/
http://creativecommons.org/about/licenses

2 LOCAL REDUNDANCY IN SAT

Introduction

Over the last two decades, there has been enormous progress in the performance of SAT
solvers, i.e., decision procedures for the satisfiability problem of propositional logic (SAT) [4].
As a consequence, SAT solvers have become attractive reasoning engines in many user
domains like the verification of hardware and software [29] as well as in the backends of
other reasoning tools like SMT solvers [2], QBF solvers [15, 27], or even first-order theorem
provers [26]. In such applications, however, SAT solvers often reach their limits, motivating
the quest for more efficient SAT techniques.

One successful approach to improving the performance of SAT solvers is the use of
clause-elimination procedures. Either before (“preprocessing”) or during the actual solving
(“inprocessing”) such procedures simplify a given formula in conjunctive normal form (CNF)
by removing clauses that are irrelevant to the outcome of the solving process [1, 5, 9, 11, 14,
17, 18, 24]. To distinguish the irrelevant from the relevant, they usually rely on so-called
redundancy properties that characterize cases in which certain clauses can be removed from a
formula without affecting its satisfiability status [11, 18]. For instance, a clause-elimination
procedure that is based on the simple redundancy property of tautologies identifies and
removes tautological clauses—clauses that contain two complementary literals. As these
clauses are true regardless of a particular truth assignment, their removal does not influence
the outcome of the solving process.

A particularly useful redundancy property is that of blocked clauses [16, 21]. Informally,
a clause C is blocked in a CNF formula F if it contains a literal l such that all possible
resolvents of C upon l (with clauses from F) are tautologies. The elimination of blocked
clauses considerably improves the performance of modern SAT solvers [16, 24]. Moreover,
blocked clauses provide the basis for blocked-clause decomposition, a technique that splits a
CNF formula into two parts that become solvable by blocked-clause elimination [9]. Blocked-
clause decomposition is successfully used for gate extraction, for efficiently finding backbone
variables, and for the detection of implied binary equivalences [1, 14]. The winner of the
SAT-Race 2015 competition, the solver abcdSAT [5], uses blocked-clause decomposition as
core technology.

Part of the reason for the success of blocked clauses is the fact that they generalize
several other well-known redundancy properties such as those of pure literals [6] or the
above-mentioned tautologies. This means that a tool for blocked-clause elimination implicitly
performs the elimination of pure literals and tautologies (and even more aggressive formula
simplifications on top). A closer look at the definition of blocked clauses reveals that to
check whether a clause is blocked, it suffices to consider only its resolution environment, i.e.,
the clauses with which it can be resolved. Because of this, we say that the blocked-clauses
redundancy property is local. Their locality aspect makes blocked clauses particularly
effective when dealing with large formulas in which the resolution environments of clauses
are small.

These success stories motivate us to have a closer look at local redundancy properties in
general and at blocked clauses in particular. We show in this paper that blocked clauses do
not constitute the most general concept of a local redundancy property. In particular, we first
present some observations on blocked clauses and provide examples of redundant clauses that
are not blocked, yet their redundancy can be identified by considering only their resolution
environment. We next use these observations to derive a semantic notion of blocking for
which we show that it constitutes the most general local redundancy property. To bring

LOCAL REDUNDANCY IN SAT 3

this semantic notion of blocking closer to practical SAT solving, we then introduce the
syntax-based redundancy properties of set-blocked clauses and super-blocked clauses—both
are strictly more general than traditional blocked clauses and for super-blocking we prove
that it coincides with our semantic blocking notion.

After introducing the new redundancy properties, we present an alternative syntactic
characterization of semantic blocking based on Davis and Putnam’s rule for eliminating
atomic formulas [6]—a resolution-based rewriting rule that is also known as variable elimina-
tion [7] in the context of SAT solving. This characterization further clarifies the connection
between traditional blocking and semantic blocking. We then proceed by analyzing the
complexity of deciding whether a clause is redundant with respect to our novel redundancy
properties. Our complexity analysis gives rise to a whole family of redundancy properties
that are obtained by restricting the notions of set-blocking and super-blocking in certain
ways. Finally, we outline the relationship of the new redundancy properties to prominent
redundancy properties from the literature before concluding with an outlook to future work.

A preliminary version of this paper appeared in the proceedings of IJCAR 2016 [19].
Besides several extensions of the text, this version now includes the full proofs of our
complexity results while the conference paper [19] contained only proof sketches. In addi-
tion, we introduce an alternative characterization of semantic blocking based on variable
elimination (cf. Section 5).

1. Preliminaries

We consider propositional formulas in conjunctive normal form (CNF) which are defined as
follows. A literal is either a Boolean variable x (a positive literal) or the negation ¬x of a
variable x (a negative literal). For a literal l, we define l̄ = ¬x if l = x and l̄ = x if l = ¬x.
Accordingly, for a set L of literals, we define L̄ = {l̄ | l ∈ L}. A clause is a disjunction of
literals. A formula is a conjunction of clauses. We identify a clause with a set of literals and
a formula with a set of clauses. A tautology is a clause that contains both l and l̄ for some
literal l. For a literal, clause, or formula E, var(E) denotes the set of variables occurring
in E. For convenience, we often treat var(E) as a variable if E is a literal. For a set L of
literals and a formula F , we denote by FL the set of all clauses in F that contain a literal of
L, i.e., FL = {C | C ∈ F and C ∩ L 6= ∅}. In case L is a singleton set of the form {l}, we
sometimes write Fl instead of F{l}.

An assignment is a function from a set of variables to the truth values 1 (true) and 0
(false). An assignment is total with respect to a formula if it assigns a truth value to all
variables occurring in the formula. Unless stated otherwise, we do not assume assignments
to be total. Assignments are extended from variables to literals by defining τ(l) = τ(var(l))
if the literal l is positive and by defining τ(l) = 1 − τ(var(l)) if l is negative. Given an
assignment τ that assigns a truth value to a literal l, we denote by τl the assignment obtained
from τ by interchanging (“flipping”) the truth value of l, i.e., by defining τl(x) = 1− τ(x) if
x = var(l) and τl(x) = τ(x) otherwise.

A literal l is satisfied by an assignment τ if τ(l) = 1. A clause is satisfied by an
assignment τ if it contains a literal that is satisfied by τ . Finally, a formula is satisfied by
an assignment τ if all of its clauses are satisfied by τ . A formula is satisfiable if there exists
an assignment that satisfies it. Two formulas are logically equivalent if they are satisfied by
the same total assignments. Two formulas F and F ′ are satisfiability equivalent if either
both F and F ′ are satisfiable or both F and F ′ are unsatisfiable. We sometimes say that an

4 LOCAL REDUNDANCY IN SAT

assignment τ falsifies a literal l if τ(l) = 0. Accordingly τ falsifies a clause C if τ falsifies all
literals of C.

Given two clauses C and D together with a literal l ∈ C such that l̄ ∈ D, the clause
(C \ {l}) ∪ (D \ {l̄}) is the resolvent of C and D upon l and denoted by C ⊗l D. Given a
formula F and a clause C, the resolution environment of C in F is the set of all clauses in
F that can be resolved with C:

Definition 1.1. The resolution environment of a clause C with respect to a formula F is
the clause set envF (C) = {D ∈ F | ∃ l ∈ D such that l̄ ∈ C}.

Given a formula F and a clause C, we call the variables in var(C) the local variables and
the variables in var(envF (C)) \ var(C) the external variables. We denote the set of external
variables by extF (C).

Next, we formally introduce redundancy of clauses. Intuitively, a clause C is redundant
with respect to a formula F if neither its addition to F nor its removal from F changes the
satisfiability or unsatisfiability of F .

Definition 1.2. A clause C is redundant with respect to a formula F if F \ {C} and
F ∪ {C} are satisfiability equivalent. A redundancy property is a set of pairs (F,C) where C
is redundant with respect to F . Finally, for two redundancy properties P1 and P2, P1 is
more general than P2 if P2 ⊆ P1, i.e., if every pair (F,C) ∈ P2 is also contained in P1. If
P2 ⊂ P1, then P1 is strictly more general than P2.

Example 1.3. Consider the formula F = {(a∨ b), (¬a∨¬b)}. The clause C = (¬a ∨ ¬b) is
redundant with respect to F since F \{C} and F ∪{C} are satisfiability equivalent (although
they are not logically equivalent). Moreover, the set

{(F,C) | F is a formula and C is a tautology}
is a redundancy property since for every formula F and every tautology C, F \ {C} and
F ∪ {C} are satisfiability equivalent.

Note that a clause C is not redundant with respect to a formula F if and only if F \ {C} is
satisfiable and F ∪ {C} is unsatisfiable. To prove that C is redundant with respect to F ,
it therefore suffices to show that satisfiability of F \ {C} implies satisfiability of F ∪ {C}.
Redundancy properties as defined above yield the basis not only for clause-elimination but
also for clause-addition procedures [18].

2. Observations on Blocked Clauses

Following Heule et al. [11] we recapitulate the definition of blocked clauses. In the rest of
the paper, we refer to this kind of blocked clauses as literal-blocked clauses. Motivated by
the examples given in this section, we then generalize this traditional notion of blocking to
more powerful redundancy properties.

Definition 2.1. A clause C is blocked by a literal l ∈ C in a formula F if C ∪ (D \ {l̄}) is a
tautology for each clause D ∈ Fl̄. A clause C is literal-blocked in F if there exists a literal
that blocks C in F . By BC we denote the set {(F,C) | C is literal-blocked in F}.

Example 2.2. Consider the formula F = {(¬a ∨ c), (¬b ∨ ¬a)} and the clause C = (a ∨ b).
The literal b blocks C in F since the only clause in F that contains ¬b is the clause D with
D = (¬b ∨ ¬a) and further C ∪ (D \ {l̄}) = (a ∨ b ∨ ¬a) is a tautology.

LOCAL REDUNDANCY IN SAT 5

Note that this definition of literal-blocked clauses differs slightly from Kullman’s original
definition [21]. The original definition requires that all resolvents of C upon a literal l are
tautologies. However, it is not necessary to remove l from C ∪ (D \ {l̄})—as would be the
case in the resolvent of C and D—to guarantee redundancy of literal-blocked clauses. If l is
not removed from C, every tautology C is also a literal-blocked cause, which is not the case
for the original definition.

Proposition 2.3. BC is a redundancy property.

Proposition 2.3 paraphrases results from Heule et al. [11] and actually follows from our
present results given later on (namely from Proposition 4.3 and Corollary 4.9). To see that
blocked clauses are redundant, let C be a clause that is blocked by a literal l in a formula F
and assume that some assignment τ satisfies F \ {C} but falsifies C. We can then easily
turn τ into a satisfying assignment τl of C by flipping the truth value of l.

This flipping could only possibly falsify some of the clauses in F \ {C} that contain l̄,
but the condition that l blocks C guarantees that these clauses stay satisfied: Let D be
such a clause that contains l̄. Then, since C ∪ (D \ {l̄}) is a tautology, either D is itself a
tautology (and therefore trivially satisfied) or it contains a literal l′ 6= l such that l̄′ ∈ C. In
the latter case, since τ falsifies C, it must satisfy l′ and since τl agrees with τ on all literals
but l, τl is a satisfying assignment of F ∪ {C}. Hence, C is redundant with respect to F .

Next, we illustrate with an example how a satisfying assignment of F ∪ {C} can be
obtained from one of F \ {C} [11]. This approach is used to obtain a satisfying assignment
of the original formula when literal-blocked clauses have been removed during pre- or
inprocessing: Suppose a SAT solver gets an input formula F and removes literal-blocked
clauses to obtain a simplified formula F ′. The solver then proceeds by searching for a
satisfying assignment of F ′. Once it has found such an assignment, it can easily turn it into
a satisfying assignment of the original formula F .

Example 2.4. Consider again the formula F = {(¬a ∨ c), (¬b ∨ ¬a)} and the clause
C = (a ∨ b) from Example 2.2. We already know that b blocks C in F . So, let τ denote the
assignment that falsifies the variables a, b, and c. Clearly, τ satisfies F but falsifies C. Now,
the assignment τb, obtained from τ by flipping the truth value of b, satisfies not only C but
also all clauses of F : The only clause that could have been falsified by flipping the truth
value of b is (¬b ∨ ¬a). But, since τ satisfies ¬a and τb agrees with τ on all variables except
b, τb satisfies F ∪ {C}.

Literal-blocked clauses generalize many other redundancy properties like pure literal or
tautology [11]. One of their particularly important properties is that for testing whether
some clause C is literal-blocked in a formula F it suffices to consider only those clauses of F
that can be resolved with C, i.e., the clauses in the resolution environment envF (C) of C.

This raises the question whether there exist redundant clauses that are not blocked but
whose redundancy can be identified by considering only their resolution environment. As
shown in the next example, this is indeed the case:

a ∨ bx ∨ b ∨ ¬a
¬b ∨ ¬x
¬b ∨ a

Figure 1: The clause (a ∨ b) from Example 2.5 and its resolution environment.

6 LOCAL REDUNDANCY IN SAT

Example 2.5. Let C = (a∨ b) and F an arbitrary formula with the resolution environment
envF (C) = {(x∨ b∨¬a), (¬b∨¬x), (¬b∨ a)} (cf. Fig. 1). The clause C is not literal-blocked
in F but redundant: Suppose there exists an assignment τ that satisfies F but falsifies C.
Then, τ must satisfy either x or ¬x. If τ(x) = 1, then C can be satisfied by flipping the
truth value of a, resulting in assignment τ ′ = τa. Since τ ′(x) = 1, the clause (x ∨ b ∨ ¬a)
stays satisfied. In contrast, if τ(x) = 0, we can satisfy C by the assignment τ ′′ obtained
from τ by flipping the truth values of both a and b: The fact that τ ′′(b) = 1 guarantees that
(x ∨ b ∨ ¬a) stays satisfied whereas τ ′′(x) = 0 and τ ′′(a) = 1 guarantee that both (¬b ∨ ¬x)
and (¬b∨ a) stay satisfied. Since flipping the truth values of literals in C does not affect the
truth of clauses outside the resolution environment envF (C) of C, we obtain in both cases a
satisfying assignment of F .

3. A Semantic Notion of Blocking

In the examples of the preceding section, when arguing that a clause C is redundant with
respect to some formula F , we showed that every assignment τ that satisfies F \ {C} but
falsifies C can be turned into a satisfying assignment τ ′ of F ∪ {C} by flipping the truth
values of certain literals in C. Since this flipping only affects the truth of clauses in envF (C),
it suffices to make sure that τ ′ satisfies envF (C) in order to guarantee that it satisfies
F ∪ {C}. This naturally leads to the following semantic notion of blocking:

Definition 3.1. A clause C is semantically blocked in a formula F if, for every satisfying
assignment τ of envF (C), there exists a satisfying assignment τ ′ of envF (C)∪{C} such that
τ(v) = τ ′(v) for all v /∈ var(C). We denote the set {(F,C) | C is semantically blocked in F}
by SEMBC.

Note that clause C in Example 2.5 is semantically blocked in F . Note also that a clause is
semantically blocked if its resolution environment is unsatisfiable.

Theorem 3.2. SEMBC is a redundancy property.

Proof. Let F be a formula and C a clause that is semantically blocked in F . We show that
F ∪ {C} is satisfiable if F \ {C} is satisfiable. Suppose there exists a satisfying assignment
τ of F \ {C}. We proceed by a case distinction.

Case 1: C contains a literal l with var(l) /∈ var(F \ {C}). Then, τ can be easily extended
to a satisfying assignment τ ′ of F ∪ {C} by defining that τ ′ satisfies l.

Case 2: var(C) ⊆ var(F \ {C}). In this case, τ is a total assignment with respect to
F ∪ {C}. Suppose that τ falsifies C. It follows that C is not a tautology and so it does not
contain a literal l such that l̄ ∈ C, hence C /∈ envF (C). Thus, envF (C) ⊆ F \ {C} and so τ
satisfies envF (C). Since C is semantically blocked in F , there exists a satisfying assignment
τ ′ of envF (C)∪ {C} such that τ(v) = τ ′(v) for all v /∈ var(C). Now, since τ ′(v) differs from
τ only on variables in var(C), the only clauses in F that could possibly be falsified by τ ′

are those with a literal l̄ such that l ∈ C. But those are exactly the clauses in envF (C), so
τ ′ satisfies F ∪ {C}.
Hence, C is redundant with respect to F and thus SEMBC is a redundancy property.
If a clause C is redundant with respect to some formula F and if this redundancy can be
identified by considering only its resolution environment in F , then we expect C to be

LOCAL REDUNDANCY IN SAT 7

redundant with respect to every formula F ′ in which C has the same resolution environment
as in F . This leads us to the notion of local redundancy properties:

Definition 3.3. A redundancy property P is local if, for every clause C and any two formulas
F, F ′ with envF (C) = envF ′(C), it holds that (F,C) ∈ P if and only if (F ′, C) ∈ P.

The following is easily seen to hold:

Theorem 3.4. SEMBC is a local redundancy property.

Preparatory for showing that SEMBC is actually the most general local redundancy property
(cf. Theorem 3.6 below), we first prove the following lemma:

Lemma 3.5. If a clause C is not semantically blocked in a formula F , then there exists a
formula F ′ with envF ′(C) = envF (C) such that C is not redundant with respect to F ′.

Proof. Let F be a formula and C a clause that is not semantically blocked in F , i.e., there
exists a satisfying assignment τ of envF (C) but there does not exist a satisfying assignment
τ ′ of envF (C)∪ {C} such that τ(v) = τ ′(v) for all v /∈ var(C). We define the set T of (unit)
clauses as follows:

T = {(v) | v /∈ var(C) and τ(v) = 1} ∪ {(¬v) | v /∈ var(C) and τ(v) = 0}.
We further define the formula F ′ = envF (C) ∪ {C} ∪ T .

Since C can be falsified (and is therefore not a tautology) and since the clauses in T
contain only literals with variables that do not occur in C, it holds that neither C nor any of
the clauses in T contain a literal l̄ with l ∈ C. It therefore holds that envF ′(C) = envF (C).

Now observe the following: The assignment τ satisfies envF (C) and, by construction,
also T , hence F ′\{C} = envF (C)∪T is satisfiable. Furthermore, every satisfying assignment
of T must agree with τ on all variables v /∈ var(C). But there exists no satisfying assignment
τ ′ of envF (C)∪{C} such that τ(v) = τ ′(v) for all v /∈ var(C). Hence, envF (C)∪{C}∪T =
F ′ ∪ {C} is unsatisfiable and thus F ′ \ {C} and F ′ ∪ {C} are not satisfiability equivalent. It
follows that C is not redundant with respect to F ′.

Theorem 3.6. SEMBC is the most general local redundancy property.

Proof. Suppose there exists a local redundancy property P that is strictly more general than
SEMBC. It follows that P contains a pair (F,C) such that C is not semantically blocked in
F . By Lemma 3.5, there exists a formula F ′ with envF ′(C) = envF (C) such that C is not
redundant with respect to F ′. But since P is local and envF ′(C) = envF (C), it follows that
(F ′, C) ∈ P, hence P is not a redundancy property, a contradiction.

4. Set-Blocked Clauses and Super-Blocked Clauses

In the following, we introduce syntax-based notions of blocking which strictly generalize
the original notion of literal-blocking as given in Definition 2.1. We will first introduce the
notion of set-blocking which is already a strict generalization of literal-blocking. This notion
will then be further generalized to the so-called notion of super-blocking which, as we will
prove, coincides with the notion of semantic blocking given in Definition 3.1.

Definition 4.1. Let F be a formula and C a clause. A non-empty set L ⊆ C blocks C
in F if, for each clause D ∈ FL̄, (C \ L) ∪ L̄ ∪ D is a tautology. We say that a clause
is set-blocked in F if there exists a set that blocks it in F . We write SETBC to refer to
{(F,C) | C is set-blocked in F}.

8 LOCAL REDUNDANCY IN SAT

Example 4.2. Let C = (a ∨ b) and F = {(¬a ∨ b), (¬b ∨ a)}. Then, C is set-blocked
by L = {a, b}: Clearly, FL̄ = F and C \ L = ∅. Therefore, for D1 = (¬a ∨ b) we get
that (C \ L) ∪ L̄ ∪ D1 = (¬a ∨ b ∨ ¬b) is a tautology and for D2 = (¬b ∨ a) we get that
(C \ L) ∪ L̄ ∪D2 = (a ∨ ¬a ∨ ¬b) is a tautology too. Note that C is not literal-blocked in F .

Given an assignment τ that satisfies F \ {C} but falsifies C, the existence of a blocking set
L guarantees that a satisfying assignment τ ′ of F ∪ {C} can be obtained from τ by flipping
the truth values of all the literals in L. Since (C \ L) ∪ L̄ ∪D is a tautology for every clause
D in the resolution environment of C, at least one of the following holds:

(i) D is itself a tautology and thus satisfied by τ ′, or
(ii) D contains a literal of L which is satisfied by τ ′ since its truth value is flipped, or
(iii) D contains a literal l which is satisfied since l̄ ∈ C is falsified by τ and the truth value

of l is not flipped.

Hence, τ ′ satisfies F ∪ {C}.

Proposition 4.3. Set-blocking is strictly more general than literal-blocking, i.e., it holds
that BC ⊂ SETBC.

Proof. Example 4.2 shows that BC 6= SETBC. It remains to show that BC ⊆ SETBC. Let F
be a formula and let C be a literal-blocked clause in F . We distinguish two cases:

Case 1: C is a tautology. We have that {l, l̄} ⊆ C for some literal l. Let L = {l, l̄}. Then,
(C \ L) ∪ L̄ ∪D is a tautology for every D ∈ FL̄.

Case 2: C is not a tautology. Since C is literal-blocked, there exists some literal l ∈ C
such that for every clause D ∈ Fl̄, C ∪ (D \ {l̄}) is a tautology. Let L = {l} and let D ∈ FL̄.
Then, since FL̄ = Fl̄, it follows that C ∪ (D \ {l̄}) is a tautology. As C is not a tautology, D
must contain some literal l′ 6= l̄ such that l̄′ ∈ C ∪ (D \ {l̄}). Now, since l′ 6= l̄ we have that
l̄′ 6= l and thus l̄′ ∈ (C \ {l}) ∪D. But then, (C \ L) ∪ L̄ ∪D is a tautology.

It follows that C is set-blocked in F and therefore BC ⊆ SETBC.
We already argued informally why set-blocked clauses are redundant. That SETBC is indeed
a redundancy property follows directly from the properties of super-blocked clauses, which
we introduce next. To define super-blocked clauses, we first define the following formula
modification that uses a (possibly partial) assignment to simplify a formula:

Definition 4.4. Given a formula F and a assignment τ , we denote by F |τ the set of clauses
obtained from F by removing all clauses that are satisfied by τ .

Note that in the literature, F |τ sometimes denotes the set of clauses obtained from F by
first removing all clauses that are satisfied by τ and then removing all literals that are
falsified by τ . For our purposes, it suffices to remove only satisfied clauses. Before we next
define super-blocked clauses, recall that the external variables, extF (C), are the variables
that occur in envF (C) but not in C.

Definition 4.5. A clause C is super-blocked in a formula F if, for every assignment τ
over the external variables extF (C), C is set-blocked in F |τ . We write SUPBC for the set
{(F,C) | C is super-blocked in F}.

Here, by “every assignment τ over the external variables extF (C)” we mean all assignments
whose domain is exactly the set extF (C) and not a strict superset thereof. A simple example
for a super-blocked clause is the clause C in Example 2.5—although C is not set-blocked

LOCAL REDUNDANCY IN SAT 9

in F , it is super-blocked in F because it is set-blocked in both F |τ and F |τ ′ for τ(x) = 1 and
τ ′(x) = 0. Again, the idea is that from an assignment τ that satisfies F \ {C} but falsifies C,
we can obtain a satisfying assignment τ ′ of F ∪ {C} by flipping the truth values of certain
literals of C. However, for making sure that the flipping does not falsify any clause D in
the resolution environment of C, we are now also allowed to take into account the truth
values of literals l ∈ D with var(l) ∈ extF (C). This is in contrast to set-blocking, where
(apart from cases where D is a tautology) we only consider the truth values of literals whose
variables occur in C. Finally, note that if an assignment τ ′ is a superset of an assignment τ ,
then τ ′ satisfies all clauses that are satisfied by τ and thus the following statement holds:

Proposition 4.6. Given a formula F and two assignments τ, τ ′, if τ ⊆ τ ′, then F |τ ′ ⊆ F |τ .

From this it follows that if a clause is set-blocked in F , it is also set-blocked in F |τ for every
assignment τ . We conclude:

Proposition 4.7. Super-blocking is strictly more general than set-blocking, i.e., it holds
that SETBC ⊂ SUPBC.

Theorem 4.8. A clause is super-blocked in a formula F if and only if it is semantically
blocked in F , i.e., it holds that SUPBC = SEMBC.

Proof. For the “only if” direction, let C be a clause that is super-blocked in F and let
τ be a satisfying assignment of envF (C). If τ satisfies C, or C contains a literal l with
var(l) /∈ var(F) (implying that τ can be straightforwardly extended to a satisfying assignment
of C), then it trivially follows that C is semantically blocked in F . Assume thus that
var(C) ⊆ var(F) and that τ does not satisfy C. Furthermore, let τE be obtained from τ by
restricting it to the external variables extF (C). Since C is super-blocked in F , there exists a
non-empty set L ⊆ C that blocks C in F |τE . Consider the following assignment:

τ ′(v) =


0 if ¬v ∈ L,
1 if v ∈ L,
τ(v) otherwise.

Since τ falsifies C there is no literal l with {l, l̄} ⊆ L, hence τ ′ is well-defined. Clearly, τ ′

satisfies C and τ ′(v) = τ(v) for all v /∈ var(C). It remains to show that τ ′ satisfies envF (C).
Since τ ′ and τ differ only on the truth values of variables in var(L), τ ′ can only falsify
clauses containing a literal l̄ with l ∈ L. Let D be such a clause. We proceed by a case
distinction.

Case 1: D contains an external literal l (i.e., var(l) ∈ extF (C)) that is satisfied by τ . Then,
since var(l) /∈ var(C) and thus l /∈ L, it follows that τ ′ agrees with τ on the truth value of l,
hence l is satisfied by τ ′.

Case 2: D does not contain an external literal that is satisfied by τ . In this case, D is
contained in F |τE and thus, since L set-blocks C in F |τE , we have that (C \ L) ∪ L̄ ∪D is
a tautology. If D is a tautology, then it is easily satisfied by τ ′, so assume that it is not a
tautology. Clearly, since C is not a tautology, we have that (C \ L) ∪ L̄ is not a tautology,
hence there are two literals l, l̄ such that l ∈ D and l̄ is in C \ L or in L̄. If l̄ ∈ C \ L, then
τ ′ agrees with τ on l̄, hence l̄ is falsified by τ ′ and thus l is satisfied by τ ′. In contrast, if
l̄ ∈ L̄, then l ∈ L and l is satisfied by τ ′. In both cases τ ′ satisfies l and thus it satisfies D.

10 LOCAL REDUNDANCY IN SAT

For the “if” direction, let F be a formula and let C be a clause that is not super-blocked
in F , i.e., there exists an assignment τE over the external variables, extF (C), such that C is
not set-blocked in F |τE . Then, let

τ(v) =


1 if ¬v ∈ C,
0 if v ∈ C,
τE(v) otherwise.

Clearly, τ is well-defined since C cannot be a tautology, for otherwise it would be set-blocked
in F |τE . Furthermore, τ falsifies C and, since (by definition) every clause D ∈ envF (C)
contains a literal l̄ such that l ∈ C, it satisfies envF (C).

Now let τ ′ be a satisfying assignment of C such that τ ′(v) = τ(v) for all v /∈ var(C).
As τ ′ satisfies C, it is obtained from τ by flipping the truth values of some literals L ⊆ C.
We show that τ ′ does not satisfy envF (C). Clearly, τ ′ agrees with τE over the external
variables, extF (C), and since C is not set-blocked in F |τE , there exists a clause D ∈ F |τE
with D ∩ L̄ 6= ∅ such that (C \ L) ∪ L̄ ∪D is not a tautology and neither τE nor τ ′ satisfy
any external literal in D.

Let now l ∈ D be a (local) literal with var(l) ∈ var(C). Since (C \ L) ∪ L̄ ∪D is not a
tautology it follows that l̄ /∈ C \ L and l̄ /∈ L̄. Since var(l) ∈ var(C) we get that l ∈ C \ L
or l ∈ L̄. In both cases, l is not satisfied by τ ′. Thus, no literal in D is satisfied by τ ′ and
consequently τ ′ does not satisfy D ∈ envF (C), which allows us to conclude that C is not
semantically blocked in F .

Corollary 4.9. SETBC is a (local) redundancy property.

5. The Relationship between Semantic Blocking and Variable Elimination

In this section, we present an alternative characterization of semantic blocking based on Davis
and Putnam’s rule for eliminating atomic formulas [6]—a resolution-based rewriting rule
which is also known as variable elimination [7] in the context of SAT solving. Intuitively, a
variable x is eliminated from a formula by first adding all possible non-tautological resolvents
upon x and then removing all the clauses that contain x or ¬x. In the following, for a
literal l, we denote by Fl ⊗l Fl̄ the set of all possible non-tautological resolvents upon l, i.e.,
Fl ⊗l Fl̄ = {C ⊗l D | C ∈ Fl and D ∈ Fl̄ and C ⊗l D is not a tautology}.

Definition 5.1. Let F be a formula, x a variable, and F ′ = F \ (Fx ∪Fx̄). The elimination
of x from F is given by the formula F ′ ∪ (Fx ⊗x Fx̄).

If F does not contain any tautologies, then the variable x does not occur in the resulting
formula F ′∪(Fx⊗xFx̄). Moreover, variable elimination does not affect satisfiability, meaning
that F and F ′ ∪ (Fx ⊗x Fx̄) are satisfiability equivalent [6].

Example 5.2. Let F = {(a ∨ b), (x ∨ b ∨ ¬a), (¬b ∨ ¬x), (¬b ∨ a)} (cf. Example 2.5). Then,
Fa = {(a∨b), (¬b∨a)} and Fā = {(x∨b∨¬a)}. Furthermore, F ′ = F \(Fa∪Fā) = {(¬b∨¬x)}
and Fa⊗aFā = {(b∨x)}. Finally, the elimination of the variable a from F yields the formula
F1 = F ′ ∪ (Fa ⊗a Fā) = {(¬b ∨ ¬x), (b ∨ x)}.

In the rest of this section, we show that the following relationship between semantic blocking
and variable elimination holds: To test whether a non-tautological clause is semantically
blocked in a tautology-free formula, we can successively eliminate all the clause’s variables

LOCAL REDUNDANCY IN SAT 11

from its resolution environment. If this elimination yields the empty formula, then the
clause is semantically blocked, otherwise it is not. The condition that the formula must be
tautology-free is not a serious restriction as we can easily remove tautologies before variable
elimination. The following example illustrates this relationship:

Example 5.3. Consider again the formula F from Example 5.2. As already shown earlier in
Section 4, the clause (a ∨ b) from Example 5.2 is super-blocked—and therefore semantically
blocked—in F . Because of this, we would expect that the elimination of a and b from
F yields the empty formula. Indeed, in F1 = {(¬b ∨ ¬x), (b ∨ x)} (which, as shown in
Example 5.2, is obtained from F by eliminating the variable a) there is only a tautological
resolvent upon b, namely (¬x∨ x), hence the elimination of a and b from F yields the empty
formula.

In order to prove that this relationship between variable elimination and semantic blocking
holds, we first introduce a simple encoding of semantic blocking into quantified Boolean
formulas (QBFs). Given a clause C and a propositional formula F , the encoding produces
a quantified Boolean formula that is true if and only if C is semantically blocked in F .
Based on this encoding, we can then use a result from QBF theory that allows for a short
proof of the main statement of this section (Theorem 5.7 on page 12). We therefore shortly
recapitulate the syntax and semantics of quantified Boolean formulas [20].

Definition 5.4. A quantified Boolean formula (QBF) φ in prenex conjunctive normal form
(PCNF) is of the form Q.F where Q is a quantifier prefix and F , called the matrix of φ, is a
propositional formula in CNF. A quantifier prefix has the form Q1X1 . . . QnXn with disjoint
variable sets Xi, Qi ∈ {∀,∃}, and Qi 6= Qi+1.

A QBF ∀xQ.F is true if both Q.F [x/>] and Q.F [x/⊥] are true, and false otherwise, where
Q.F [x/t] is the QBF obtained from Q.F by replacing all occurrences of the variable x by the
truth constant t. Moreover, a QBF ∃xQ.F is true if at least one of Q.F [x/>] and Q.F [x/⊥]
is true, and false otherwise. If the matrix F of a QBF φ is empty after eliminating the truth
constants according to standard propositional rules, then φ is true. Accordingly, φ is false if
F contains the empty clause after eliminating the truth constants. In the rest of this section,
we assume every QBF to be in PCNF.

The following lemma introduces our encoding of semantic blocking into quantified
Boolean formulas. Recall that for a clause C and a formula F , extF (C) denotes the set of
external variables of C, i.e., the set of variables that occur in the resolution environment of
C but not in C itself.

Lemma 5.5. Let C be a non-tautological clause and F a propositional formula. Let
furthermore G = extF (C) and L = var(C). Then, C is semantically blocked in F if and
only if the QBF ∀G∃L.(envF (C) ∪ {C}) is true.

Proof. For the “only if” direction, assume that C is semantically blocked in F . We show
that for every assignment τG over the variables in G, there exists an assignment τL over the
variables in L such that τG ∪ τL satisfies envF (C)∪ {C}. Let τG be an arbitrary assignment
over the variables in G. To prove the existence of a corresponding τL, we first define the
following assignment τ ′L:

τ ′L(v) =

{
1 if ¬v ∈ C,
0 if v ∈ C.

12 LOCAL REDUNDANCY IN SAT

Since C is not a tautology, τ ′L is well-defined. Furthermore, since τ ′L falsifies all literals of
C and every clause D in envF (C) contains a literal l̄ with l ∈ C, the assignment τG ∪ τ ′L
satisfies envF (C). Now, since C is semantically blocked, there exists an assignment τL over
the variables in L such that τG ∪ τL satisfies envF (C) ∪ {C}. It therefore follows that the
QBF ∀G∃L.(envF (C) ∪ {C}) is true.

For the “if” direction, assume that the QBF ∀G∃L.(envF (C) ∪ {C}) is true and let τ
be a satisfying assignment of envF (C). We show that there exists a satisfying assignment τ ′

of envF (C)∪{C} that agrees with τ on all the variables not occurring in C. To this end, let
τG be obtained from τ by restricting it to the variables in G. Since ∀G∃L.(envF (C) ∪ {C})
is true, there exists an assignment τL over the variables in L such that τ ′ = τG ∪ τL satisfies
envF (C)∪{C}. As τ ′ agrees with τ on all the variables in G, which are exactly the variables
that do not occur in C, it follows that C is semantically blocked in F .

With Lemma 5.5 we can give a short proof of Theorem 5.7 because it allows us to use an
important result from QBF theory, namely that the elimination of existential variables from
the inner-most quantifier block does not affect the truth value of a QBF [12]:

Lemma 5.6. Let Q∃X.F be a QBF where F does not contain any tautologies. Let further-
more F ′ be obtained from F by eliminating a variable x ∈ X. Then, Q∃X.F is true if and
only if Q∃(X \ {x}).F ′ is true.

We can now finally state and prove the main result of this section:

Theorem 5.7. Let C be a non-tautological clause, F a propositional formula, and E′ obtained
from envF (C) ∪ {C} by first removing all tautologies and then successively eliminating all
variables that occur in C. Then, C is semantically blocked in F if and only if E′ = ∅.

Proof. Let C be a non-tautological clause, F a formula, and E′ obtained from envF (C)∪{C}
by first removing all tautologies and then successively eliminating all variables that occur in
C. We show that C is semantically blocked in F if and only if E′ = ∅.

Let G = extF (C) and L = var(C). By Lemma 5.5, C is semantically blocked in F if
and only if the QBF

φ = ∀G∃L.(envF (C) ∪ {C})
is true. Now, since both the removal of tautologies and—by Lemma 5.6—the elimination
of existential variables from the inner-most quantifier block of a QBF preserve its truth
value, C is semantically blocked in F if and only if the QBF φ′ = ∀G.E′ is true, i.e., if the
propositional formula E′ is valid.

For the “only if” direction, assume that E′ 6= ∅, i.e., E′ contains a non-tautological
clause D such that var(D) ⊆ G. Then, the assignment τG that is defined in such a way
that it falsifies all literals of D, falsifies E′. Hence, φ′ is false and thus C is not semantically
blocked.

For the “if” direction, assume that E′ = ∅. Then, E′ is trivially satisfied by every
assignment over the variables in G and thus φ′ is true. It follows that C is semantically
blocked in F .
We want to highlight that for Theorem 5.7, the order in which variables are eliminated does not
matter. Theorem 5.7 further clarifies the relationship between literal-blocking and semantic
blocking: By definition, a non-tautological clause C is literal-blocked in a formula F if it
contains a literal l such that all resolvents upon l are tautologies. Since tautological resolvents

LOCAL REDUNDANCY IN SAT 13

are removed during variable elimination, we get the following alternative characterization of
literal-blocking:

Proposition 5.8. A non-tautological clause C is blocked by a literal l ∈ C in a formula F
if and only if the elimination of var(l) from envF (C) ∪ {C} yields the empty formula.

In other words, literal-blocking requires that already the elimination of a single variable yields
the empty formula while semantic blocking is more general by allowing for the elimination
of several variables in order to derive the empty formula.

Note that Theorem 5.7 does not hold without the condition that C must be non-
tautological. To see this, consider the following example:

Example 5.9. Let C = (b∨¬b) and F a formula in which C has the resolution environment
envF (C) = {(a ∨ ¬b), (¬a ∨ ¬b), (b ∨ a), (b ∨ ¬a)}. Then, C is semantically blocked but
the elimination of b from E′ = envF (C) (C is not in E′ since it is a tautology) yields the
(unsatisfiable) non-empty formula {(a), (¬a)}.

To conclude this section, we note that the following theorem is a trivial consequence of
Lemma 5.5:

Theorem 5.10. Let C be a clause, F a formula, G = extF (C), and L = var(C). Then, C
is semantically blocked in F if and only if it is a tautology or the QBF ∀G∃L.(envF (C)∪{C})
is true.

6. Complexity Analysis

In this section, we analyze the complexity of testing whether a clause is set-blocked or super-
blocked. We further consider the complexity of testing restricted variants of set-blocking
and super-blocking which gives rise to a whole family of blocking notions. Note that all
complexity results are with respect to the size of a clause and its resolution environment.

Definition 6.1. The set-blocking problem is the following decision problem: Given a
pair (F,C), where F is a set of clauses and C is a clause such that every clause D ∈ F
contains a literal l̄ with l ∈ C, decide whether C is set-blocked in F .

Theorem 6.2. The set-blocking problem is NP-complete.

Proof. We first show NP-membership, followed by NP-hardness.

NP-membership: For a non-empty set L ⊆ C, it can be checked in polynomial time whether
(C \ L) ∪ L̄ ∪D is a tautology for every clause D with D ∩ L̄ 6= ∅. The following is thus an
NP-procedure: Guess a non-empty set L ⊆ C and check if it blocks C in F .

NP-hardness: We give a reduction from SAT by defining the following reduction function
on input formula F which is w.l.o.g. in CNF:

f(F) = (F ′, C), with C = (u ∨ x1 ∨ x′1 ∨ · · · ∨ xn ∨ x′n),

where var(F) = {x1, . . . , xn} and u, x′1, . . . , x
′
n are new variables that do not occur in F .

Furthermore, F ′ is obtained from F by

• replacing every clause D ∈ F by a clause t(D), obtained from D by adding ¬u and
replacing every negative literal ¬xi by the positive literal x′i, and
• adding the clauses (¬xi ∨ ¬x′i), (¬xi ∨ u), (¬x′i ∨ u) for every xi ∈ var(F).

14 LOCAL REDUNDANCY IN SAT

The intuition behind the construction of F ′ and C is as follows. By including u in C and
adding ¬u to every t(D) with D ∈ F , we guarantee that all clauses in F ′ are in the resolution
environment of C, i.e., they contain a literal l with l̄ ∈ C. This makes (F ′, C) a valid instance
of the set-blocking problem. The main idea, however, is, that blocking-sets L of C in F ′

correspond to satisfying assignments of F . We show that F is satisfiable if and only if C is
set-blocked in F ′.

For the “only-if” direction, assume that there exists a satisfying assignment τ of F and
let L = {u} ∪ {xi | τ(xi) = 1} ∪ {x′i | τ(xi) = 0}. Clearly, L ⊆ C. It remains to show that
for every C ′ ∈ F ′ with C ′ ∩ L̄ 6= ∅, (C \ L) ∪ L̄ ∪ C ′ is a tautology. We proceed by a case
distinction.

Case 1: C ′ is of the form (¬xi ∨u) or (¬x′i ∨u) for xi ∈ X. Then, since ¬u ∈ L̄ and u ∈ C ′,
(C \ L) ∪ L̄ ∪ C ′ is a tautology.

Case 2: C ′ is of the form (¬xi ∨ ¬x′i) for xi ∈ X. In this case, by the definition of L, only
one of xi and x′i is in L. Assume w.l.o.g. that xi ∈ L. Then, x′i ∈ C \ L and since ¬x′i ∈ C ′,
(C \ L) ∪ L̄ ∪ C ′ is a tautology.

Case 3: C ′ is of the form t(D) for D ∈ F . Then, τ satisfies a literal l ∈ D. If l is positive,
i.e., l = xi for some xi ∈ X, then xi ∈ C ′ and xi ∈ L. In contrast, if l is negative, i.e.,
l = ¬xi for xi ∈ X, then x′i ∈ C ′ and x′i ∈ L. In both cases, L contains a literal of C ′. But
then, (C \ L) ∪ L̄ ∪ C ′ is a tautology.

Thus, L blocks C in F ′.

For the “if” direction, suppose that C is blocked by some blocking-set L in F ′ and define
τ over var(F) = X as follows:

τ(xi) =

{
1 if xi ∈ L,
0 otherwise.

We show that τ satisfies F . First, observe that u must be contained in L: Assume to the
contrary that u /∈ L. Then, since L is non-empty, some xi or x′i must be contained in L. If
xi ∈ L, then, since C ′ = (¬xi ∨ u) contains ¬xi, (C \ L) ∪ L̄ ∪ C ′ is a tautology. But, since
(C \ L) ∪ L̄ cannot be a tautology, and xi /∈ (C \ L) ∪ L̄, this can only be the case if u ∈ L,
a contradiction. The argument for x′i ∈ L is analogous.

Now, let D ∈ F and C ′ = t(D). Then, since u ∈ L and ¬u ∈ C ′, (C \ L) ∪ L̄ ∪ C ′ is a
tautology. Furthermore, C contains only positive literals and for C ′ this is, apart from ¬u,
also the case. But, since u ∈ L, u is not contained in (C \ L) ∪ L̄ and thus (C \ L) ∪ L̄ ∪ C ′
can only be a tautology if C ′ contains a literal l ∈ L which is different from ¬u. Now, if
l = xi for some xi ∈ X, then xi ∈ D and τ(xi) = 1. If l = x′i for xi ∈ X, then ¬xi ∈ D and
τ(xi) = 0. In both cases, τ satisfies D. Hence, F is satisfied by τ .
We next analyze the complexity of testing whether a clause is super-blocked. To do so, we
define the following problem:

Definition 6.3. The super-blocking problem is the following decision problem: Given a pair
(F,C), where F is a set of clauses and C a clause such that every C ′ ∈ F contains a literal l̄
with l ∈ C, decide whether C is super-blocked in F .

Theorem 6.4. The super-blocking problem is ΠP
2 -complete.

Proof. Since super-blocking coincides with semantic blocking, membership in ΠP
2 is an

immediate consequence of Theorem 5.10. For showing hardness, we give a reduction from

LOCAL REDUNDANCY IN SAT 15

∀∃-SAT to the super-blocking problem. The reduction is similar to the one used for proving
Theorem 6.2. Here, only the existentially quantified variables of the ∀∃-formula are encoded
into C which makes all the universally quantified variables external. Let φ = ∀X∃Y F be an
instance of ∀∃-SAT with Y = {y1, . . . , yn} and assume w.l.o.g. that F is in CNF. We define
the reduction function

f(φ) = (F ′, C), with C = (u ∨ y1 ∨ y′1 ∨ · · · ∨ yn ∨ y′n),

where u, y′1, . . . , y
′
n are new variables not occurring in φ. Furthermore, F ′ is obtained from

F by

• replacing every clause D ∈ F by a clause t(D) which is obtained from D by adding ¬u
and replacing every negative literal ¬yi by the positive literal y′i for yi ∈ Y ; and
• adding the clauses (¬yi ∨ ¬y′i), (¬yi ∨ u), (¬y′i ∨ u) for every yi ∈ Y .

By construction, every clause C ′ ∈ F ′ contains a literal l̄ with l ∈ C, hence (F ′, C) is a valid
instance of the super-blocking problem. The intuition behind the reduction is that blocking
sets L of C in F ′ correspond to assignments over the existential variables of φ while the
assignments over the external variables, extF ′(C), correspond to the assignments over the
universally quantified variables of φ. As super-blocking coincides with semantic blocking, we
show that φ is true if and only if C is semantically blocked in F ′.

For the “only-if” direction, assume that φ is true and that there exists a satisfying
assignment τ of F ′. We show that there exists a satisfying assignment τ ′ of F ′ ∪ {C} with
τ ′(v) = τ(v) for all v /∈ C. Let therefore τX be obtained from τ by restricting it to the
variables in X. Since φ is true, there exists an assignment τY such that τX ∪ τY satisfies F .
Consider now the following assignment:

τ ′(v) =


τX ∪ τY (v) if v ∈ X ∪ Y ,
0 if v = y′i and τY (yi) = 1 for yi ∈ Y ,
1 otherwise.

Clearly, C is satisfied by τ ′ since u ∈ C and τ ′(u) = 1 by definition. Furthermore, τ ′(v) = τ(v)
for all v /∈ C since all variables that are not in C are contained in extF ′(C) = X. We show
that τ ′ also satisfies F ′. Let therefore C ′ be an arbitrary clause in F ′. We proceed by a case
distinction.

Case 1: C ′ is of the form (¬yi ∨ u) or (¬y′i ∨ u) for yi ∈ Y . Then, C ′ is trivially satisfied.

Case 2: C ′ is of the form (¬yi ∨ ¬y′i) for yi ∈ Y . Then, by definition of τ ′, τ ′(yi) 6= τ ′(y′i).
Hence, one of yi and y′i must be satisfied by τ ′.

Case 3: C ′ = t(C ′′) for C ′′ ∈ F . Since τX ∪ τY satisfies F , there exists some literal l ∈ C ′′
such that l is satisfied by τX ∪ τY . Now, if var(l) ∈ X or l is a positive literal, then l is also
contained in C ′ and thus, C ′ is satisfied by τ ′. In contrast, if l is a negative literal with
var(l) ∈ Y , then C ′ contains the literal y′i. Since ¬yi is satisfied by τX ∪ τY it follows that
τY (yi) = 0 and thus τ ′(y′i) = 1, hence C ′ is satisfied by τ ′.

It follows that τ ′ satisfies F ′ ∪ {C}.
For the “if” direction, assume that C is semantically blocked in F ′ and let σX be an

arbitrary assignment over the variables in X. We show that there exists an assignment
σY over the variables in Y such that σX ∪ σY satisfies F . To this end, we first define the

16 LOCAL REDUNDANCY IN SAT

following assignment over the variables in F ′ and C:

τ(v) =

{
σX(v) if v ∈ X,
0 otherwise.

Clearly, τ falsifies C and since every C ′ ∈ F ′ contains a literal l̄ with l ∈ C, τ satisfies F ′.
Thus, since C is semantically blocked in F ′, there exists a satisfying assignment τ ′ of F ′∪{C}
such that τ ′(v) = τ(v) for all v /∈ var(C). Since no variable from X is contained in C, τ ′

agrees with σX over the variables in X. Now, let τX∪Y be the assignment τ ′ restricted to
the variables in X ∪ Y . We show that τX∪Y satisfies F .

Let C ′ be an arbitrary clause in F . By construction, F ′ contains the clause t(C ′) which is
satisfied by τ ′. Clearly, ¬u ∈ t(C ′) is falsified by τ ′ because of the following: The assignment
τ ′ must satisfy some literal l ∈ C. Since l ∈ C, either l = u or F ′ contains the clause (l̄ ∨ u).
In both cases, since τ ′ satisfies F ′ ∪ {C}, τ ′ must satisfy u. Hence, ¬u is falsified by τ ′ and
thus τ ′ must satisfy some literal l′ in t(C ′) which is different from ¬u. We proceed by a case
distinction.

Case 1: var(l′) ∈ X ∪ Y . Then, by the definition of t(C ′), l′ ∈ C ′ and since τX∪Y agrees
with τ ′ over X ∪ Y , l′ ∈ C ′ is satisfied by τX∪Y .

Case 2: var(l′) /∈ X ∪ Y . In this case, l′ is of the form y′i. Since τ ′ satisfies y′i as well as the
clause (¬yi ∨ ¬y′i) ∈ F ′, it follows that τ ′ satisfies ¬yi. Now, since t(C ′) was obtained from
C ′ by adding ¬u and replacing every negative literal ¬yi by a literal y′i, we get that ¬yi ∈ C ′
is satisfied by τ ′ and since τX∪Y agrees with τ ′ over X ∪ Y , C ′ is satisfied by τX∪Y .

Hence, τX∪Y satisfies F and thus φ is true.
We have already seen that the set-blocking problem is NP-complete in the general case.
However, we obtain a restricted variant of set-blocking by only allowing blocking sets whose
size is bounded by a constant. Then, the resulting problem of testing whether a clause C is
blocked by some non-empty set L ⊆ C, whose size is at most k for k ∈ N+, turns out to be
polynomial: For a finite set C and k ∈ N+, there are only polynomially many non-empty
subsets L ⊆ C with |L| ≤ k. To see this, observe (by basic combinatorics) that the exact
number of such subsets is given by the following sum which reduces to a polynomial with
degree at most k:

k∑
i=1

(
|C|
i

)
.

Hence, the number of non-empty subsets L ⊆ C with |L| ≤ k is polynomial in the size of C.
This line of argumentation is actually very common. For the sake of completeness, however,
we provide the following example:

Example 6.5. Let |C| = n and k = 3 (with k ≤ n). Then, the number of non-empty
subsets L ⊆ C with |L| ≤ k is given by the polynomial

3∑
i=1

(
n

i

)
=
n(n− 1)(n− 2)

6
+
n(n− 1)

2
+ n =

1

6
n3 +

5

6
n

of degree k = 3.

As there are only polynomially many potential blocking sets and since it can be checked
in polynomial time whether a given set L ⊆ C blocks C in F (as argued in the proof of

LOCAL REDUNDANCY IN SAT 17

Theorem 6.2), it can be checked in polynomial time whether for some clause C there exists
a blocking set L of size at most k.

Since the definition of super-blocking is based on the definition of set-blocking, we can
also consider the complexity of restricted versions of super-blocking where the size of the
according blocking sets is bounded by a constant. We thus define an infinite number of
decision problems (one for every k ∈ N+) as follows:

Definition 6.6. For any k ∈ N+, the k-super-blocking problem is the following decision
problem: Given a pair (F,C), where F is a set of clauses and C a clause such that every
clause D ∈ F contains a literal l̄ with l ∈ C, decide if for every assignment τ over the
external variables extF (C), there exists a non-empty set L ⊆ C with |L| ≤ k that blocks C
in F |τ .

Theorem 6.7. The k-super-blocking problem is in co-NP for all k ∈ N+.

Proof. Consider the statement that has to be tested for the complement of the k-super-
blocking problem:

There exists an assignment τ over the external variables, extF (C), such that
no non-empty subset of C with |C| ≤ k blocks C in F |τ .

Since it can be checked in polynomial time whether a given set L ⊆ C blocks C in F |τ , the
following is an NP-procedure:

Guess an assignment τ over the external variables, extF (C), and check for
every non-empty subset of C (with |C| ≤ k) whether it blocks C in F |τ . If
there is one, return no, otherwise return yes.

Hence, for every integer k ∈ N+, the k-super-blocking problem is in co-NP.
Hardness for the complexity class co-NP can be shown already for k = 1:

Theorem 6.8. The 1-super-blocking problem is co-NP-hard.

Proof. We show the result by providing a reduction from the unsatisfiability problem of
propositional logic. Let F = {C1, . . . , Cn} be a formula in CNF and define the reduction
function

f(F) = (F ′, C), with C = (u1 ∨ · · · ∨ un),

where u1, . . . , un are new variables that do not occur in F , and F ′ =
⋃n

i=1 Fi with Fi =
{(¬ui ∨ l̄) | l ∈ Ci}. Clearly, (F ′, C) is a valid instance of the 1-super-blocking problem and
var(F) = extF ′(C). We show that F is unsatisfiable if and only if, for every assignment τ
over extF ′(C), there exists a literal ui ∈ C such that {ui} set-blocks C in F ′|τ .

For the “only if” direction, assume that F is unsatisfiable and let τ be an assignment
over extF ′(C). Since var(F) = extF ′(C) it follows that there exists a clause Ci in F that is
falsified by τ . But then, since every clause in Fi contains a literal l̄ with l ∈ Ci, it follows
that Fi is satisfied by τ . Hence, Fi ∩ F ′|τ = ∅ and thus, since ¬ui only occurs in Fi, {ui}
trivially set-blocks C in F ′.

For the “if” direction, assume that for every τ over extF ′(C), there exists a literal ui ∈ C
such that {ui} set-blocks C in F ′|τ . Since var(F) = extF ′(C) it follows that for every
assignment τ of F and every clause (¬ui ∨ l̄) ∈ F ′|τ (with l ∈ Ci), T = (C \ {ui})∪ {¬ui} ∪
{¬ui, l̄} is a tautology. But since T cannot contain complementary literals it must be the

18 LOCAL REDUNDANCY IN SAT

case that (¬ui ∨ l̄) /∈ F ′|τ , which implies that every l ∈ Ci is falsified by τ . It follows that F
is unsatisfiable.
The above reduction actually works for all k-super-blocking-problems with k ∈ N+. To
see this, observe that for every k ∈ N+, C is k-super-blocked in F ′ if and only if it is
1-super-blocked in F ′: If a clause is 1-super-blocked in a formula, then it is by definition also
k-super-blocked for all k ∈ N+. Conversely, due to the way F ′ is constructed, if a set L ⊆ C
blocks C in F ′|τ , with τ being an arbitrary assignment over extF ′(C), then there exists a
singleton set L′ ⊆ L that blocks C in F ′|τ and thus C is 1-super-blocked in F ′. We thus get:

Corollary 6.9. The k-super-blocking problem is co-NP-complete for all k ∈ N+.

The notions of set-blocking and super-blocking, together with the corresponding restrictions
discussed in this section, give rise to a whole family of blocking notions which differ in both
generality and complexity. We conclude the following:

(i) Considering the assignments over external variables (as is the case for super-blocking)
leads to co-NP-hardness.

(ii) If blocking sets of arbitrary size are considered, the (sub-)problem of checking whether
there exists a blocking set is NP-hard.

(iii) If the size of blocking sets is bounded by a constant k, the (sub-)problem of testing
whether there exists a blocking set turns out to be polynomial.

(iv) The problem of testing whether a clause is super-blocked in the most general sense,
where the size of blocking sets is not bounded by a constant, is ΠP

2 -complete.

Hence, we can summarize the following complexity results:

|L| is unrestricted |L| ≤ k for k ∈ N+

Super-Blocking ΠP
2 -complete co-NP-complete

Set-Blocking NP-complete P

Note that the cardinality |L| of blocking sets is of course bounded by the length of the
clauses, thus we can restrict |L| ≤ |C|. This is particularly interesting for formula instances
with (uniform) constant or maximal clause length.

Finally, we conclude the discussion by returning to the starting point of this paper:
literal-blocked clauses. Obviously, we can write the definition for set-blocking with |L| ≤ 1 as
follows: A set {l} ⊆ C blocks a clause C in a formula F if for each clause D ∈ F with l̄ ∈ D,
(C \ {l})∪D is a tautology. (Note that we write (C \ {l})∪D instead of (C \ {l})∪ {l̄} ∪D
since l̄ is anyhow required to be contained in D.) This is very similar to the original definition
of literal-blocked clauses which requires C ∪ (D \ {l}) to be a tautology.

7. Comparison with Other Redundancy Properties

In the following, we consider several local and non-local redundancy properties as presented
by Järvisalo et al. [18] and relate them to the previously discussed local redundancy properties.
From the three basic redundancy properties of tautologies (T), subsumed clauses (S), and
literal-blocked clauses (BC), extended redundancy properties are derived by asymmetric-
literal addition and/or a “resolution-look-ahead step”. We start with asymmetric-literal
addition:

LOCAL REDUNDANCY IN SAT 19

Definition 7.1. A literal l is an asymmetric literal with respect to a clause C in a formula
F if F \ {C} contains a clause D ∨ l̄ such that D ⊆ C.

The addition of an asymmetric literal l to a clause C preserves equivalence in the sense that
F \ {C} |= (C ≡ C ∨ l).

Example 7.2. Consider the formula F = {(a ∨ b), (b ∨ c), (¬c ∨ d), (a ∨ ¬c ∨ ¬d)} and let
C = (a ∨ b). The literal ¬c is an asymmetric literal with respect to C in F because for
the subclause (b) of (b ∨ c) it holds that (b) ⊆ (a ∨ b). Therefore, the addition of ¬c to
C to preserves equivalence and we obtain the clause C1 = (a ∨ b ∨ ¬c). After this, ¬d
becomes an asymmetric literal with respect to C1 because of (¬c ∨ d). Adding ¬d to C1

yields C2 = (a ∨ b ∨ ¬c ∨ ¬d). Now, ¬a becomes an asymmetric literal with respect to C2

because of (a∨¬c∨¬d) and so we add it to obtain the tautology C3 = (a∨¬a∨ b∨¬c∨¬d).

In the example above, the addition of asymmetric literals turned the clause C into a tautology.
Since tautologies are redundant and since asymmetric-literal addition preserves equivalence,
we can infer that C is redundant with respect to F . This leads to the notion of an asymmetric
tautology:

Definition 7.3. A clause C is an asymmetric tautology in a formula F if there exists a
sequence l1, . . . , ln of literals such that C ∨ l1 ∨ · · · ∨ ln is a tautology and li is an asymmetric
literal with respect to C ∨ l1 ∨ · · · ∨ li−1 in F for each i ∈ 1, . . . , n. By AT we denote the
redundancy property {(F,C) | C is an asymmetric tautology in F}.

The notions of asymmetric subsumed clauses (AS) and asymmetric blocked clauses (ABC)
are defined analogously: A clause is an asymmetric subsumed clause if the addition of
asymmetric literals turns it into a subsumed clause; it is an asymmetric blocked clause if
the addition of asymmetric literals turns it into a blocked clause.

Asymmetric tautologies are particularly popular because they coincide with so-called RUP
clauses (RUP stands for reverse unit propagation) [28]. It follows for instance from results by
Beame, Kautz, and Sabharwal [3] that the conflict clauses computed by conflict-driven-clause-
learning SAT solvers are RUP clauses, or, equivalently, asymmetric tautologies. Moreover,
variants of asymmetric-literal addition and its converse, asymmetric-literal elimination, are
used for minimizing clauses during SAT solving [31, 25, 13, 23, 8]. For instance, Luo et
al. [23] minimize a given learned clause C by checking if there exists a subclause of C that is
an asymmetric tautology; if so, they replace the original clause by its (stronger) subclause.

Finally, we introduce redundancy properties that are intuitively obtained from existing
ones by performing an additional “resolution-look-ahead step”. Their names are obtained by
adding the prefix R to the abbreviated name of the redundancy property they extend [18].
More formally: Given a redundancy property P , the pair (F,C) is contained in RP if either

(i) (F,C) ∈ P, or
(ii) C contains a literal l such that for each clause D ∈ Fl̄, (F,C ∪ (D \ {l̄})) ∈ P.

Examples are RT (resolution tautologies), RS (resolution-subsumed clauses), and RAT
(resolution asymmetric tautologies). Observe that resolution tautologies are nothing else
than literal-blocked clauses. Especially RAT [10, 18] is well-known: As almost all modern
SAT solving techniques—including preprocessing, inprocessing, and clause learning—can be
simulated by the addition and elimination of resolution asymmetric tautologies, they provide
the basis for the DRAT proof system [30], which is the standard in practical SAT solving.

20 LOCAL REDUNDANCY IN SAT

T

AT

S

AS

RS

RAS

BC

ABC

RT

RAT

SETBC SUPBC
local

non-local

Figure 2: Hierarchy of redundancy properties [18] extended with novel local redundancies.
An arrow from P1 to P2 denotes that P1 is more general than P2.

The mentioned redundancy properties lead to the hierarchy depicted in Figure 2. We
next show that our new redundancy properties are incomparable with redundancy properties
based on T; showing incomparability with subsumption-based properties works analogously.

Proposition 7.4. AT 6⊆ SETBC and SETBC 6⊆ AT.

Proof. Let C = (a ∨ b ∨ c) and F = {(¬a ∨ x), (¬b ∨ x), (¬c ∨ x), (a ∨ b)}. Because of the
clause (a ∨ b), the literal ¬b is an asymmetric literal with respect to C and thus it follows
that (F,C) ∈ AT. Now, assume that C is set-blocked by some non-empty set L ⊆ C in
F , i.e., for every clause D ∈ FL̄, (C \ L) ∪ L̄ ∪D is a tautology. Since L is non-empty, at
least one of (¬a ∨ x), (¬b ∨ x), and (¬c ∨ x) must be contained in FL̄. Assume without
loss of generality that D = (¬a ∨ x) is contained in FL̄. Then, a ∈ L and thus a /∈ C \ L.
Moreover, a is not contained in L̄. Hence, (C \ L) ∪ L̄ ∪D is not a tautology and thus C is
not set-blocked by L in F , a contradiction. We conclude that (F,C) /∈ SETBC.

To see that there exist set-blocked clauses that are not asymmetric tautologies, let F = ∅
and let C = (a). Clearly, (F,C) ∈ SETBC, but (F,C) 6∈ AT.

Proposition 7.5. AT 6⊆ SUPBC and SUPBC 6⊆ AT.

Proof. Consider again C = (a ∨ b ∨ c) and F = {(¬a ∨ x), (¬b ∨ x), (¬c ∨ x), (a ∨ b)} from
the proof of Proposition 7.4, and observe that extF (C) = {x}. Here, for the assignment τ
that falsifies the external variable x, F |τ = F and since C is not set-blocked in F (as shown
in the proof of Proposition 7.4), it is not set-blocked in F |τ , hence (F,C) /∈ SUPBC.

To see that SUPBC 6⊆ AT, let F = ∅ and C = (a). Then, since (F,C) ∈ SETBC and
SETBC ⊂ SUPBC, we get that (F,C) ∈ SUPBC but (F,C) /∈ AT.
From Proposition 7.5 together with the fact that AT ⊂ RAT we get:

Corollary 7.6. RAT 6⊆ SUPBC.

Proposition 7.7. SETBC 6⊆ RAT.

Proof. Consider the clause C = (a ∨ b) and the formula F = {(a ∨ b), (¬a ∨ b), (a ∨ ¬b)}.
Clearly, C is set-blocked by L = {a, b} in F and thus (F,C) ∈ SETBC.

Now, for the literal a there is only the clause D1 = (¬a ∨ b) that contains ¬a and
C ∪D1 \ {¬a} = (a∨ b). Furthermore, for the literal b there is only the clause D2 = (a∨¬b)
that contains ¬b and here we again get that C ∪D2 \ {¬b} = (a ∨ b). Since (a ∨ b) is not an
asymmetric tautology in F , (F,C) /∈ RAT.

Corollary 7.8. RAT is incomparable with both SETBC and SUPBC.

LOCAL REDUNDANCY IN SAT 21

An intuitive explanation for the incomparability of SETBC and SUPBC with both AT and
RAT is the following: On the one hand, SETBC and SUPBC have the advantage that they
can flip the truth values of multiple literals when trying to determine a clause’s redundancy,
whereas AT and RAT can only flip the truth value of a single literal. On the other hand,
SETBC and SUPBC can only use information from the resolution environment of a clause
while asysmmetric-literal addition allows AT and RAT to also use information from outside
the resolution environment.

8. Conclusion

We showed that there exist redundancy properties that are more general than blocked clauses
while still being local, meaning that they can be checked by considering only the resolution
environment of a clause. This locality aspect is part of the reason why blocked clauses
have been successful in the past and it is particularly appealing in the context of real-world
verification where problem encodings into SAT often lead to very large formulas in which
the resolution environments of clauses are still small.

By introducing a semantic notion of blocking, we characterized the essence of local
redundancy: It suffices to flip only the truth values of some of the clause’s literals to
turn satisfying assignments of its resolution environment into assignments that satisfy also
the clause itself. With the aim of bringing this semantic blocking notion closer towards
practical SAT solving, we then introduced the syntax-based notions of set-blocking and
super-blocking. The notion of set-blocking strictly generalizes the traditional notion of
blocking by allowing to flip the truth values of more than only one literal. Super-blocked
clauses are even more general because the assignments on external variables are also taken
into account when deciding redundancy. For super-blocked clauses, we proved that they
coincide with semantically blocked clauses.

In addition, we gave an alternative characterization of semantically blocked clauses
based on variable elimination. This characterization helps to clarify the relationship between
traditionally blocked clauses and semantically blocked clauses: Traditional blocking requires
that already the elimination of a single variable from a clause and its resolution environment
yields the empty formula. In comparison, semantic blocking is more general as it allows for
the elimination of several variables in order to derive the empty formula. Our complexity
analysis showed that checking the newly introduced redundancy properties is computationally
expensive in the worst case. At first glance, this seems to limit their practical applicability.
However, we presented bounded variants that can be checked more efficiently and we expect
them to improve the solving process considerably when added to our SAT solvers.

While the focus of this paper lies on the theoretical investigation of local redundancy
properties, thereby contributing to gaining a deeper understanding of blocked clauses, a
practical evaluation is subject to future work. Another direction for future work is lifting
the new redundancy properties to QSAT, the satisfiability problem of quantified Boolean
formulas (QBF). There, blocked clauses have shown to be practically even more effective
than in SAT solving [11, 22] and we expect this to also hold for quantified variants of
set-blocked clauses and super-blocked clauses.

22 LOCAL REDUNDANCY IN SAT

References

[1] Tomas Balyo, Andreas Fröhlich, Marijn Heule, and Armin Biere. Everything you always wanted to know
about blocked sets (but were afraid to ask). In Carsten Sinz and Uwe Egly, editors, Proc. of the 17th
Int. Conference on Theory and Applications of Satisfiability Testing (SAT 2014), volume 8561 of LNCS,
pages 317–332, Cham, 2014. Springer.

[2] Clark W. Barrett, Roberto Sebastiani, Sanjit A. Seshia, and Cesare Tinelli. Satisfiability modulo theories.
In Handbook of Satisfiability, pages 825–885. IOS Press, 2009.

[3] Paul Beame, Henry A. Kautz, and Ashish Sabharwal. Towards understanding and harnessing the
potential of clause learning. Journal of Artificial Intelligence Research, 22:319–351, 2004.

[4] Armin Biere, Marijn Heule, Hans van Maaren, and Toby Walsh, editors. Handbook of Satisfiability. IOS
Press, 2009.

[5] Jingchao Chen. Fast blocked clause decomposition with high quality. CoRR, abs/1507.00459, 2015.
[6] Martin Davis and Hilary Putnam. A computing procedure for quantification theory. Journal of the ACM,

7(3):201–215, 1960.
[7] Niklas Eén and Armin Biere. Effective preprocessing in SAT through variable and clause elimination.

In Proc. of the 8th Int. Conference on Theory and Applications of Satisfiability Testing (SAT 2005),
volume 3569 of LNCS, pages 61–75. Springer, 2005.

[8] Hyojung Han and Fabio Somenzi. Alembic: An efficient algorithm for CNF preprocessing. In Proc. of
the 44th Design Automation Conference (DAC 2007), pages 582–587. IEEE, 2007.

[9] Marijn Heule and Armin Biere. Blocked clause decomposition. In Ken McMillan, Aart Middeldorp,
and Andrei Voronkov, editors, Proc. of the 19th Int. Conference on Logic for Programming, Artificial
Intelligence, and Reasoning (LPAR-19), volume 8312 of LNCS, pages 423–438, Heidelberg, 2013.
Springer.

[10] Marijn Heule, Warren A. Hunt, Jr., and Nathan Wetzler. Verifying refutations with extended resolution.
In Maria Paola Bonacina, editor, Proc. of the 24th Int. Conference on Automated Deduction (CADE
2013), volume 7898 of LNCS, pages 345–359, Heidelberg, 2013. Springer.

[11] Marijn Heule, Matti Järvisalo, Florian Lonsing, Martina Seidl, and Armin Biere. Clause elimination for
SAT and QSAT. Journal of Artifical Intelligence Research, 53:127–168, 2015.

[12] Marijn J. H. Heule, Martina Seidl, and Armin Biere. A unified proof system for QBF preprocessing. In
Proc. of the 7th Int. Joint Conference on Automated Reasoning (IJCAR 2014), volume 8562 of LNCS,
pages 91–106. Springer, 2014.

[13] Marijn J.H. Heule, Matti Järvisalo, and Armin Biere. Efficient CNF simplification based on binary
implication graphs. In Karem A. Sakallah and Laurent Simon, editors, Proc. of the 14th Int. Conference
on Theory and Applications of Satisfiability Testing (SAT 2011), volume 6695 of LNCS, pages 201–215,
Heidelberg, 2011. Springer.

[14] Markus Iser, Norbert Manthey, and Carsten Sinz. Recognition of nested gates in CNF formulas. In
Marijn Heule and Sean Weaver, editors, Proc. of the 18th Int. Conference on Theory and Applications
of Satisfiability Testing (SAT 2015), volume 9340 of LNCS, pages 255–271, Cham, 2015. Springer.

[15] Mikolás Janota, William Klieber, Joao Marques-Silva, and Edmund M. Clarke. Solving QBF with
counterexample guided refinement. Artificial Intelligence, 234:1–25, 2016.

[16] Matti Järvisalo, Armin Biere, and Marijn Heule. Blocked clause elimination. In Javier Esparza and Rupak
Majumdar, editors, Proc. of the 16th Int. Conference on Tools and Algorithms for the Construction and
Analysis of Systems (TACAS 2010), volume 6015 of LNCS, pages 129–144, Heidelberg, 2010. Springer.

[17] Matti Järvisalo, Armin Biere, and Marijn Heule. Simulating circuit-level simplifications on CNF. Journal
on Automated Reasoning, 49(4):583–619, 2012.

[18] Matti Järvisalo, Marijn Heule, and Armin Biere. Inprocessing rules. In Bernhard Gramlich, Dale Miller,
and Uli Sattler, editors, Proc. of the 6th Int. Joint Conference on Automated Reasoning (IJCAR 2012),
volume 7364 of LNCS, pages 355–370, Heidelberg, 2012. Springer.

[19] Benjamin Kiesl, Martina Seidl, Hans Tompits, and Armin Biere. Super-blocked clauses. In Nicola
Olivetti and Ashish Tiwari, editors, Proc. of the 8th Int. Joint Conference on Automated Reasoning
(IJCAR 2016), volume 9706 of LNCS, pages 45–61, Cham, 2016. Springer.

[20] Hans Kleine Büning and Uwe Bubeck. Theory of quantified boolean formulas. In Handbook of Satisfiability,
pages 735–760. IOS Press, 2009.

[21] Oliver Kullmann. On a generalization of extended resolution. Discrete Applied Mathematics, 96-97:149–
176, 1999.

LOCAL REDUNDANCY IN SAT 23

[22] Florian Lonsing, Fahiem Bacchus, Armin Biere, Uwe Egly, and Martina Seidl. Enhancing search-based
QBF solving by dynamic blocked clause elimination. In Martin Davis, Ansgar Fehnker, Annabelle McIver,
and Andrei Voronkov, editors, Proc. of the 20th Int. Conference on Logic for Programming, Artificial
Intelligence (LPAR-20), volume 9450 of LNCS, pages 418–433, Heidelberg, 2015. Springer.

[23] Mao Luo, Chu-Min Li, Fan Xiao, Felip Manyà, and Zhipeng Lü. An effective learnt clause minimization
approach for CDCL SAT solvers. In Carles Sierra, editor, Proc. of the 26th Int. Joint Conference on
Artificial Intelligence (IJCAI 2017), pages 703–711. ijcai.org, 2017.

[24] Norbert Manthey, Tobias Philipp, and Christoph Wernhard. Soundness of inprocessing in clause sharing
SAT solvers. In Matti Järvisalo and Allen Van Gelder, editors, Proc. of the 16th Int. Conference on
Theory and Applications of Satisfiability Testing (SAT 2013), volume 7962 of LNCS, pages 22–39,
Heidelberg, 2013. Springer.

[25] Cédric Piette, Youssef Hamadi, and Lakhdar Sais. Vivifying propositional clausal formulae. In Malik
Ghallab, Constantine D. Spyropoulos, Nikos Fakotakis, and Nikolaos M. Avouris, editors, Proc. of the
18th European Conference on Artificial Intelligence (ECAI 2008), volume 178 of Frontiers in Artificial
Intelligence and Applications, pages 525–529. IOS Press, 2008.

[26] Giles Reger, Martin Suda, and Andrei Voronkov. Playing with AVATAR. In P. Amy Felty and Aart
Middeldorp, editors, Proc. of the 25th Int. Conference on Automated Deduction (CADE 2015), volume
9195 of LNCS, pages 399–415, Cham, 2015. Springer.

[27] Horst Samulowitz and Fahiem Bacchus. Using SAT in QBF. In Peter van Beek, editor, Proc. of the
11th Int. Conference on Principles and Practice of Constraint Programming (CP 2005), volume 3709 of
LNCS, pages 578–592, Heidelberg, 2005. Springer.

[28] Allen Van Gelder. Verifying RUP proofs of propositional unsatisfiability. In Proc. of the 10th Int.
Symposium on Artificial Intelligence and Mathematics (ISAIM 2008), 2008.

[29] Y. Vizel, G. Weissenbacher, and S. Malik. Boolean satisfiability solvers and their applications in model
checking. Proc. of the IEEE, 103(11):2021–2035, 2015.

[30] Nathan D. Wetzler, Marijn J. H. Heule, and Warren A. Hunt Jr. DRAT-trim: Efficient checking and
trimming using expressive clausal proofs. In Carsten Sinz and Uwe Egly, editors, Proc. of the 17th Int.
Conference on Theory and Applications of Satisfiability Testing (SAT 2014), volume 8561 of LNCS,
pages 422–429, Cham, 2014. Springer.

[31] Siert Wieringa and Keijo Heljanko. Concurrent clause strengthening. In Matti Järvisalo and Allen Van
Gelder, editors, Proc. of the 16th Int. Conference on Theory and Applications of Satisfiability Testing
(SAT 2013), volume 7962 of LNCS, pages 116–132, Heidelberg, 2013. Springer.

This work is licensed under the Creative Commons Attribution License. To view a copy of this
license, visit https://creativecommons.org/licenses/by/4.0/ or send a letter to Creative
Commons, 171 Second St, Suite 300, San Francisco, CA 94105, USA, or Eisenacher Strasse
2, 10777 Berlin, Germany

	Introduction
	1. Preliminaries
	2. Observations on Blocked Clauses
	3. A Semantic Notion of Blocking
	4. Set-Blocked Clauses and Super-Blocked Clauses
	5. The Relationship between Semantic Blocking and Variable Elimination
	6. Complexity Analysis
	7. Comparison with Other Redundancy Properties
	8. Conclusion
	References

