
DepQBF: A Dependency-Aware QBF Solver,
System Description

Florian Lonsing and Armin Biere

Institute for Formal Models and Verification
Johannes Kepler University, Linz, Austria

http://fmv.jku.at/

Abstract. We present DepQBF 0.1, a new search-based solver for quan-
tified boolean formulae (QBF). It integrates compact dependency graphs
to overcome the restrictions imposed by linear quantifier prefixes of QBFs
in prenex conjunctive normal form (PCNF). DepQBF 0.1 was placed first
in the main track of QBFEVAL’10 in a score-based ranking. We provide
a general system overview and describe selected orthogonal features such
as restarts and removal of learnt constraints.

1 Introduction

Many QBF solvers process input formulae in PCNF. When converting an arbi-
trary QBF into PCNF, structural properties such as quantifier nestings can be
lost. The quantifier prefix of PCNFs imposes a total ordering on the variables,
resulting in variable dependencies which have to be respected by QBF solvers.

Dependency schemes [17] are a general formalism for expressing dependencies
in QBFs in terms of binary relations over the set of variables. In [17], the standard
dependency scheme Dstd was introduced which is (potentially) less restrictive
than the total variable ordering in PCNFs: variables are not totally but partially
ordered. This can grant QBF solvers more freedom in the solution process.

DepQBF, a search-based QBF solver, features a compact representation of
Dstd as a directed-acyclic graph (DAG) over equivalence classes of variables
[13], called dependency DAG. In the following, we provide a system overview of
DepQBF 0.1 [12] which participated in QBFEVAL’10. Additionally, we describe
selected features such as strategies for restarts and removal of learnt constraints.
Implementing these techniques was inspired by ideas from the SAT domain. To
our knowledge, restarts have not been applied in QBF solving so far. Further de-
tails and references to related work on the application of dependency information
in search-based QBF solving may be found in [14].

2 Overview

DepQBF consists of a loosely coupled solver and dependency manager. The solver
implements the DPLL algorithm for QBF (QDPLL) with conflict-driven clause
and solution-driven cube learning [7, 11, 19], called constraint learning (analyze

2 Florian Lonsing and Armin Biere

in Fig. 1). It operates on formulae in PCNF. The CNF part φ := φOCL∧φLCL∨
φLCU is represented as augmented CNF [19], where φOCL, φLCL and φLCU are
the sets of original clauses, learnt clauses and learnt cubes, respectively. During
the search, learnt constraints are added to φLCL and φLCU , which are initially
empty. Different from the approach in [19], DepQBF does not learn constraints
containing complementary literals. Instead, the learning procedure follows [9]. A
brief description of QDPLL may be found in [14]. For a comprehensive treatment
of learning in QBF solving, we refer to [7, 9, 11, 19].

The dependency manager (DM) maintains the dependency DAG representing
Dstd, which is extracted from the formula given in PCNF (init-DAG in Fig. 1).
DM keeps track of the set of decision candidates (DC) with respect to the solver’s
current (partial) assignment. A variable x is in set DC if it is sound to assign x as
decision under the current assignment. In DepQBF, DC is updated incrementally
and lazily based on equivalence classes in the dependency DAG before decision
making and during backtracking [14].

get−DC decide return SAT/UNSATinit−DAG

result? analyze
Y

BCP top−level?

Y N

done?

Y

N

removal/restart
schedule backtrack

N

Fig. 1. DepQBF workflow.

For variables x and y, the solver queries DM to check whether y depends
on x, written as x ≺ y. Such checks are needed during learning and boolean
constraint propagation (BCP), as pointed out in [14] in more detail. Generally,
compact dependency DAGs in DepQBF allow efficient dependency checking.

Whenever the solver learns a unit clause or unit cube, it backtracks to the top-
most decision level, called top-level (top-level? in Fig. 1). DM then re-initializes
the dependency DAG, where clauses satisfied by top-level assignments are ig-
nored. This can result in smaller DAGs and hence in smaller dependency sets,
thus possibly influencing the solver positively. DAGs are initialized incremen-
tally in DepQBF by inspecting clauses one after each other and updating classes
using an efficient union-find data structure [18].

In the following sections, we describe selected features of DepQBF such as
efficient detection of unit and pure literals, removal of learnt constraints, and
restarts. Terminology and definitions used may be found in [14].

3 Boolean Constraint Propagation (BCP)

The core of QDPLL is propagation of unit and pure literals [3]. For the bench-
mark set used in QBFEVAL’08 (3326 formulae), we observed that 88% of total

DepQBF: A Dependency-Aware QBF Solver, System Description 3

assignments in DepQBF were due to BCP, 59% were unit, and 29% were pure
literals. DepQBF implements watched data structures [5, 15] for BCP as follows.

3.1 Unit Literals

Two unassigned literals l1 and l2 are watched in each constraint C. For a literal
l, q(l) ∈ {∀,∃} denotes the quantifier of the variable of l. If C is a clause, then
either (1) q(l1) = q(l2) = ∃ or (2) q(l1) = ∀, q(l2) = ∃ and l1 ≺ l2. Otherwise, C
is a cube and either (1) q(l1) = q(l2) = ∀ or (2) q(l1) = ∃, q(l2) = ∀ and l1 ≺ l2.

If variable x is assigned in QDPLL, then the watchers of all constraints C
where a literal of x is watched will be updated. Whenever a current watcher
already disables C, i.e. satisfies clause C or falsifies cube C, then no update is
made. Similarly, if a disabling literal l is found in C while updating watchers of
C, then l is watched under the restrictions stated above. Note that dependency
checking for watcher updates is needed in case (2) only.

3.2 Pure Literals

For a variable x, let C(x), C(x) ⊆ φOCL denote the set of original (i.e. non-
learnt) clauses in φ containing positive and negative literals of x, respectively.
Two unsatisfied clauses Cx ∈ C(x) and Cx ∈ C(x) are watched for each variable
x [5, 8]. Let A be a variable assignment where, for an unassigned variable x,
either Cx or Cx is satisfied under A. If there is no C ′

x ∈ C(x) (respectively
C ′

x ∈ C(x)) currently unsatisfied under A, then x is considered to be pure.
Assigning a variable x will satisfy all clauses in C(x) (or C(x), respectively).

Further, variables y watching clauses in C(x) (or C(x)) will have to update their
watcher Cy (or Cy). Each variable x maintains two notification lists, one for x
and one for x, which exactly contain references to all variables y watching clauses
in C(x) (or C(x)). After some y has found a new watcher C ′

y (respectively C ′
y),

notification lists of variables occurring in the old and new watcher Cy and C ′
y

(or Cy and C ′
y) have to be updated.

Clause watching for pure literal detection as implemented in DepQBF was
introduced in [5], yet without providing details of how to update watchers. The
implementation of notification lists is optimal in the sense that no search is
required to find all variables which need an update of their watcher list.

Similarly to the common technique of two-literal watching in SAT solvers
[15], watched data structures for unit and pure literal detection as in DepQBF
do not require additional maintenance work during backtracking.

The idea to ignore learnt constraints and only consider φOCL in pure literal
detection was introduced in [8]. This approach can yield spurious pure literals,
i.e. literals which are detected as pure according to φOCL, but not pure when
also taking learnt constraints in φLCL and φLCU into account. Such literals are
handled lazily as suggested in [8] by ignoring any learnt empty clause in φLCL

or satisfied cube in φLCU containing a variable assigned as spurious pure literal.
Further, unit literals triggered by spurious pure literals are ignored as well.

4 Florian Lonsing and Armin Biere

4 Variable Activities

After the solver has applied BCP until saturation, a variable is selected heuris-
tically and assigned as decision. Variables are kept on a priority queue in de-
scending order of their activities, which are implemented as described in [4].

Before a decision is made (decide in Fig. 1), the solver retrieves all decision
candidates from the dependency manager and puts them on the priority queue
(get-DC in Fig. 1). The variable with highest activity is then taken from the
queue for the next decision. The content of the queue is not continuously kept
up to date. Particularly, there might be variables which are already assigned
as unit or pure literal or which are actually no decision candidates under the
current assignment. When being removed, such variables are simply discarded.

5 Learnt Constraint Removal

Each time the solver encounters a conflict, i.e. an empty clause in φOCL ∪φLCL,
or a solution, i.e. a satisfied cube in φLCU or an assignment satisfying all clauses
in φOCL, one newly learnt constraint C is added to φ [9]. For conflicts, C is a
clause and is produced by a sequence of clause resolutions. For solutions, C is a
cube either produced by cube resolutions or a cube comprising a subset of the
current assignment’s literals sufficient to satisfy all clauses in φOCL. In DepQBF,
C is always asserting [9, 14, 19], i.e. after backtracking to the asserting level, C
will trigger a unit literal (backtrack, BCP in Fig. 1).

Learnt constraints in φLCL and φLCU are periodically removed according to
the following strategy (schedule removal in Fig. 1). Set φLCL is empty before
solving starts, i.e. |φLCL| = 0, having an initial capacity cap(φLCL) = |φOCL|
based on the size of the original formula, but not less than 2500 and not more
than 10000. Clauses are added to φLCL during learning. If |φLCL| = cap(φLCL),
then half of the clauses in φLCL are removed. However, clauses which triggered
a unit literal in the current assignment are never removed. Then, the capacity is
increased by a constant inc(φLCL) = 500 to cap(φLCL) + inc(φLCL). Removing
cubes is handled analogously by φLCU , |φLCU |, cap(φLCU), inc(φLCU) = 500.
All constant values were chosen heuristically based on experimental data.

Sets φLCL and φLCU are implemented as doubly-linked lists. New constraints
are always added to the head of the list. If a learnt clause (cube) C becomes
empty (satisfied), triggers a unit literal during the search or is used in the de-
duction of learnt constraints, then C is moved to the head of the list. The
idea is to make frequently used constraints appear at the head. When remov-
ing constraints, the lists are processed starting from the tail, thus removing
least-recently used and possibly less important constraints. In contrast to the
clause-move-to-front decision heuristics in HaifaSAT [6] this policy is only used
for constraint removal, and in effect very similar to techniques based on clause
activities as implemented in SAT solvers like e.g. [4, 10].

DepQBF: A Dependency-Aware QBF Solver, System Description 5

6 Restarts and Assignment Caching

DepQBF implements an inner-outer restart schedule inspired by PicoSAT [2]
which is based on ideas from [1]. Separate inner and outer restart distances i
and o, respectively, are maintained. Before solving starts, distances are initialized
with i = 100 and o = 10, where values were determined experimentally. Assume
that the solver performed i − 1 backtracks (i.e. conflict or solutions, see also
Sec. 5). Before actually backtracking the ith time to the backtracking level b
computed from the current learnt constraint (schedule restart in Fig. 1), the
solver “restarts” (called inner restart) by backtracking to the largest decision
level d of a universally quantified decision variable x, provided that d < b.
Otherwise, it backtracks to b as usual. If there is no such x, then d is the top-level
by definition. After each inner restart, the inner distance i is incremented by 10.
Then, the next inner restart happens after i backtracks. After o inner restarts
have been carried out, i is reset to its initial value 100 and o is incremented
by 5 (called an outer restart). Thus, the next outer restart happens after o
inner restarts. From 568 benchmarks used in the main track of QBFEVAL’10,
DepQBF 0.1 solves 360 (370) instances in 352.33 (337.10) seconds average run
time including time-outs when disabling (enabling) restarts.1

As many SAT solvers, DepQBF combines assignment caching [16] with
restarts. Initially, the assignment cache cached(x) is empty for all variables x.
Each time a variable x is assigned, the assigned value is stored in cached(x),
replacing the old entry. Decision variables are always assigned the value in
cached(x), if not empty, otherwise the assigned value is chosen heuristically.

7 Conclusion

We have presented DepQBF, a search-based QBF solver which integrates de-
pendency schemes [17] as compact dependency graphs. We described selected
features such as watched data structures for BCP, removal of learnt constraints
and restarts. These techniques are largely independent from the specific system
architecture of DepQBF and therefore may be relevant for arbitrary QBF solvers.
Strategies for restarts and constraint removal are our main contributions.

DepQBF version 0.1 [12] participated in QBFEVAL’10 2 among 11 other,
search- and elimination-based solvers. In the main track of the competition, it
was placed first according to a score-based ranking. As the only solver, DepQBF
solved all 136 formulae from the newly submitted benchmark suite mqm3.

We believe that many implementation-related techniques applied in SAT
solvers could also be successfully integrated in search-based QBF solvers. As
future work, we want to improve DepQBF in this respect.

1 Setup: Ubuntu 9.04, Intel R© Q9550@2.83 GHz, 7 GB/900 sec. mem and time limit.
2 http://www.qbflib.org/index_eval.php
3 http://www.qbflib.org/family_solvers.php?idFamily=723&year=2010

6 Florian Lonsing and Armin Biere

References

1. A. Bhalla, I. Lynce, J. T. de Sousa, and J. Marques-Silva. Heuristic-Based Back-
tracking Relaxation for Propositional Satisfiability. Journal of Automated Reason-
ing (JAR), 35(1-3):3–24, 2005.

2. A. Biere. PicoSAT Essentials. JSAT, 4(2-4):75–97, 2008.
3. M. Cadoli, A. Giovanardi, and M. Schaerf. An Algorithm to Evaluate Quantified

Boolean Formulae. In AAAI/IAAI, pages 262–267, 1998.
4. N. Eén and N. Sörensson. An Extensible SAT-Solver. In E. Giunchiglia and

A. Tacchella, editors, SAT, volume 2919 of LNCS, pages 502–518. Springer, 2003.
5. I. P. Gent, E. Giunchiglia, M. Narizzano, A. G. D. Rowley, and A. Tacchella.

Watched Data Structures for QBF Solvers. In E. Giunchiglia and A. Tacchella,
editors, SAT, volume 2919 of LNCS, pages 25–36. Springer, 2003.

6. R. Gershman and O. Strichman. HaifaSat: A SAT Solver Based on an Abstrac-
tion/Refinement Model. Journal on Satisfiability, Boolean Modeling and Compu-
tation, 6:33–51, 2008.

7. E. Giunchiglia, M. Narizzano, and A. Tacchella. Learning for Quantified Boolean
Logic Satisfiability. In AAAI/IAAI, pages 649–654, 2002.

8. E. Giunchiglia, M. Narizzano, and A. Tacchella. Monotone Literals and Learning in
QBF Reasoning. In M. Wallace, editor, CP, volume 3258 of LNCS, pages 260–273.
Springer, 2004.

9. E. Giunchiglia, M. Narizzano, and A. Tacchella. Clause/Term Resolution and
Learning in the Evaluation of Quantified Boolean Formulas. J. Artif. Intell. Res.
(JAIR), 26:371–416, 2006.

10. E. Goldberg and Y. Novikov. BerkMin: A Fast and Robust SAT-Solver. In
Proc. DATE, pages 142–149. IEEE Computer Society, 2002.

11. R. Letz. Lemma and Model Caching in Decision Procedures for Quantified Boolean
Formulas. In U. Egly and C. G. Fermüller, editors, TABLEAUX, volume 2381 of
LNCS, pages 160–175. Springer, 2002.

12. F. Lonsing. DepQBF 0.1 Source Code, 2010. http://fmv.jku.at/depqbf/.
13. F. Lonsing and A. Biere. A Compact Representation for Syntactic Dependencies

in QBFs. In O. Kullmann, editor, SAT, volume 5584 of LNCS, pages 398–411.
Springer, 2009.

14. F. Lonsing and A. Biere. Integrating Dependency Schemes in Search-Based QBF
Solvers. In O. Strichman and S. Szeider, editors, SAT (accepted for publication),
LNCS. Springer, 2010.

15. M. W. Moskewicz, C. F. Madigan, Y. Zhao, L. Zhang, and S. Malik. Chaff: Engi-
neering an Efficient SAT Solver. In DAC, pages 530–535. ACM, 2001.

16. K. Pipatsrisawat and A. Darwiche. A Lightweight Component Caching Scheme
for Satisfiability Solvers. In J. Marques-Silva and K. A. Sakallah, editors, SAT,
volume 4501 of LNCS, pages 294–299. Springer, 2007.

17. M. Samer and S. Szeider. Backdoor Sets of Quantified Boolean Formulas. Journal
of Automated Reasoning (JAR), 42(1):77–97, 2009.

18. R. E. Tarjan. Efficiency of a Good But Not Linear Set Union Algorithm. J. ACM,
22(2):215–225, 1975.

19. L. Zhang and S. Malik. Towards a Symmetric Treatment of Satisfaction and Con-
flicts in Quantified Boolean Formula Evaluation. In P. Van Hentenryck, editor,
CP, volume 2470 of LNCS, pages 200–215. Springer, 2002.

