
Efficiently Representing Existential Dependency
Sets for Expansion-based QBF Solvers

Florian Lonsing and Armin Biere

Johannes Kepler University, Linz, Austria

Abstract. Given a quantified boolean formula (QBF) in prenex con-
junctive normal form, we consider the problem of identifying variable
dependencies. In related work, a formal definition of dependencies has
been suggested based on quantifier prefix reordering: two variables are
independent if swapping them in the prefix does not change satisfia-
bility of the formula. Instead of the general case, we focus on the sets
of depending existential variables for all universal variables which are
relevant particularly for expansion-based QBF solvers. We present an
approach for efficiently computing existential dependency sets by means
of a directed connection relation over variables and demonstrate how this
relation can be compactly represented as a tree using a union-find data
structure. Experimental results show the effectiveness of our approach.

1 Introduction

The logic of quantified boolean formulae (QBF) extends propositional logic
(SAT) with universal quantification, thus making it exponentially more succinct
than SAT. Because of this property, QBF is a natural modelling language with
a variety of applications in model checking and verification [3, 6, 11, 17]. In the
domain of SAT, encouraging progress has been made during the last years in the
development of efficient decision procedures based on the DPLL-framework [10].
The success is due to advanced strategies for pruning the search space such as
learning, backjumping or restarts. These techniques were successfully extended
to DPLL-based algorithms for QBF [9, 15, 23] but, although still being important
for performance, it turned out not to guarantee similar progress as for SAT.

There is strong indication [4, 12, 13, 16] that the quantifier prefix of QBFs
in prenex conjunctive normal form (PCNF) could be one reason for this phe-
nomenon. In QBF, the presence of different types of quantifiers introduces depen-
dencies between variables which have to be respected by QBF solvers. In many
cases, dependencies resulting from linear quantifier prefixes are too pessimistic
and have negative influence on solver performance. In [20], a formal definition of
dependencies has been suggested and it was shown that the problem of identi-
fying the optimal (smallest) dependency set is, as the decision problem of QBF,
PSPACE-complete [21]. Because of this fact, a compromise has to be found
between efficiency and optimality. Various approaches have been suggested to
identify dependencies and thus overcome the drawback of linear quantifier pre-
fixes [1, 4, 5, 7, 13, 16, 18, 20]. To our knowledge, all of these approaches are based
on analyzing the syntactic structure of a QBF.

Apart from search-based QBF solvers, which suffer from dependencies in ex-
ploring irrelevant parts of the search space, handling dependencies is crucial for
solvers based on variable elimination [1, 2, 5, 8, 18]. These solvers have to cope
with dependency-related size increase of the formula involved with eliminations.

In this paper we address the problem of computing dependency sets of uni-
versally quantified variables for QBFs in PCNF, which is relevant for expansion-
based QBF solvers [1, 2, 5, 8, 18]. Our work is based on [5, 7]. We briefly introduce
universal expansion and analyze an algorithm suggested in [7] for computing de-
pendencies of universal variables. Starting from our analysis, we develop a formal
definition of dependencies in the context of expansion which is based on a syntac-
tic connection relation of variables. We obtain a directed dependency relation by
defining an equivalence relation over existential variables represented as a tree
excluding transitive edges. As experimental results demonstrate, this relation
allows efficient computation of dependency sets for all universal variables in a
QBF. Whereas our approach can not directly be applied in search-based solvers,
we see the potential of an extension to dependency sets for existential variables.

2 Preliminaries

For a set of variables V , a literal is either a variable x ∈ V or its negation ¬x
where v(x) = x and v(¬x) = x denotes the variable of a literal. A clause is a
disjunction over literals. A propositional formula is in conjunctive normal form
(CNF) if it consists of a conjunction over clauses.

A quantified boolean formula (QBF) F ≡ S1 . . . Sn φ in prenex conjunctive
normal form (PCNF) consists of a propositional formula φ over a set of variables
V and a quantifier prefix S1 . . . Sn. The quantifier prefix is a linearly ordered set
of scopes Si, such that S1 < . . . < Sn, which forms a partition on the set of
variables: V = S1 ∪ . . . ∪ Sn and Si ∩ Sj = 6 0 for 1 ≤ i, j ≤ n and i 6= j. A
scope Si is existential if it is associated with an existential quantifier, written
as q(Si) = ∃ and universal otherwise where q(Si) = ∀. V∃ =

⋃
Si for q(Si) = ∃

denotes the set of existential variables, V∀ =
⋃
Si for q(Si) = ∀ the set of

universal variables. For a variable x ∈ Si, s(x) = Si denotes the scope of x
and q(x) = q(s(x)). For two adjacent scopes Si and Si+1 where 1 ≤ i < n,
q(Si) 6= q(Si+1). The number of scopes is the number of quantifier alternations.

For a scope Si and literal l, δ(Si) = i and δ(l) = δ(s(v(l))) denote the level
of Si and of l, respectively. For scopes Si, Sj and literals l, k, Sj is larger than
Si and k is larger than l if δ(Si) < δ(Sj) and δ(l) < δ(k), respectively. For some
variable x, R(x) = {y ∈ V | δ(x) ≤ δ(y)}. For a QBF, V∃,i = {y ∈ V∃ | δ(y) ≥ i}.

In the following, QBFs in PCNF are considered such that for all clauses
C = (l1 ∨ . . . ∨ lk), v(li) 6= v(lj) and δ(li) ≤ δ(lj) for 1 ≤ i < j ≤ k and
q(v(lk)) = ∃. A clause neither contains multiple nor complementary literals of
one and the same variable, all literals are sorted ascendingly according to their
level and the largest literal is existential. Universal reduction [5, 8] can be applied
to remove literals lk for which q(v(lk)) = ∀. Furthermore, we assume that there
occurs at least one literal for each x ∈ V in the formula.

3 Universal Expansion

Apart from solving QBF using DPLL-based algorithms where a semantic search
tree is implicitly constructed [9, 10], resolution and expansion can be applied in
order to successively eliminate variables at the cost of formula size [1, 2, 5, 8, 18].
In [7], cost-based expansion of universal variables was applied for preprocessing
QBF, which generalizes an approach first used in Quantor [5].

Basically, expanding a universal variable x ∈ V∀ involves copying a sub-
formula, assigning x and duplicating depending existential variables D(x) ⊆
(R(x) \ V∀). Details can be found in the aforementioned publications. We focus
on the computation of D(x) and |D(x)|, respectively. Duplicating variables is
necessary in order to reflect the possibility of a depending existential variable to
assume different values with respect to the value of the universal variable.

Example 1. In the satisfiable formula ∀x∃y (x ∨ ¬y) ∧ (¬x ∨ y), y depends on
x: y must be assigned true if x = true and false otherwise. Incorrectly expand-
ing x without duplicating y yields ∃y (¬y) ∧ (y), which is unsatisfiable. If y is
duplicated, then the resulting formula ∃y, y′ (¬y) ∧ (y′) is equisatisfiable.

A popular approach for computing set D(x) is based on rules for syntactically
pushing quantifiers from the prefix inside the formula, thus minimizing the sub-
formula within the range of a quantifier: (Qx φ⊗ ψ) ≡ (Qx φ)⊗ ψ if x 6∈ V (ψ),
⊗ ∈ {∨,∧} and Q ∈ {∀,∃}. This method, also called miniscoping [1], has been
applied in various contexts [1, 4, 5, 7, 13, 18, 20]. Informally, for some QBF and
variable x ∈ V∀, D(x) ⊆ (R(x)\V∀) is the set of variables appearing to the right
of x after pushing quantifiers inside F as far as possible.

In [5] a connection relation of existential variables was defined in order to
compute D(x) for x ∈ Sn−1, which was generalized in [7] to arbitrary universal
scopes: two variables v and w are locally connected if they occur in a common
clause. The original definition [7] for computing D(x) where x ∈ V∀ is as follows:

D0(x) := {y ∈ (R(x) \ V∀) | x is locally connected to y}
Dk+1(x) := {z ∈ (R(x) \ V∀) | z is locally connected to y ∈ Dk

x}
D(x) :=

⋃
k

Dk
x

Let X = D(x) ∪ {x}. Set D(x) where x ∈ V∀ has the following properties:

1. D(x) ⊆ (R(x) \ V∀)
2. ∀y ∈ D(x) : q(y) = ∃ and δ(x) < δ(y)
3. ∀y ∈ D(x) : x is connected to y via clauses containing variables in X
4. ∀y, z ∈ D(x) : y is connected to z via clauses containing variables in X

Essentially, D(x) contains existential variables which have larger levels than x
only and x is connected to all variables in D(x) via clauses containing variables
from D(x) ∪ {x}. This is also the case for all pairs of variables in D(x).

In an implementation directly applying the definition, set D(x) can be com-
puted by starting at clauses C such that x ∈ C, collecting existential variables

y ∈ C where δ(y) ≥ δ(x) and recursively inspecting clauses containing y. The
connection relation is implicitly constructed. This algorithm requires O(|F |) time
for one x ∈ V∀, where |F | is the length of the formula.

Example 2. For the QBF in Fig. 1, D(1) = {3, 4, 8, 10, 12, 13}, D(2) = {5, 9, 14},
D(6) = {8, 12, 13}, D(7) = {10} and D(11) = {12, 13}

4 Defining a Directed Dependency Relation

Based on the properties of set D(x), an approach for efficient computation and
representation of D(x) for all x ∈ V∀ is presented. The idea is to avoid computing
a connection relation for each universal variable from scratch. Instead, such a
relation is constructed once for all existential variables, which forms the basis
for retrieving sets D(x) and computing |D(x)|, respectively. For example, in
expansion-based QBF solvers this information could be used in variable selection
heuristics. It is shown how the connection relation can be compactly represented
by defining an equivalence relation on existential variables and by excluding
transitive edges. In the following, a formal definition is developed.

Definition 1. For x, y ∈ V , y is locally depending on x with respect to scope
Si, written as x→i y, if, and only if q(y) = ∃, δ(y) ≥ i and there exists a clause
C such that both x ∈ C and y ∈ C. The reflexive and transitive closure of →i is
denoted by →∗i . If x→∗i y, then y is transitively locally depending on x.

The term “locally” refers to the fact that the relation is defined with respect to
some scope Si. Intuitively, if x→∗i y for i = δ(x), then there are connecting sets
of variables and of clauses by applying →i transitively.

Definition 2. For x, y ∈ V∃, x is transitively locally connected to y with respect
to scope Si, written as x ∼i y, if, and only if q(x) = q(y) = ∃ and x→∗i y.

Lemma 1. For x, y ∈ V∃, i ≤ min(δ(x), δ(y)) : if x ∼i y then y ∼i x.

Actually, ∼i is a special case of →∗i by restricting the set of variables to V∃.

Example 3. For the QBF in Fig. 1, 3 ∼2 10 since q(3) = q(10) = ∃ and 3→∗2 10
via variables 12, 4 and 10.

Definition 3. For x, y ∈ V , x is globally connected to y, written as x ≈ y, if,
and only if either x = y and q(x) = ∀ or q(x) = q(y) = ∃, δ(x) = δ(y) = i and
x ∼i y.

Relation ≈ is “global” because the definition is independent from a particular
scope. It follows from Def. 3 that ∀x, y ∈ V : x ≈ y ⇒ s(x) = s(y)⇒ δ(x) = δ(y).

Theorem 1. ≈ is an equivalence relation. For x ∈ V , [x] is the class of x.

Example 4. For the QBF in Fig. 1, 3 ≈ 4 because q(3) = q(4) = ∃ and δ(3) =
δ(4) = 2 and 3 ∼2 4 since 3→∗2 4 via variable 12. Furthermore, 12 ≈ 13.

Theorem 2. ∀x, y ∈ V : x→∗i y if, and only if ∀x′ ∈ [x], y′ ∈ [y] : x′ →∗i y′.

Thm. 2 states compatibility of →∗i with ≈: if two variables are connected (de-
pendent) then so are all members of their respective classes and vice versa.

Definition 4. ;∗ denotes the global directed dependency relation. For x, y ∈
V , [x] ;∗ [y] if, and only if, δ(x) ≤ δ(y) and x→∗i y for i = δ(x). The transitive
reduction of ;∗ is denoted by ;.

Corollary 1. ∀x, y ∈ V : if [x] ;∗ [y] and [x] 6= [y] then δ(x) < δ(y).

Corollary 2. ∀x, y ∈ V : if [x] ;∗ [y] then either [x] = [y] or δ(x) < δ(y).

By Cor. 1 and Cor. 2, if [x] ;∗ [y] then either x and y are in the same class or
in different classes but from different scopes.

Theorem 3. For x ∈ V∀, i = δ(x) :
D(x) = {y ∈ V∃ | x→∗i y} = {y ∈ V∃ | [x]→∗i [y]} = {y ∈ V∃ | [x] ;∗ [y]}.

By Thm. 3, relations→∗i ,→∗i combined with ≈ and ;∗ are equivalent in theory
for computing D(x). Note that computing D(x) by →∗i corresponds to applying
the original definition (see also Sec. 3) introduced in [7]. From a practical point
of view, →∗i is restricted to classes by ≈ which again can be improved with a
compact representation of ;.

4.1 Efficiently Representing Directed Dependency Relations

Lemma 2. For ;∗ on V∃, ; can be represented as a forest.

By Lem. 2 and due to the properties of ;∗, in ; at most one class is related
to another, that is, situations like in directed acyclic graphs can not occur. This
allows a representation as a forest.

The connection forest (c-forest) for a QBF with m existential scopes is a
collection of trees over V∃ with respect to ≈ with the following properties:

1. ∀x, y ∈ V∃ : there is an edge ([x], [y]) if, and only if [x] ; [y].
2. ∀x, y ∈ V∃ : there is a path from [x] to [y] if, and only if [x] ;∗ [y].
3. the maximum length (number of edges) of a path is m− 1

All paths consist of classes only, the levels of which are strictly increasing by
Cor. 1. Hence the maximum path length is m− 1.

4.2 Computing Dependencies by Directed Dependency Relations

Given a QBF F in PCNF, the corresponding c-forest for V∃ is the basis for
computing D(x) for all x ∈ V∀. For x ∈ V∀, y ∈ V∃ and the c-forest, let h(x, [y]) =
[y′] such that y′ ∈ V∃, [y′] ;∗ [y], δ(x) < δ(y′) and there is no y′′ ∈ V∃ with
δ(x) < δ(y′′) < δ(y′) and [y′′] ;∗ [y′]. That is, in the c-forest h(x, [y]) denotes
the smallest ancestor of [y] which is larger than x. Computing set D(x) for some
x ∈ V∀ in a QBF F involves the following steps:

1. let C(x) = {C ∈ F | x ∈ C}
2. let X(x) = {[y] | y ∈ V∃,i, i = δ(x) and y ∈ C for C ∈ C(x)}
3. let H(x) = {[z] | [z] = h(x, [y]) for [y] ∈ X(x)}
4. let H∗(x) = {[y] | [z] ;∗ [y] for [z] ∈ H(x)}
5. D(x) = {z | z ∈ [y] for [y] ∈ H∗(x)}

Starting from clauses containing a literal of x, classes of existential variables
larger than x are collected (steps 1 and 2). For all collected classes, the set of
ancestors H(x) is determined (step 3). Next, descendants of classes in H(x) are
collected in H∗(x) (step 4). Finally, the members of classes in H∗(x) exactly
correspond to D(x) (step 5). Computing D(x) from a c-forest does not require
searching since subtrees rooted at variables in H(x) denote subsets of D(x).
Thus the c-forest, which is computed once and then shared between all x ∈ V∀,
combined with sets H(x) is sufficient to identify and compactly represent D(x).

Example 5. Fig. 1 shows a c-forest (dotted edges) and sets H(x) (solid edges).
Variables 3,4 and 12,13 are in one class, respectively (horizontal edges). Ac-
cording to the steps in Sec. 4.2, C(1) = C(6) = {(1, 6, 8, 13)}, X(1) = X(6) =
{[8], [13]}, H(1) = {[3]}, H∗(1) = {[3], [8], [10], [13]}, H(6) = {[8]}, H∗(6) =
{[8], [13]}, D(1) = {3, 4, 8, 10, 12, 13} and D(6) = {8, 12, 13}. Note that path
[8], [13] is shared between variables 1 and 6.

δ(S) q(S) S (2, 5, 9)
1 ∀ 1, 2 (5, 9, 14)
2 ∃ 3, 4, 5 (3, 8, 12)
3 ∀ 6, 7 (4, 7, 10)
4 ∃ 8, 9, 10 (4, 12, 13)
5 ∀ 11 (1, 6, 8, 13)
6 ∃ 12, 13, 14 (11, 12)

a1

e3

a2

e5e4

a6

e8 e10 e9

a7

a11

e13 e14e12

Fig. 1. QBF example. The table on the left shows the levels, quantifiers and variables
for each scope in the first three columns and clauses as lists of literals in the last column.
Variables and literals are uniquely identified by integers as in QDIMACS format [19].
The corresponding c-forest including sets H(x) (see Sec. 4.1 and 4.2) is depicted on
the right, where variable types are denoted by identifier prefixes “a” (∀) or “e” (∃).

5 Experimental Results

We have implemented a tool which, given a QBF in PCNF, builds the c-forest
and determines sets H(x) for all x ∈ V∀ incrementally. Clauses are inspected
exactly once one after another: a pair of variables x, y ∈ C for some clause C

where x ∈ V∀, y ∈ V∃ and δ(x) < δ(y) results in an update of H(x) by adding
h(x, [y)]). If x, y ∈ V∃ and δ(x) ≤ δ(y) then the c-forest is updated by inserting
an edge for [x] ;∗ [y]. Relation ≈ is computed using an efficient union-find
algorithm [22]. Table 1 shows experimental results. 1

QBFEVAL’05 QBFEVAL’06 QBFEVAL’07 QBFEVAL’08

size 211 216 1136 3328

total time 7.46 1.29 195.75 267.49
avg. time 0.04 0.01 0.17 0.08

max. |H∗(x)| 797 5 797 1872
avg. |H∗(x)| 19.51 1.21 39.07 8.24

max. |D(x)| 256535 9993 2177280 2177280
avg. |D(x)| 82055.87 4794.60 33447.6 19807

avg. |H
∗(x)|
|D(x)| 3.44 % 0.04 % 6.42 % 1.21 %

≈∃ 3.08 % 3.95 % 2.20 % 7.37 %

Table 1. Experimental results on structured instances from QBF competitions 2005 to
2008 [14]. The first line shows the number of formulae per set. Run times are in seconds
for the whole set and on average per formula. Maximum and average sizes of sets H∗(x)

and D(x) for x ∈ V∀ are reported (see also Sec. 4.2). |H
∗(x)|
|D(x)| for x ∈ V∀ relates the sizes

of the two representations of D(x): the c-forest is compared to the directly computed
set by→∗i . The worst-case value is 100%, which means no improvement can be achieved
by the c-forest. On the contrary, the average of |H

∗(x)|
|D(x)| over all x ∈ V∀ indicates that

the c-forest representing ; allows to represent D(x) more compactly than →∗i . This
observation is supported by the maximum and average values of |H∗(x)| and |D(x)|.
The last line reports the ratio between the total number of equivalence classes and
the total number of existential variables per formula set, where the worst-case value is
100%: one class per variable. The values indicate that there are few, yet large classes
which demonstrates the compacting effect of relation ≈.

6 Conclusion

We have presented an efficient way to compute dependency sets for all universal
variables in QBFs, which is relevant for expansion-based QBF solvers. As previ-
ous work, our approach relies on a syntactic connection relation of variables. By
defining an equivalence relation on existential variables and excluding transitive
edges, we obtain a directed connection relation which can be implemented using a
tree and a union-find data structure and which can be shared between all univer-
sal variables. Experiments show that dependencies can be compactly represented
with our approach. We are planning to extend this method to dependency sets
for existential variables for use in search-based QBF solvers. Furthermore, our

1 Setup: 64-bit Ubuntu Linux 8.04, Intel Q6700 at 2.66 GHz, 8 GB of memory.

representation can be regarded as static, that is, the effect of removing clauses
from the formula has not yet been taken into consideration. Certainly, a dynamic
version will be more flexible when used in combination with variable expansion.

References

1. A. Ayari and D. A. Basin. QUBOS: Deciding Quantified Boolean Logic Using
Propositional Satisfiability Solvers. In Proc. FMCAD’02.

2. M. Benedetti. sKizzo: a Suite to Evaluate and Certify QBFs. In Proc. CADE’05.
3. M. Benedetti and H. Mangassarian. QBF-Based Formal Verification: Experience

and Perspectives. JSAT, 2008.
4. Marco Benedetti. Quantifier Trees for QBFs. In Proc. SAT’05.
5. A. Biere. Resolve and Expand. In Proc. SAT’04.
6. A. Biere, A. Cimatti, E. M. Clarke, and Y. Zhu. Symbolic Model Checking without

BDDs. In Proc. TACAS’99.
7. U. Bubeck and H. Kleine Büning. Bounded Universal Expansion for Preprocessing

QBF. In Proc. SAT’07.
8. H. Kleine Büning, M. Karpinski, and A. Flögel. Resolution for Quantified Boolean

Formulas. Inf. Comput., 117(1), 1995.
9. M. Cadoli, A. Giovanardi, and M. Schaerf. An Algorithm to Evaluate Quantified

Boolean Formulae. In JAR, 1998.
10. M. Davis, G. Logemann, and D. Loveland. A Machine Program for Theorem-

proving. Commun. ACM, 5(7):394–397, 1962.
11. N. Dershowitz, Z. Hanna, and J. Katz. Bounded Model Checking with QBF. In

Proc. SAT’05.
12. U. Egly, M. Seidl, H. Tompits, S. Woltran, and M. Zolda. Comparing Different

Prenexing Strategies for Quantified Boolean Formulas. In Proc. SAT’03.
13. U. Egly, H. Tompits, and S. Woltran. On Quantifier Shifting for Quantified Boolean

Formulas. In Proc. SAT’02.
14. E. Giunchiglia, M. Narizzano, and A. Tacchella. QBF Solver Evaluation Portal,

2001-2008. www.qbflib.org/index_eval.php.
15. E. Giunchiglia, M. Narizzano, and A. Tacchella. Backjumping for Quantified

Boolean Logic Satisfiability. Artif. Intell., 145(1-2):99–120, 2003.
16. E. Giunchiglia, M. Narizzano, and A. Tacchella. Quantifier Structure in Search-

Based Procedures for QBFs. TCAD, 26(3):497–507, 2007.
17. T. Jussila and A. Biere. Compressing BMC Encodings with QBF. ENTCS,

174(3):45–56, 2007.
18. F. Lonsing and A. Biere. Nenofex: Expanding NNF for QBF Solving. In

Proc. SAT’08.
19. QBFLIB. QDIMACS Standard v1.1. http://www.qbflib.org/qdimacs.html.
20. M. Samer and S. Szeider. Backdoor Sets of Quantified Boolean Formulas. In

Proc. SAT’07.
21. L. J. Stockmeyer and A. R. Meyer. Word Problems Requiring Exponential Time:

Preliminary Report. In STOC, pages 1–9, 1973.
22. Robert Endre Tarjan. Efficiency of a Good But Not Linear Set Union Algorithm.

J. ACM, 22(2):215–225, 1975.
23. L. Zhang and S. Malik. Conflict Driven Learning in a Quantified Boolean Satisfi-

ability Solver. In Proc. ICCAD’02.

