
Simple Bounded LTL Model Checking

Timo Latvala1,?, Armin Biere2, Keijo Heljanko3,?? and Tommi Junttila4,? ??

1 Laboratory for Theoretical Computer Science
Helsinki University of Technology

P.O. Box 5400, FI-02015 HUT, Finland
Timo.Latvala@hut.fi

2 ETH Zürich, Computer Systems Institute
CH-8092 Z̈urich, Switzerland

biere@inf.ethz.ch
3 Laboratory for Theoretical Computer Science

Helsinki University of Technology
P.O. Box 5400, FI-02015 HUT, Finland

Keijo.Heljanko@hut.fi
4 ITC-IRST

Via Sommarive 18, 38050 Povo, Trento, Italy
junttila@irst.itc.it

Abstract. We present a new and very simple translation of the bounded model
checking problem which is linear both in the size of the formula and the length
of the bound. The resulting CNF-formula has a linear number of variablesand
clauses.
Keywords: bounded model checking, LTL, linear translation, NuSMV.

1 Introduction

Bounded model checking [1] (BMC) is a technique for finding bugs in finite state sys-
tem designs violating properties specified in linear temporal logic (LTL). The method
works by mapping aboundedmodel checking problem to the satisfiability problem
(SAT). Given a propositional formula encoding a Kripke structureM representing the
system, an LTL formulaψ and a boundk, a propositional formula|[M,ψ,k]| is created
that is satisfiable if and only if the Kripke structureM contains a counterexample toψ
of lengthk.

BMC has established itself as a complementary method to symbolic model checking
methods based on (ordered) binary decision diagrams (BDDs). The biggest advantage

? Work supported by the Helsinki Graduate School in Computer Science, the Academy of Fin-
land (project 53695), and the Nokia Foundation.

?? Work partially supported by FET project ADVANCE contract No IST-1999-29082, EPSRC
grant 93346/01 (An Automata Theoretic Approach to Software Model Checking), and the
Academy of Finland (project 53695 and grant for research work abroad).

??? This work has been sponsored by the CALCULEMUS! IHP-RTN EC project, contract code
HPRN-CT-2000-00102, and has thus benefited of the financial contribution of the Commission
through the IHP programme.

2 Timo Latvala, Armin Biere, Keijo Heljanko and Tommi Junttila

of BMC compared to BDDs is its space efficiency; there are some Boolean functions
which cannot be succinctly encoded as a BDD. BMC also produces counterexamples
of minimal length, which eases their interpretation and understanding for debugging
purposes. However, predicting the cases where BMC is more efficient compared to
BDD-based methods is difficult [2]. Furthermore, BMC is an incomplete method unless
we can determine a value for the boundk which guarantees that no counterexample has
been missed. Several papers [1,3,4] have investigated techniques for computing this
bound.

The two main ways of improving the performance of BMC is either to improve
solver technology or to modify the encoding of the problem to SAT. Improvements of
the second kind usually rely on the appealing idea that simpler is better. The intuition is
that an encoding which results in fever variables and clauses is usually easier to solve.
We present a new simple encoding for the BMC problem which is linear in the bound,
the system description (i.e. the size of the transition relation as a propositional formula)
and the size of the specification as an LTL formula. The resulting propositional formula
has both alinear number of variables and clauses.

We have experimentally evaluated our new encoding. Our experiments compare the
sizes of the encodings and the required time to solve the instances.

2 Bounded Model Checking

In bounded model checking we consider finite sequences of states in the system, while
LTL formulas specify the infinite behaviour of the system. The key observation by Biere
et al. [1] was that a finite sequence can still represent an infinite path if it contains a loop.
An infinite pathπ = s0s1s2 . . . is a (k, l)-loop if there exists integersl andk such that
sl−1 = sk andπ = (s0s1 . . .sl−1)(sl sl+1 . . .sk)ω (we also use the termk-loop). A bounded
paths0s1 . . .sk of lengthk can either havek+1 unique states or represent an infinite path
with a(k, l)-loop if sk = sl−1 for some 1≤ l ≤ k. This can actually be interpreted in two
different ways (corresponding to the same infinite pathπ). Either the back edge of the
loop is fromsk−1 to sl−1 (the dashed back edge in Fig. 1) or the back edge is fromsk

to sl (the solid back edge in Fig. 1). The newloop shapedepicted on the right side of
Fig. 1 requiresk > 0 for k-loops, which we will silently assume for the rest of the paper.
This loop shape allows a more compact translation than the one in [1], replacing the
k+ 1 copies in the original translation for closing the loop byk comparisons between
bit vectors encoding states.

s l−1sks l−1 sl

k l(,)−loop

sk−10 =s0s sk

(a) no loop

Fig. 1.The two possible cases for a bounded path

Simple Bounded LTL Model Checking 3

Whenk is fixed there arek+1 different loop possibilities for a bounded path. There
are k different (k, l)-loops and it is of course also possible that no loop exists. The
basic idea of Biere et al. [1] was to write a formula which is satisfiable iff the path is a
model of the negation of the LTL specification, for each of these cases. The complete
translation simply joins the cases in one big disjunction.

Example. Consider a Kripke structureM and the formulaψ = GF¬p, “infinitely
often notp”. The negation of the formula isFGp, “eventually alwaysp”. We will write
a formula which encodes all possible witnesses of lengthk for the formulaFGp. First,
we need a formula that captures all paths of lengthk. Let T(s,s′) be the transition
relation ofM as a propositional formula andI(s) a predicate over the state variables
defining the initial states. A path of lengthk is encoded by the formula:

|[M]|k := I(s0)∧
k∧

i=1

T(si−1,si). (1)

Since the formula we are considering requires an infinite witness we can skip the no
loop case. For fixedk andl we use the following rules to build the formulal |[¬ψ]|k for
capturing witnesses of¬ψ, adapted from [1] to our new loop shape (the dashed back
edge):

l |[Fφ]|ik :=
k−1∨

j=min(i,l−1)
l |[φ]| jk l |[Gφ]|ik :=

k−1∧
j=min(i,l−1)

l |[φ]| jk

Thus l |[ψ]|0k =
∨k

i=0
∧k−1

j=min(i,l−1) p(sj). For each possible(k, l)-loop we must express

the conditionLl := (sk = sl−1). Here the statessi are bit vectors and equalitysi = sj

is defined by∧n
m=1si [m] ⇔ sj [m], assuming the vectors haven elements and them:th

element is denotedsi [m]. The final formula which is satisfiable iff there exists a coun-
terexample of lengthk > 0 is:

|[M]|k∧

(
k∨

l=1

(
Ll ∧ l |[ψ]|0k

))
=I(s0)∧

k∧
i=1

T(si−1,si)∧

k∨
l=1

Ll ∧
k−1∨
i=0

k−1∧
j=min(i,l−1)

p(sj)

Without sharing the formula is obviously cubic ink. Let us focus on the LTL part, the
big underlined disjunction overl = 1, . . . ,k. A first level of sharing can be obtained by
associating the inner conjunction to the right, resulting in a quadratic DAG representa-
tion. Using the same general idea, the inner disjunction can be associated to the left. The
overall size becomes linear. As an example see the circuit in Fig. 2 fork = 4. It can still
be further optimised by applyinga∨ (a∧b)≡ a, which essentially results in removing
the middle column of or-gates. However, as has been noted in [5], using associativity
in synthesis is difficult and in general does not avoid the worst case, which is at least
cubic.

4 Timo Latvala, Armin Biere, Keijo Heljanko and Tommi Junttila

p s3)(

p s2)(

p s1)(

p s0)(

L4

L1

L2

L3

Fig. 2.Circuit encoding for the LTL formulaFGp for k = 4

p

p

p

p

p

p

q

q

q

q

p

q

q

q

q

q

q

p

p

pp

pp p

p p

p

q

q

q

q

q

q

q

q

q

q

p

p p

ppp

p

p

p

pp

p

p

Fig. 3.Non-linear number of cubes in the translation ofG(r → (pUq)) for k = 4

As an example for the non-linear behaviour of the original translation [1] consider
the (E)LTL formulaG(r → (pUq)). In the result of the translation we focus on proposi-
tional subformulas, which represent the translation of the inner temporal operator at all
positionsi = 0, . . . ,k−1 and all loop startsl = 1, . . . ,k. Following Def. 13 in [1] these
formulas are sum of product forms. Each product is a cube of the predicatesp andq at
various states. In Fig. 3 we list all cubes that occur as subformulas fork = 4. Each cube
is represented by one row of the four matrices in Fig. 3. Each of the matrices collects
those cubes whereq holds at the same position resp. in the same state.

The number of cubes is at least quadratic ink. For each positionj whereq holds,
the p sequences can be shared. Therefore an upper bound on the overall size isO(k3)
and notO(k4). The exact size is hard to calculate, but withΩ(k2) different cubes in the
example, the size has a quadratic lower bound as well.

Simple Bounded LTL Model Checking 5

2.1 LTL

An LTL formula ϕ is defined over a set of atomic propositionsAP. An LTL formula has
the following syntax:

1. ψ ∈ AP is an LTL formula.
2. If ψ andϕ are LTL formulae then so are¬ψ, Xψ, ψUϕ, ψRϕ, ψ∧ϕ, andψ∨ϕ.

The operators are the next-time operatorX, the until operatorU, and its dual the release
operatorR.

Each formula defines a set of infinite words (models) over 2AP. Let π ∈ (2AP)ω be
an infinite word. We denote the suffix of a wordπ = σ0σ1σ2 . . . by πi = σiσi+1σi+2 . . .
whereσi ∈ 2AP, andπi denotes the prefixπi = σ0σ1 . . .σi . When a formulaψ defines a
wordπ at timei this is denotedπi |= ψ. The set of infinite words defined by a formulaψ
is {π ∈ (2AP)ω | π |= ψ}. The relation ’|=’ is inductively defined in the following way.

πi |= ψ ⇔ ψ ∈ σi for ψ ∈ AP.
πi |= ¬ψ ⇔ π 6|= ψ.
πi |= ψ∨ϕ ⇔ πi |= ψ or πi |= ϕ.
πi |= ψ∧ϕ ⇔ πi |= ψ andπi |= ϕ.
πi |= Xψ ⇔ πi+1 |= ψ.
πi |= ψUϕ ⇔ ∃n≥ i such thatπn |= ϕ andπ j |= ψ for all i ≤ j < n.
πi |= ψRϕ ⇔ ∀n≥ i,πn |= ϕ or π j |= ψ for somei ≤ j < n.

If π0 |= ψ we simply writeπ |= ψ. This presentation of the semantics is intentionally
redundant. The additional operators allow us to transform any formula to apositive
normal form. Formulas in positive normal form have negations only in front of atomic
propositions. Using the dualitiesψUϕ ≡ ¬(¬ψR¬ϕ), ¬Xψ ≡ X¬ψ and De Morgan’s
law, any formula can be transformed without blowup to positive normal form by push-
ing in the negations. All formulas considered in this paper are assumed to be in positive
normal form. We also make use of the standard abbreviations>≡ p∨¬p for some ar-
bitrary p∈AP,⊥≡¬>, Fψ≡>Uψ (’finally’), and Gψ≡⊥Rψ≡¬F¬ψ (’globally’).

A formula holds in a Kripke structure if all paths of the Kripke structure are ac-
cepted by the formula. Formally, a Kripke structure is a tupleM = (S,T,s0,L), whereS
is a set of states,T ⊆S×Sthe transition relation,s0∈Sthe initial state, andL : S→ 2AP

a function labelling all states with atomic propositions. We require that the transition
relation is total. A path of the Kripke structure is a sequence of statesξ = s0s1s2 . . .
wheres0 is the initial state and for alli ≥ 0 we have that(si ,si+1) ∈ T. The correspond-
ing wordπ of a pathξ = s0s1s2 . . . is π = L(s0)L(s1)L(s2) We writeM |= ψ, if for
all pathsξ = s0s1s2 . . . of M the corresponding wordπ is defined byψ, i.e.π |= ψ.

Bounded model checking uses abounded semantics of LTLwhich safely under
approximates the normal semantics. It allows us to use a bounded prefixπk = s0s1 . . .sk

of an infinite pathπ to check the formula. The semantics does a case split depending
on if the infiniteπ is ak-loop or not. Biere et al. [1] have shown that if a formulaψ is
true in the bounded semantics, denotedπ |=k ψ, this implies thatπ |= ψ. The definition
below assumes the formula is in positive normal form.

6 Timo Latvala, Armin Biere, Keijo Heljanko and Tommi Junttila

Definition 1. ([1,6]) Given an infinite pathπ and bound k∈ N, a formulaψ holds in a
pathπ with bound k iffπ |=0

k ψ where

π |=i
k p ⇔ p∈ si for p∈ AP

π |=i
k ¬p ⇔ p 6∈ si for p∈ AP

π |=i
k ψ1∧ψ2 ⇔ π |=i

k ψ1 andπ |=i
k ψ2

π |=i
k ψ1∨ψ2 ⇔ π |=i

k ψ1 or π |=i
k ψ2

π |=i
k Xψ ⇔

{
π |=i+1

k ψ π is a k-loop

π |=i+1
k ψ∧ (i < k) otherwise

π |=i
k ψ1Uψ2 ⇔

{
∃ j ≥ i : π |= j

k ψ2∧∀n, i ≤ n < j : π |=n
k ψ1 k-loop

∃ j, i ≤ j ≤ k : π |= j
k ψ2∧∀n, i ≤ n < j : π |=n

k ψ1 otherwise

π |=i
k ψ1Rψ2 ⇔

{
∀ j ≥ i : π 6|= j

k ψ2 =⇒ ∃n, i ≤ n < j : π |=n
k ψ1 k-loop

∃ j, i ≤ j ≤ k : π |= j
k ψ1∧∀n, i ≤ n≤ j : π |=n

k ψ2 otherwise

3 A New Translation

Our new translation takes advantage of the fact that for lasso-shaped Kripke structures
the semantics of LTL and CTL coincide [7,8]. The intuition is that when each state
has one successor (i.e. the path is lasso-shaped) the semantics of the path quantifiers
A andE of CTL agree. An LTL formula can therefore be evaluated in a lasso-shaped
Kripke structure by a CTL model checker by prefixing each temporal operator by an
E path quantifier [8], which results in a CTL formula.5 We can thus use the fixpoint
characterisation of CTL model checking as a starting point for our translation. The new
translation also separates the concern of if the path has a(k, l)-loop from the semantics
to an independent part of the translation.

The intuition behind our translation is the following. Following [1], we generate
a propositional formula which generates all paths of lengthk. A part is added to the
translation which makes a choice between the following possibilities. Either (a) there
is no loop, or (b) there is a loop, i.e. a statesl−1 such thatsk = sl−1 for some index
1≤ l ≤ k. The choice and additional constraints under which the choice can be made
are implemented as follows. Fresh variablesl i , which do not depend on the state vari-
ables in any way, are introduced with appropriate constraints such that ifl i is true then
si−1 = sk. We allow at most onel i to be true in a satisfying truth assignment. This re-
sults in a lasso-shaped Kripke structure or a simple finite path if nol i is true. Allowing
simple finite paths is an optimisation and does not affect correctness, but can in some
cases (formulas with safety-counterexamples) result in shorter counterexamples. Model
checking is accomplished by generating propositional formulas to evaluate the greatest
and least fixpoints as required by the implicit CTL formula.

Let M be the Kripke structure of the system andT(s,s′) the symbolic transition
relation. We consider an unrolling of statess0s1 . . .sk. Eachsi is a vector of state vari-
ables. The unrolling is obtained by equation (1). We require that the Kripke structure

5 Naturally, we could also use theA path quantifier.

Simple Bounded LTL Model Checking 7

is lasso-shaped or a finite path. The variablesl i can seen as selecting one (or possibly
none) of the possible(k, l)-loops. This is accomplished by the following constraints.

|[LoopConstraints]|k ⇔ Loopk∧AtMostOnek

Loopk ⇔
∧k

i=1 (l i ⇒ (si−1 = sk))

AtMostOnek ⇔
∧k

i=1 (SmallerExistsi ⇒¬l i)

SmallerExists1 ⇔ ⊥
SmallerExistsi+1 ⇔ SmallerExistsi ∨ l i , where 0< i ≤ k

In contrast to [1], our definitions also allow the no loop case even if the path has a
(k, l)-loop.

The until operatorE(ψ1Uψ2) can be evaluated by computing the least fixed point
E(ψ1Uψ2) = µZ.ψ2∨ (ψ1∧EXZ) (see e.g. [9]) while the release operatorE(ψ1Rψ2)
can be evaluated by computing the greatest fixpointE(ψ1Rψ2) = νZ.ψ2∧ (ψ1∨EXZ).
The fixpoints are evaluated by first computing an approximation〈〈·〉〉i for each state
and subformula. After this the results of the approximation are used to compute the
final result|[·]|i . We evaluate the fixpoints forsi where 0≤ i ≤ k+1. The last casek+1
is added to make the connections to fixpoints easier to see from the translation.

:= i ≤ k i = k+1

|[p]|i pi
∨k

j=1 (l j ∧ p j)

|[¬p]|i ¬pi
∨k

j=1 (l j ∧¬p j)

|[Xψ]|i |[ψ]|i+1
∨k

j=1

(
l j ∧|[ψ]| j+1

)
|[ψUϕ]|i |[ϕ]|i ∨

(
|[ψ]|i ∧|[ψUϕ]|i+1

) ∨k
j=1

(
l j ∧〈〈ψUϕ〉〉 j

)
|[ψRϕ]|i |[ϕ]|i ∧

(
|[ψ]|i ∨|[ψRϕ]|i+1

) ∨k
j=1

(
l j ∧〈〈ψRϕ〉〉 j

)
〈〈ψUϕ〉〉i |[ϕ]|i ∨

(
|[ψ]|i ∧〈〈ψUϕ〉〉i+1

)
⊥

〈〈ψRϕ〉〉i |[ϕ]|i ∧
(
|[ψ]|i ∨〈〈ψRϕ〉〉i+1

)
>

The auxiliary translation〈〈·〉〉 which computes the approximations for the fixpoints is
defined in the last two rows.

Let us consider the caseψ = ψ1Rψ2. We initialise〈〈ψ〉〉k+1 to true since we are
approximating a greatest fixpoint. When 0≤ i ≤ k, the auxiliary translation〈〈ψ〉〉i is
the normal fixpoint definition of the release operator. The computed approximation of
the fixpoint〈〈ψ〉〉 is used to initialise|[ψ]|k+1 with the value of〈〈ψ〉〉l , the value of the
approximation in the successor ofsk, when we are dealing with a(k, l)-loop. Finally,
|[ψ]|i , where 0≤ i ≤ k, computes the accurate values for each statesi , again using the
standard fixpoint characterisation of release.

Given a Kripke structureM, an LTL formulaψ, and a boundk, the complete encod-
ing as a propositional formula is given by|[M,ψ,k]|.

|[M,ψ,k]|= |[M]|k∧|[LoopConstraints]|k∧|[ψ]|0

8 Timo Latvala, Armin Biere, Keijo Heljanko and Tommi Junttila

Theorem 1. Given a finite Kripke structure M, a bound k∈ N and an LTL formulaψ,
M has a pathπ with π |=k ψ iff |[M,ψ,k]| is satisfiable.

Proof. The proof sketch follows the argument at the beginning of this Section. For both
directions we can assume thatπ is given and is a path ofM. Further assume thatπ is a
(k, l) loop. The other case is obvious from the definitions. The bounded semantics on a
(k, l) loop coincides with the unbounded semantics. What remains to be proven is that
the LTL part of the translation when partially instantiated withπ is satisfiable iffπ |= ψ.

Instead of checking whetherψ holds alongπ we check the corresponding CTL
formula ψ′ on π interpreted as a Kripke structure itself. The CTL formulaψ′ is ob-
tained fromψ by prefixing every temporal operator with the existential path quantifier
E. The ECTL formulaψ′ can be translated into an alternation free formula of the modal
mu-calculus, which in turn can be transformed into a set of mutual recursive boolean
equations with fixpoint semantics as in [10]. The event-driven linear fix point algorithm
of [10] is then reformulated symbolically as a non-recursive boolean equation system,
which is equivalent to our definition of|[·]|. �

As in Theorem 9 of [1] we can lift our Theorem 1 to the unbounded semantics. An
upper bound onk would then be of the orderO(|ψ| · |M| · 2|ψ|). This is easy to show
using the automata-theoretic approach to model checking.However, our main result is
the following:

Theorem 2. |[M,ψ,k]| seen as Boolean circuit is linear in|T|, |ψ|, and k. More pre-
cisely, it is of the sizeO(|I |+((|T|+ |ψ|) ·k)), where|I | and|T| are the sizes of the initial
state predicate and the transition relation seen as Boolean circuits, respectively.6

Proof. Obviously the translation ofLoopConstraintsk is linear w.r.t.k, since bothLoopk
andAtMostOnek loop once overk. We will argue the linearity of|[·]| using the until-
case, as it is the most complex. For each 0≤ i ≤ k, the translation adds a constant
number of constraints. The casei = k+ 1 addsk constraints that refer to〈〈U〉〉i . This
does not result in a quadratic formula, even though〈〈U〉〉i is linear, because〈〈U〉〉i
can clearly be shared between the constraints. Linearity of〈〈U〉〉i is obvious as only a
constant number of constraints are added for each 0≤ i ≤ k+1. �

3.1 Optimising the Translation

A simple way to optimise the translation is to introduce special translations for certain
derived operators. We have developed special translations forGψ,Fψ,GFψ andFGψ.
These formulas have similarities which can also be seen in the way they share trans-
lations in the casei = k+ 1. Note that the translations of|[GFψ]|i and |[FGψ]|i are
only dependent on the casei = k+ 1 since the semantics of the formulas only places

6 This bound applies to both to the number of gates and the number of wire connections between
the gates of the Boolean circuit in question.

Simple Bounded LTL Model Checking 9

requirements on states inside the loop.

:= i ≤ k i = k+1

|[Gψ]|i |[ϕ]|i ∧|[Gψ]|i+1
∨k

j=1

(
l j ∧〈〈Gψ〉〉 j

)
|[Fψ]|i |[ϕ]|i ∨|[Fψ]|i+1

∨k
j=1

(
l j ∧〈〈Fψ〉〉 j

)
|[GFψ]|i |[GFψ]|k+1

∨k
j=1

(
l j ∧〈〈Fψ〉〉 j

)
|[FGψ]|i |[FGψ]|k+1

∨k
j=1

(
l j ∧〈〈Gψ〉〉 j

)
〈〈Gψ〉〉i |[ϕ]|i ∧〈〈Gψ〉〉i+1 >
〈〈Fψ〉〉i |[ϕ]|i ∨〈〈Fψ〉〉i+1 ⊥

The translations for the above derived operators can be further optimised at the cost of
introducingk+1 additional variables. However, the new variables are functionally de-
pendent on the variablesl i and are shared by all subformulas using them. The variables
InLoopj , where 0< j ≤ k, express the fact that the statesj is in the loop selected by
the l i variables. Additionally, we introduce the variableLoopExistswhich is true iff the
paths0s1 . . .sk has a(k, l)-loop. In other words,LoopExistsis false iff πk is treated as a
simple path without a loop. This is encoded by the following definitions.

InLoopi+1 ⇔ InLoopi ∨ l i+1 for 0 < i < k

InLoop1 ⇔ l1

LoopExists⇔ InLoopk

With the InLoopi variables we can eliminate the need for the auxiliary translation〈〈·〉〉
for the derived operators. This simplifies the translation in most cases. The change in
the translation is small as only the casei = k+1 changes. Sharing also occurs between
the translation for different operators as the translations forGψ andFGψ, and forFψ
andGFψ are the same.

|[Gψ]|k+1 = |[FGψ]|k+1 = LoopExists∧
∧k

i=1 (¬InLoopi ∨|[ψ]|i)

|[Fψ]|k+1 = |[GFψ]|k+1 =
∨k

i=1 (InLoopi ∧|[ψ]|i)

3.2 Fairness

In many cases we wish to restrict the possible executions of the system to disallow ex-
ecutions which are unrealistic or impossible in the physical system. The standard way
is to add fairness constraints to the model in order to only obtain interesting counterex-
amples.

There are a few well-known notions of fairness.Justice(weak fairness) requires that
certain conditions are true infinitely often.Compassion(strong fairness) requires that if
certain conditions are true infinitely often then certain other conditions must also hold
infinitely often.

10 Timo Latvala, Armin Biere, Keijo Heljanko and Tommi Junttila

Let {J1, . . . ,Jj} be a set of Boolean predicates over the state variables which define
the conditions that should be true infinitely often. Justice can then be expressed as the
LTL formula

J =
j∧

i=1

GFJi .

Similarly, compassion can be expressed as an LTL formula. A set of pairs of Boolean
predicates{(L1,U1), . . . ,(Lc,Uc)} over the state variables define the compassion sets.
Compassion is defined by the formula

C =
c∧

i=1

(GFLi ⇒GFUi) .

We include the fairness constraints in the specification. Thus, instead of model checking
the formulaψ, we check the formulaJ ∧C → ψ. Since our propositional encoding of
LTL formulas is linear, our overhead for handling fairness is linear in the number of
fairness constraints.

4 Related Work

This work can be seen as a continuation of the work done in [11]. There the bounded
model checking problem for LTL is translated into the problem of finding a stable model
of a normal logic program (another NP-complete problem, see references in [11]) of
essentially (modulo a constant) the same size as the translation presented here. The
main differences to that work are the following. (i) The translation of [11] uses the close
correspondence between the stable model semantics with the notion of a least fixpoint of
a set of Boolean equations. The “formula variable dependency graphs” of the translation
of [11] are in fact cyclic, while in this work they are acyclic. Seeing the translation
of [11] as a propositional formula would result in a translation which isnot sound. By
using the correspondence between least fixpoints and stable models the translation for
until and release formulas in [11] do not require the auxiliary translations〈〈·〉〉. Thus the
translation of [11] had to be significantly changed in order to use SAT. Additionally, the
best known automatic translation of the stable model problem to SAT is non-linear [12].
(ii) The translation in [11] employs a different system modelling formalism, which
allows for partial order semantics based optimisations. (iii) Moreover, the translation
in [11] also allows for deadlocking systems with LTL interpreted over finite paths in
the case of a deadlock, a feature left for further work in this paper. (iv) Finally, the
implementation presented in this work is new, and based on the NuSMV2 [13] system.

Others have also considered the problem of improving the BMC encoding [5,6,4].
Cimatti et al. [5] analyse the original encoding [1] and suggest several optimisations.
For instance, they propose a linear encoding for formulas of the formGFp. Their trans-
lation is, however, not linear in general. Frisch et al. [6] approach the translation prob-
lem by using a normal form of LTL and take advantage of the properties of the normal
form. Their procedure modifies the original model and is similar to symbolic tableau-
style approaches for LTL model checking. According to their experiments their ap-
proach produces smaller encodings than [5]. However, their encoding is also non-linear

Simple Bounded LTL Model Checking 11

in the general case. The non-linearity occurs at least in those cases when model check-
ing a formulaψ such that after converting¬ψ to positive normal form it contains until
or finally operators. Closest to their method is the so calledsemantictranslation for
BMC [14,4]. The method follows closely the standard automata theoretic approach to
model checking and creates a product systemM×B¬ψ, whereB¬ψ is a Büchi automaton
representing the negation of the property. The existence of a counterexample is demon-
strated by finding a fair loop in the product system. Since only fair loops are accepted
the method does not find counterexamples without a loop. This is the main drawback of
the method, and is something which could be improved upon in the future. The greatest
advantage of the method is that it can leverage the significant amount of research which
has been invested in improving the efficiency of LTL to Büchi automata translators.
The translation results in a linear number of variables but a quadratic number clauses
because of the way fairness is handled. Naturally, the semantic translation could also
be improved to linear by e.g. using the translation presented in this work or that of [5].
Furthermore, the approach used in the experiments of [4] results in a translation which
is exponential in the LTL formula length as the Wring system used produces explicit
state B̈uchi automata instead of symbolic ones. Related to the semantic translation is
the work of [15], which uses a similar product construction. Although the method is
linear in general, the number of state bits in the model is doubled. This blowup does not
occur with our method.

Many researchers have also investigated improving SAT solver efficiency. Strich-
man [2] uses the special properties of the formulaGp to improve solver efficiency of
BMC problems. As most safety properties can be reduced to checking invariants, the
methods introduced are applicable for safety properties in general. Gupta et al. [16] use
BDD model checking runs for training the solvers to achieve better performance.

5 Experiments

The translation has been straightforwardly implemented as a recursive procedure which
does case analysis based on the translation. Implementation simplicity is, in our opinion,
one of the main strengths of the new translation. The only implementation optimisation
used was a simple cache, implemented as a lookup table, for the values of|[·]|i and〈〈·〉〉i .
This avoids a blow up in run time for certain formulas and speeds up the generation of
the Boolean formula. All encoding optimisations mentioned in Sect. 3.1 have of course
been implemented.

In order to evaluate the practical impact of our new linear translation we have per-
formed two series of experiments. The first series of experiments evaluates the perfor-
mance of the encoding on random formulae in small random Kripke structures, while
the second series of experiments benchmarks the performance on real-life examples.
Our implementation is compared against two bounded LTL model checking algorithms.
Firstly we compare against the standard NuSMV encoding [13], which includes many
of the optimisations of [5]. We also compare against the encoding of [6] which we will
call Fixpoint. We do not compare against the SNF encoding also available in [6] since
generally the Fixpoint encoding performs better than SNF. In order to make all other
implementation differences as small as possible, all of the encodings were benchmarked

12 Timo Latvala, Armin Biere, Keijo Heljanko and Tommi Junttila

0 5 10
0.5

1

1.5
x 10

4

|f|
va

ria
bl

es
0 5 10

1

2

3

4
x 10

4

|f|

cl
au

se
s

0 5 10
0

1

2

3

|f|

tim
e

[s
]

0 10 20 30
0

1

2

3
x 10

4

k

va
ria

bl
es

0 10 20 30
0

2

4

6

8
x 10

4

k

cl
au

se
s

0 10 20 30
0

2

4

6

8

k

tim
e

[s
]

0 10 20 30
0

1

2

3

4
x 10

4

k

va
ria

bl
es

0 10 20 30
0

5

10

15
x 10

4 |f| = 10

k

cl
au

se
s

0 10 20 30
0

5

10

15

k

tim
e

[s
]

NuSMV
New

Fig. 4.Plots for NuSMV and New, averages over random formulae

0 5 10
0.5

1

1.5

2

2.5
x 10

4

|f|

va
ria

bl
es

0 5 10
2

3

4

5

6

7
x 10

4

|f|

cl
au

se
s

0 5 10
0

5

10

15

|f|

tim
e

[s
]

0 20 40
0

1

2

3

4
x 10

4

k

va
ria

bl
es

0 20 40
0

5

10

15
x 10

4

k

cl
au

se
s

0 20 40
0

10

20

30

40

k

tim
e

[s
]

0 20 40
0

1

2

3

4

5
x 10

4

k

va
ria

bl
es

0 20 40
0

5

10

15
x 10

4 |f| = 10

k

cl
au

se
s

0 20 40
0

10

20

30

40

50

k

tim
e

[s
]

New
Fixpoint

Fig. 5.Plots for Fixpoint and New, averages over random formulae

Simple Bounded LTL Model Checking 13

on top of the NuSMV version of D. Sheridan [6] (obtained from his homepage on 18th
of March 2004) which contains several BMC related optimisations not included in the
standard NuSMV 2.1 distribution. We expect that benchmarking the implementations
on top of NuSMV 2.1 would result in larger running times for all the implementations
in question at least in the random Kripke structures benchmark. It should be noted that
the compact CNF conversion [17] option of the tool was disabled.

In the first series of experiments we generated small random Kripke structures and
random formulae using techniques from [8]. The experiments give us some sense of
how the implementations scale when the bound or the size of the formula is increased.
To demonstrate the cases where the non-linearity of the Fixpoint translation occurs
we generated formulas¬ψ which in positive normal form contains a larger percentage
of finally and until operators than other temporal operators. For each formula size we
generate 40 formulas, which we then model check by forcing the model checker to
look for counterexamples which are of exactly the length specified by the bound. The
random Kripke structures we use contain 30 states and one weak fairness constraint
which holds in two randomly selected states. We measure the time used to solve the
SAT instance and the number clauses and variables in the instance.

When benchmarking against NuSMV default translation we varied the size of the
formula from 3 to 10. For each formula size we let the bound grow up tok = 30.
When benchmarking against Fixpoint translation we were able to increase both the
bounds used and the formula sizes to better demonstrate the differences between the
two translations. We varied the size of the formula from 3 to 14. For each formula size
we let the bound grow up tok = 50.

In Figures 4 and 5 there are nine plots in each figure which depict the results from
tests with random formulae of the new translation against NuSMV and Fixpoint, re-
spectively. The three top plots show the average time, average number of clauses, and
average number of variables for each formula size over all bounds. In the second row
we have computed the same measures when averaged for each bound over all formula
sizes. The last row shows the averages when the size of formula is fixed at ten. The
plots clearly show the non-linearity of the competing translations [5,6] with respect to
the bound. Something the plots do not show is time for generating the problems. Our
experience is that the new implementation and Fixpoint generated the Boolean formulas
almost instantaneously while for the NuSMV encoding there were cases where gener-
ation time dominated. In fact, a couple of NuSMV data points had to be omitted from
the averages due to the fact that the generation of the SAT instance took several hours.

In the second series of experiments we used real-life examples. As specifications
we favoured longer formulas since all implementations can translate simple formulas
linearly. The models we used were a model of the alternating bit protocol (abp), a dis-
tributed mutual exclusion algorithm (dme), a bounded resource protocol (brp), a model
of a pci bus (pci), and a model of a 16-bit shift register (srg16). The results for the
real-life examples are summarised in Table 1. We measured the number of variables,
cumulative number of clauses and the time used to verify formulas for the reported
maximum bound. For the real-life examples, Fixpoint or the new translation are usu-
ally the fastest. Our new translation is the most compact one in all cases. However, the
differences are small as the model part of the translation dominates the translation size.

14 Timo Latvala, Armin Biere, Keijo Heljanko and Tommi Junttila

The shift register example (srg16) shows the strength of a linear translation. NuSMV
could not managek= 20 in a reasonable time while Fixpoint displays non-linear growth
with respect tok.

All experiments were performed on a computer with an AMD Athlon XP 2000+
processor and 1 GiB of RAM using the SAT solver zChaff [18], version 2003.12.04.

Table 1.Benchmarks

Model k NuSMV Fixpoint New
vars clauses time vars clauses time vars clauses time

abp 16 19,476 57,373 32.3 18,643 54,637 43.7 18,024 52,969 7.4
10 7,599 21,811 1.3 8,550 24,256 1.2 7,471 21,397 1.5

brp 15 11,494 33,226 18.7 13,150 37,636 22.0 11,116 32,047 17.9
20 15,514 45,016 471 18,050 51,916 351 14,761 42,697 484
10 53,400 141,438 2.0 54,407 144,022 0.9 53,293 141,087 2.6

dme 20 104,885 283,733 180 107,527 290,902 263 104,173 281,537 471
30 156,870 427,528 1,199 161,847 441,382 1,855 155,053 421,987 1,544
10 56,414 167,753 58.3 56,232 167,042 56.6 55,911 166,214 51.5

pci 15 85,359 254,133 568 84,372 250,947 370 83,756 249,279 382
20 115,204 343,213 5,921 112,612 335,152 2,216 111,601 332,344 2,102
20 N/A N/A N/A 10,540 28,786 2.3 5,196 14,921 2.7

srg16 40 N/A N/A N/A 25,600 71,686 16.6 10,336 29,841 22.3
60 N/A N/A N/A 45,460 128,986 105 15,476 44,761 83.0

6 Conclusions

We have presented a translation of the bounded LTL model checking problem to SAT
which is linear in the bound and the size of the formula. The translation produces a
linear number of variables and clauses in the resulting CNF.

Our benchmarks show that our new translation scales better both in size of the bound
and the size of the formula than previous implementations [5,6]. The translation remains
linear in all cases. However, in some cases either the size of the formula or the bound
must be made large before the benefit shows. One avenue of future work is to include
some of the optimisations presented in [5] in order to the improve the performance of
our translation for short formulas and small bounds.

Other avenues of future work also exist. One fairly straightforward generalisation
of our translation is the ability to handle deadlocking executions. This could proba-
bly be done in a manner similar to [11]. Another interesting topic is generalising our
translation to include past temporal logic as the translation of [19]. The presented trans-
lation could also benefit from specific SAT solver optimisations. When the translation
is seen as producing Boolean circuits, all of the circuits are monotonic if theInLoop
variables and state variables (and their negated versions) are given as inputs. A solver
(also CNF-based) could be optimised to take advantage of this.

Acknowledgements

We would like to thank D. Sheridan for sharing his NuSMV implementation with us.

Simple Bounded LTL Model Checking 15

References

1. Biere, A., Cimatti, A., Clarke, E., Zhu, Y.: Symbolic model checking without BDDs. In:
Tools and Algorithms for the Constructions and Analysis of Systems (TACAS’99). Volume
1579 of LNCS., Springer (1999) 193–207

2. Strichman, O.: Accelerating bounded model checking of safety properties. Formal Methods
in System Design24 (2004) 5–24

3. Kroenig, D., Strichman, O.: Efficient computation of recurrence diameters. In: Verifica-
tion, Model Checking, and Abstract Interpretation (VMCAI’2003). Volume 2575 of LNCS.,
Springer (2003) 298–309

4. Clarke, E., Kroenig, D., Oukanine, J., Strichman, O.: Completeness and complexity of
bounded model checking. In: Verification, Model Checking, and Abstract Interpretation
(VMCAI’2004). Volume 2937 of LNCS., Springer (2004) 85–96

5. Cimatti, A., Pistore, M., Roveri, M., Sebastiani, R.: Improving the encoding of LTL model
checking into SAT. In: Verification, Model Checking, and Abstract Interpretation (VM-
CAI’2002). Volume 2294 of LNCS., Springer (2002) 196–207

6. Frisch, A., Sheridan, D., Walsh, T.: A fixpoint encoding for bounded model checking.
In: Formal Methods in Computer-Aided Design (FMCAD’2002). Volume 2517 of LNCS.,
Springer (2002) 238–255

7. Kupferman, O., Vardi, M.: Model checking of safety properties. Formal Methods in System
Design19 (2001) 291–314

8. Tauriainen, H., Heljanko, K.: Testing LTL formula translation into Büchi automata. STTT -
International Journal on Software Tools for Technology Transfer4 (2002) 57–70

9. Clarke, E., Grumberg, O., Peled, D.: Model Checking. The MIT Press (1999)
10. Cleaveland, R., Steffen, B.: A linear-time model-checking algorithm for the alternation-free

modal mu-calculus. Formal Methods in System Desing2 (1993) 121–147
11. Heljanko, K., Niemel̈a, I.: Bounded LTL model checking with stable models. Theory and

Practice of Logic Programming3 (2003) 519–550
12. Janhunen, T.: A counter-based approach to translating logic programs into set of clauses.

In: Proceedings of the 2nd International Workshop on Answer Set Programming (ASP’03).
Volume 78., Sun SITE Central Europe (CEUR) (2003) 166–180

13. Cimatti, A., Clarke, E., Giunchiglia, E., Giunchiglia, F., Pistore, M., Roveri, M., Sebastiani,
R., Tacchella, A.: NuSMV 2: An opensource tool for symbolic model checking. In: Com-
puter Aided Verification (CAV’2002). Volume 2404 of LNCS., Springer (2002) 359–364

14. de Moura, L., Rueß, H., Sorea, M.: Lazy theorem proving for bounded model checking. In:
Conference on Automated Deduction (CADE’02). Volume 2392 of LNCS., Springer (2002)
438–455

15. Schuppan, V., Biere, A.: Efficient reduction of finite state model checking to reachability
analysis. Software Tools for Technology Transfer (STTT)5 (2004)

16. Gupta, A., Ganai, M., Wang, C., Yang, Z., Ashar, P.: Learning from BDDs in SAT-based
bounded model checking. In: Proceedings of the 40th Conference on Design Automation,
IEEE (2003) 824–829

17. Jackson, P., Sheridan, D.: The optimality of a fast CNF conversion and its use with SAT.
Technical Report APES-82-2004, APES Research Group (2004) Available fromhttp://
www.dcs.st-and.ac.uk/˜apes/apesreports.html .

18. Moskewicz, M., Madigan, C., Zhao, Y., L.Zhang, Malik, S.: Chaff: Engineering an efficient
SAT solver. In: Proceedings of the 38th Design Automation Conference. (2001)

19. Benedetti, M., Cimatti, A.: Bounded model checking for past LTL. In: Tools and Algorithms
for Construction and Analysis of Systems (TACAS’2003). Volume 2619 of LNCS., Springer
(2003) 18–33

http://www.dcs.st-and.ac.uk/~apes/apesreports.html
http://www.dcs.st-and.ac.uk/~apes/apesreports.html

	Simple Bounded LTL Model Checking
	Timo Latvala, Armin Biere, Keijo Heljanko and Tommi Junttila

