
Failed Literal Detection for QBF

Florian Lonsing and Armin Biere?

Institute for Formal Models and Verification
Johannes Kepler University, Linz, Austria

http://fmv.jku.at/

Abstract. Failed literal detection (FL) in SAT is a powerful approach
for preprocessing. The basic idea is to assign a variable as assumption. If
boolean constraint propagation (BCP) yields an empty clause then the
negated assumption is necessary for satisfiability. Whereas FL is common
in SAT, it cannot easily be applied to QBF due to universal quantifica-
tion. We present two approaches for FL to preprocess prenex CNFs. The
first one is based on abstraction where certain universal variables are
treated as existentially quantified. Second we combine QBF-specific BCP
(QBCP) in FL with Q-resolution to validate assignments learnt by FL.
Finally we compare these two approaches to a third common approach
based on SAT. It turns out that the three approaches are incomparable.
Experimental evaluation demonstrates that FL for QBF can improve the
performance of search- and elimination-based QBF solvers.

1 Introduction

The logic of quantified boolean formulae (QBF) is an extension of propositional
logic (SAT) where variables are existentially or universally quantified. Whereas
this often allows for more succinct encodings of problems, it also causes PSPACE-
completeness of the decision problem of QBF.

A standard and common input format of QBF solvers is prenex conjunctive
normal form (PCNF). The conversion of an arbitrary QBF encoding into PCNF
might hide relevant structural properties like variable dependencies. This in turn
can influence solver performance negatively. In order to overcome this drawback,
several approaches for preprocessing PCNFs have been suggested. Some were
ported from SAT to QBF such as binary clause reasoning, equivalence detection
and variable elimination by resolution or expansion [2, 5, 6, 11, 21, 25, 26].

This work focuses on the detection of failed literals (FL) in QBF. The idea is
to make an assumption, i.e. a trial assignment of a variable, and apply boolean
constraint propagation with QBF-specific inference rules (QBCP, see also Section
2). If the empty clause is discovered then the negated assumption is a necessary
assignment for satisfiability and can be added to the formula as a learnt unit
clause. In contrast to SAT where application of FL is straightforward, compli-
cations arise in the context of QBF.
? The 2nd author is financially supported by the Austrian Science Foundation (FWF)

NFN Grant S11408-N23 (RiSE).

Example 1. The satisfiable PCNF ψ := ∀x∃y. (x ∨ ¬y) ∧ (¬x ∨ y) expresses
equivalence of x and y. When assuming y in FL, then the first clause becomes
empty due to universal reduction (see Section 2). But adding unit clause (¬y),
which corresponds to the negated assumption, produces an unsatisfiable formula.

The problem pointed out in Example 1 is that y depends on x. That is, y must not
be assigned as assumption without considering the value of x as was erroneously
done by FL. This might destroy satisfiability of PCNFs due to violations of the
quantifier ordering: x is outermost but y was assumed first. Hence that ordering
must be respected in preprocessing just as in QBF solving in general.

The objective of our work is to apply sound variants of FL to PCNFs for
preprocessing, i.e. where preprocessing by FL produces an equivalent formula.
In the following we introduce and evaluate three approaches to detect necessary
assignments of QBFs in PCNF. First we reconsider a known technique based on
SAT solving (Section 3). A SAT solver is used to check if a unit clause is implied
by the plain (i.e. ignoring quantifiers) CNF of some PCNF. Such unit clauses
can then be added to the PCNF as well.

Second we introduce FL with respect to an abstraction of a PCNF (Section
4). A unit clause learnt by FL on the abstraction can also be added to the original
PCNF. An abstraction is obtained separately for each assumption. Variables are
treated as existentially quantified if they are smaller in the quantifier ordering
than the current assumption.

Third we combine FL on the original PCNF with Q-resolution (Section 5).
If an empty clause is discovered in FL then we try to derive the unit clause
corresponding to the negated assumption by Q-resolution. The choice of Q-
resolution candidates is heuristically guided by the current run of QBCP in FL.

A major contribution of our work is a comparison (Sections 6 and 7). We
provide examples pointing out that the three aforementioned approaches are in-
comparable with respect to effectiveness. There are formulae where particular
unit clauses can be learnt with one approach but not with another. This obser-
vations also raise questions whether conflict-driven clause learning (CDCL) in
QBF solvers could be improved in this respect. Moreover, our abstraction-based
approach can be regarded as a polynomial-time1 alternative to the common SAT-
based approach. Hence FL could be applied dynamically in search-based QBF
solvers when interleaved with the search. This idea is similar to optimizations
carried out in many SAT solvers when backtracking to the topmost decision
level, e.g. after restarting or if a unit clause was learnt.

We implemented the three approaches for FL in our novel preprocessor
QxBF and evaluated their effectiveness in combination with various search- and
elimination-based QBF solvers (Section 7). Our experiments confirm observa-
tions regarding incomparability. Although the vast performance improvement is
observed for elimination-based solvers, we conjecture that search-based solvers
could benefit from dynamic applications of various approaches of FL.

1 We interpret QBCP as the polynomial-time procedure defined in Section 2.

Related Work. FL for SAT originated in [9] and is an integral part of look-
ahead SAT solvers [14]. A comprehensive treatment of FL for preprocessing is
given in [1, 18], which also includes inferences of unit clauses based on com-
plementary assumptions [13]. We consider that future work and refrain from
discussion in this work.

FL was applied to QBF in [22] but with a special treatment of empty clauses
and QBCP lacking universal reduction and pure literal detection. Thus the full
propagation power of QBCP was not exploited. In contrast to this, our FL
approaches presented in Sections 4 and 5 are an improvement.

A theoretical foundation of QBF preprocessing was given in [26] in terms of
QBF models. Additionally binary clause reasoning for QBF was introduced in
[25] where QBCP was used for detecting binary clause inferences. We combine
QBCP in FL with Q-resolution to find derivations of unit clauses (Section 5).

In [21] a SAT solver was applied to detect necessary assignments of the CNF
part of PCNFs. We consider the same approach mainly for reference (Section 3)
but also show that it is incomparable to our FL approaches (Section 6).

A SAT solver was integrated into a search-based QBF solver in [24]. It was
observed that the two solvers are capable of learning clauses the other one can
not learn. We make similar observations and provide examples regarding the
detection of unit clauses by SAT solving and by our FL approaches (Section 6).

2 Preliminaries

For a set of propositional variables V , a literal is either a variable x ∈ V or its
negation ¬x where v(x) = x and v(¬x) = x denotes the variable of a literal.
A clause Ci is a disjunction over literals where {x,¬x} 6⊆ Ci for all x ∈ V .
For clauses Ci, a propositional formula φ := C1 ∧ . . . ∧ Cn is in conjunctive
normal form (CNF). For a CNF φ and a literal l, the set of occurrences of l is
O(l) := {C | C ∈ φ, l ∈ C}.

A quantified boolean formula (QBF) ψ := Q1S1 . . . QnSn. φ in prenex con-
junctive normal form (PCNF) consists of a CNF φ over a set of variables V
and a quantifier prefix Q1S1 . . . QnSn. The quantifier prefix is a linearly ordered
set of scopes Si forming a partition on V . A scope Si is existential (Qi = ∃)
if it is associated with an existential quantifier and universal (Qi = ∀) other-
wise. For scopes Si and Si+1, Qi 6= Qi+1 for 1 ≤ i < n. For a literal x with
v(x) ∈ Si, q(x) := Qi is the quantifier type of (the variable of) x. For clause C
and Q ∈ {∀,∃}, LQ(C) := {l ∈ C | q(l) = Q}. For literals l, k with v(l) ∈ Si and
v(k) ∈ Sj , l ≤ k if, and only if i ≤ j for 1 ≤ i, j ≤ n.

Given CNF φ, an assignment is a mapping A : V → {true, false} from
variables in φ to truth values. An assignment m is a CNF-model of φ, written
as m |= φ, if every clause in φ is satisfied under m.

We introduce QBF semantics based on tree-like models as in [26]. This allows
for a simpler definition of necessary assignments (see below) and proofs. In this
framework, a necessary assignment is a property of all models of a QBF. This
cannot easily be expressed within standard QBF semantics based on recursive

evaluation like e.g. in [7]. Further, relying on tree-like models, our results can
naturally be generalized to QBF solving using dependency schemes [23].

Given a PCNF ψ := Q1S1 . . . QnSn. φ. An assignment tree T is a tree of
assignments according to the following restrictions. Every node N in T except
the root represents a truth assignment to a variable v in V . A node has at
most (exactly) one sibling if it assigns a truth value to an existential (universal)
variable. Two siblings altogether denote assignments true and false. Every path
P from the root to a leaf of T corresponds to an assignment A for variables in
CNF φ. A node N for variable v is an ancestor of another node N ′ for variable
v′ in P if and only if v ≤ v′. That is, assignments along every path P respect
the quantifier ordering. An assignment tree m is a PCNF-model of ψ, written as
m |= ψ, if every path P in m is a CNF-model of φ.

A CNF is satisfiable if it has a CNF-model. Two CNFs φ and φ′ are model-
equivalent, written as φ ≡m φ′, if and only if for all assignments m, m |= φ if
and only if m |= φ′. Two CNFs φ and φ′ are satisfiability-equivalent, written
as φ ≡s φ

′, if and only if φ is satisfiable then φ′ is satisfiable and vice versa.
A transformation of a CNF φ into a CNF φ′ is sound if and only if φ ≡m φ′.
Satisfiability, model-equivalence, satisfiability-equivalence and soundness with
respect to PCNFs are defined accordingly. The following properties are well
known.

Proposition 1 ([21, 26]). Given PCNF ψ := Q1S1 . . . QnSn. φ and CNF φ′

where φ ≡m φ′. Let ψ′ = Q1S1 . . . QnSn. φ
′. Then ψ ≡m ψ′.

Proposition 2 (e.g. [7]). For CNF φ and literal x, φ ∧ {¬x} is unsatisfiable
iff φ ≡m φ ∧ {x}.

Given PCNF ψ and xi ∈ V . Assignment xi 7→ t, where t ∈ {false, true}, is
necessary for satisfiability of ψ iff xi 7→ t is part of every path in every PCNF-
model of ψ.

Given PCNF ψ := Q1S1 . . . QnSn. φ, the assignment of literal l with v(l) ∈ Si

yields the formula ψ[l] := Q1S1 . . . QiS
′
i . . . QnSn. φ

′ where S′i := Si \ {v(l)} and
clauses O(l) and literals ¬l in O(¬l) are deleted in φ′.

For clause C, universal reduction is denoted by UR(C) := C \ {lu ∈ L∀(C) |
∀le ∈ L∃(C), le < lu}. A clause C ∈ φ where UR(C) = {l} is unit and ψ ≡s ψ[l]
[6, 8]. For a QBF ψ := Q1S1 . . . QnSn. φ, a literal l where O(l) 6= ∅ and O(¬l) = ∅
is pure [8]: if q(l) = ∃ then ψ ≡s ψ[l], and if q(l) = ∀ then ψ ≡s ψ[¬l].

We assume that clauses in a PCNF are fully reduced by UR. For clauses
C1, C2 with v ∈ L∃(C1),¬v ∈ L∃(C2), the Q-resolvent C, written as (C1, C2) `v

C, is defined as follows [6]: let C ′ := (C1 ∪ C2) \ {v,¬v}. If {x,¬x} ⊆ C ′ for
x ∈ V then no Q-resolvent exists, otherwise C := UR(C ′). We write ψ `∗ C if
clause C can be derived from QBF ψ by Q-resolution. Adding Q-resolvents to a
PCNF yields a model-equivalent formula.

Lemma 1 ([26]). Given PCNF ψ and clause C. Then ψ ∧C2 ≡m ψ ∧UR(C).

2 For PCNF ψ := Q1S1 . . . QnSn. φ, let ψ ∧ C denote Q1S1 . . . QnSn. (φ ∧ C).

Proof. Our definition of PCNF-models differs from the one in [26]. There, nodes
N assigning existential variables do not have a sibling. The proof in [26] also
applies to our semantical framework. The subtree rooted at a sibling of such node
N can be deleted, and the resulting assignment tree is still a PCNF-model. ut

Lemma 2. Given PCNF ψ. If ψ `∗ C then ψ ≡m ψ ∧ C.

Proof. Q-resolution can be regarded as a combination of resolution for proposi-
tional logic and UR. Adding propositional resolvents yields a model-equivalent
formula [7]. The claim then follows from Lemma 1 and Proposition 1. ut

Given PCNF ψ and a literal x, ψ′ := QBCP(ψ, x) denotes a formula obtained
from ψ[x] by applying UR, unit clause and pure literal rule. Literal x is called
an assumption. For clause C, C ∈ QBCP(ψ, x) if ψ′ = QBCP(ψ, x) and C ∈ ψ′.
We write ∅ ∈ QBCP(ψ, x) if the empty clause can be obtained.

3 SAT-based FL

First we review a well-known technique for inferring unit clauses from the CNF
part of a PCNF based on propositional satisfiability testing. This has already
been applied to QBF [21]. We include it here as a reference for our approaches
introduced in Sections 4 and 5. We show that these approaches have different
effectiveness in Sections 6 and 7.

A general approach for preprocessing PCNFs can be obtained from QBF
semantics and model-equivalence of CNFs. When combining Propositions 1 and
2, a SAT solver can be used to check if a unit clause is implied by the CNF part
of a PCNF for QBF preprocessing [21].

Whereas propositional satisfiability testing allows to exploit Proposition 2 to
full extent, a subset of all necessary assignments of a CNF can be identified by
failed literal detection (FL) for SAT [1, 9, 18]. FL is a common approach in SAT
which can be carried out in polynomial time based on BCP3 as follows.

Proposition 3. Given a CNF φ and literal x. If ∅ ∈ BCP(φ, x) then φ ≡m

φ ∧ {¬x}. Literal x is called a failed literal.

If x is a failed literal then every CNF-model of φ must set x to false.

Definition 1. Given a PCNF ψ and a literal x. If ψ ≡m ψ ∧ {x} then ¬x is
called a failed literal. Assigning x to true is a necessary assignment for ψ.

Example 1 pointed out that Proposition 3 is not directly applicable to QBF
because satisfiability might be destroyed. The reason is that assumptions are
made out of quantifier ordering. This can be regarded as modifying the quantifier
prefix. Carrying out QBCP(ψ, y) in Example 1 is similar to shifting y to the
leftmost position in the prefix, yielding ∃y∀x prior to assigning it. This might
allow applications of UR impossible based on the original prefix.
3 “BCP” denotes QBCP without pure literal rule and universal reduction.

In the following we introduce two approaches to detect necessary assignments
by FL for QBF similar to Proposition 3, i.e. based on QBCP. The goal is to have
a polynomial-time alternative to satisfiability testing as in Propositions 1 and
2. However, as shown in Section 6, it turns out that the three approaches are
actually incomparable. In the following section we apply FL with QBCP to an
abstraction of the original PCNF.

4 Abstraction-Based FL

In an early approach of FL for QBF presented in [22], QBCP included neither UR
nor pure literal rule. This results in limited propagation power as both UR and
universal pure literals possibly trigger additional unit literals. We conjecture that
such restrictions of QBCP combined with a special treatment of empty clauses
like in [22] are sufficient to ensure soundness of FL.

In our approaches of FL for QBF we allow the full set of rules in QBCP as
defined in Section 2. In the following, we analyze special cases where FL based
on QBCP is sound. These results will then be used to prove soundness of FL
when QBCP is applied to an abstraction of the original PCNF.

Lemma 3. Given ψ := Q1S1 . . . QnSn. φ and literal x where v(x) ∈ S1. If
∅ ∈ QBCP(ψ, x) then ψ ≡m ψ ∧ {¬x}.

Proof. Since x ∈ S1 we assume that x is assigned first on every path in every
model of ψ. By definition of QBCP , ψ[x] ≡s ∅, i.e. ψ does not have a model
where x is assigned true on any path. Therefore, x must be assigned false on all
paths in all models m (if any) of ψ. Hence ψ ≡m ψ ∧ {¬x}. ut

Due to Lemma 3, FL with QBCP and assumptions from the leftmost scope is
sound. For universal assumptions, this can be generalized to arbitrary scopes.

Lemma 4. Given PCNF ψ := Q1S1 . . . QnSn. φ and literal x where v(x) ∈ Si

and Qi = ∀. If ∅ ∈ QBCP(ψ, x) then ψ is unsatisfiable.

Proof. The PCNF where QBCP is carried out can be regarded as ψ′ := ∀xQ1S1

. . . Qi−1Si−1∀(Si \ {x}) . . . QnSn. φ. Note the change in the prefix by moving
∀x to the front. If ∅ ∈ QBCP(ψ′, x) then ψ′ is unsatisfiable due to Lemma 3.
Then ψ is unsatisfiable as well because if a PCNF with prefix pattern ∀x . . .∃y
(pattern of ψ′) is unsatisfiable then also with ∃y . . .∀x (pattern of ψ). ut

We introduce an approach where FL is carried out on an abstraction of the
original PCNF. The abstraction affects the quantifier prefix.

Definition 2 (Quantifier Abstraction). For ψ := Q1S1 . . . Qi−1Si−1QiSi . . .
. . . QnSn. φ, the quantifier abstraction of ψ with respect to Si is Abs(ψ, i) :=
∃(S1 ∪ . . . ∪ Si−1)QiSi . . . QnSn. φ.

By Definition 2 variables from scopes smaller than Si are treated as existentially
quantified. This gives an overapproximation of ψ with respect to PCNF-models,
following from the definition in Section 2.

Corollary 1. For PCNF ψ and PCNF-model m: if m |= ψ then m |= Abs(ψ, i).
In practice, FL with assumptions from Si and QBCP is carried out on Abs(ψ, i)
instead of ψ. This is called abstraction-based FL. Unit clauses learnt by FL on
Abs(ψ, i) can then be added to the original PCNF ψ (see Example 2 below).
First we prove soundness of abstraction-based FL with respect to Abs(ψ, i).
Lemma 5. Given PCNF ψ := Q1S1 . . . QnSn. φ and literal x where v(x) ∈ Si.
If ∅ ∈ QBCP(Abs(ψ, i), x) then Abs(ψ, i) ≡m Abs(ψ, i) ∧ {¬x}.
Proof. We distinguish cases by the quantifier type of x.

If q(x) = Qi = ∃ then Abs(ψ, i) = ∃(S1 ∪ . . .∪Si−1 ∪Si) . . . QnSn. φ. Due to
Lemma 3, Abs(ψ, i) ≡m Abs(ψ, i) ∧ {¬x}.

If q(x) = Qi = ∀ then Abs(ψ, i) = ∃(S1 ∪ . . . ∪ Si−1)∀Si . . . QnSn. φ. If
∅ ∈ QBCP(Abs(ψ, i), x) then Abs(ψ, i) is unsatisfiable due to Lemma 4, and so
is Abs(ψ, i) ∧ {¬x}. ut
If QBCP on Abs(ψ, i) with assumption x where v(x) ∈ Si yields the empty
clause then x is a failed literal and clause {¬x} can be added to Abs(ψ, i). Due
to Corollary 1 and the second case of the proof of Lemma 5, Abs(ψ, i) preserves
an intuitive property of universal quantification in ψ: if one branch of a universal
variable cannot lead to a solution then ψ is unsatisfiable. Relying on Corollary 1
and Lemma 5, we prove that failed literals obtained on Abs(ψ, i) are also sound
with respect to original PCNF ψ.

Theorem 1. Given PCNF ψ := Q1S1 . . . QnSn. φ and literal x where v(x) ∈ Si.
If ∅ ∈ QBCP(Abs(ψ, i), x) then ψ ≡m ψ ∧ {¬x}.
Proof. We show both directions of ψ ≡m ψ ∧ {¬x}. If m |= ψ ∧ {¬x} then also
m |= ψ since ψ is less constrained than ψ ∧ {¬x}.

For the other direction assume ∅ ∈ QBCP(Abs(ψ, i), x). Let m be a PCNF-
model of ψ, i.e. m |= ψ (if no such m exists then the claim follows immediately).
By Corollary 1, also m |= Abs(ψ, i). By Lemma 5, also m |= Abs(ψ, i) ∧ {¬x}.
Clause {¬x} is satisfied under m. Therefore, m |= ψ ∧ {¬x}. ut
Example 2. Given PCNF4 ψ := ∀a1∃e2,e3∀a4∃e5. {a1, e2}, {¬a1, e3}, {e3,¬e5},
{a1, e2,¬e3}, {¬e2, a4, e5}. We have ∅ ∈ QBCP(Abs(ψ, 2),¬e3) since the as-
sumption will make clauses {¬a1, e3} and {e3,¬e5} unit because a1 is treated as
existential. Clause {¬e2, a4, e5} becomes unit due to UR. Finally clause {a1, e2}
is empty and unit clause {e3} is learnt.

Although abstraction-based FL uses all QBCP rules in contrast to [22], in general
this does not result in full propagation power of QBCP on Abs(ψ, i). Depending
on i, i.e. the quantifier level of the current assumption, Abs(ψ, i) typically has
fewer universal variables than ψ. This influences detection of unit literals by UR
and pure literal rule. Hence we expect more powerful QBCP for assumptions
from S1 than from Sn. For assumptions from different scopes, our approach is
more dynamic than restricting the set of QBCP rules in advance as in [22].
4 Unless stated otherwise, all PCNFs in examples provided in the paper are satisfiable.

For brevity, pure literal detection is ignored and CNFs (clauses) are presented as sets
of clauses (literals).

5 QBCP-Guided Q-Resolution

Abstraction-based FL from the previous section allows to apply QBF-specific
inference rules like UR and universal pure literals to a larger extent than pre-
vious approaches where QBCP rules were restricted. However, it still lacks full
propagation power as could be obtained on the original PCNF.

In this section we present an approach for FL which operates on the original
PCNF, thus taking full benefits from QBF-specific QBCP rules. Because this
might in general destroy satisfiability as pointed out in Example 1, we apply Q-
resolution to validate failed literals detected by QBCP. This approach is inspired
by CDCL in search-based QBF solvers [12, 29].

An assignment A is generated by making an assumption x and carrying
out QBCP with the full set of inference rules on the original PCNF. If ∅ ∈
QBCP(ψ, x) then candidate clauses for Q-resolution are selected from ψ entirely
with respect to assignment A, i.e. its implication graph like in CDCL for SAT
solving [27]. If the unit clause {¬x} corresponding to the negated assumption can
be deduced in that way then x is a valid failed literal. This is called QBCP-guided
Q-resolution. Soundness follows right from Lemma 2. The following example
shows a nontrivial application.

Example 3. Given PCNF ψ := ∃e1,e2∀a3∃e4,e5. {a3, e5}, {¬e2, e4}, {¬e1, e4},
{e1, e2,¬e5}. With assumption ¬e4 we get ∅ ∈ QBCP(ψ,¬e4) since {¬e1},
{¬e2} and {¬e5} become unit. Finally {a3, e5} is empty by UR. The negated
assumption {e4} is then derived by resolving clauses in reverse-chronological
order as they were affected by assignments: ({a3, e5}, {e1, e2,¬e5}) ` {e1, e2},
({e1, e2}, {¬e2, e4}) ` {e1, e4}, ({e1, e4}, {¬e1, e4}) ` {e4}.
Note that selecting Q-resolution candidates based on the current assignment
generated by QBCP is only a heuristic. That is, even when it fails the negated as-
sumption can possibly be deduced by selecting arbitrary clauses for Q-resolution.

Example 4. Given PCNF ψ := ∀a1∃e2∀a3∃e4. {a1, e2}, {e2, a3, e4}, {e2, a3,¬e4}.
We have ∅ ∈ QBCP(ψ,¬e2) immediately by UR in the first clause, but e2
obviously cannot be produced by Q-resolution from that single clause affected
by the assignment. However, we have ({e2, a3, e4}, {e2, a3,¬e4}) `∗ {e2}.
Due to Lemma 4 unsatisfiability can be concluded without Q-resolution if ∅ ∈
QBCP(ψ, x) for x ∈ Si where Qi = ∀. This property is similar to abstraction-
based FL but we expect more QBF-specific inferences in QBCP with this ap-
proach. Further the empty clause might be derived when validating a failed
literal by Q-resolution. In this case, unsatisfiability follows immediately.

Example 5. Given PCNF ψ := ∀a1∃e2,e3,e4,e5. {e2,¬e5}, {¬e2, e5}, {a1, e2},
{¬a1, e3}, {¬e3, e4}, {¬e3,¬e4}. We have ∅ ∈ QBCP(ψ, e2) because {a1, e2} is
satisfied which makes {a1} pure and {e3} unit in {¬a1, e3}. Finally {e4} is
unit and {¬e3,¬e4} becomes empty. Q-resolution as in Example 3 produces the
empty clause: ({¬e3,¬e4}, {¬e3, e4}) ` {¬e3}, ({¬e3}, {¬a1, e3}) ` ∅. Note that
∅ 6∈ QBCP(Abs(ψ, 2), e2) because {e3} does not become unit since the universal
pure literal rule is not applicable as before.

6 Comparing FL Approaches

We presented one approach for FL based on SAT testing and two based on QBCP
to find necessary assignments in PCNFs: SAT-based FL according to Proposition
2 (Section 3), abstraction-based FL (Section 4) and QBCP-guided Q-resolution
(Section 5). As argued above, the last two benefit from QBF-specific inferences
in QBCP increasingly in that order. This is due to larger numbers of universal
variables in the formulae where FL is applied to.

In the following we compare the three approaches according to their effec-
tiveness. We name examples which demonstrate that they are incomparable: one
approach is able to detect necessary assignment the other one cannot.

Proposition 4. Abstraction-based FL and QBCP-guided Q-resolution are in-
comparable with respect to detecting necessary assignments.

Example 6. For the PCNF from Example 2 unit clause {e3} cannot be derived
by Q-resolution, i.e. neither by QBCP-guided Q-resolution nor when allowing
arbitrary candidate clauses. This is in contrast to abstraction-based FL. Note
that assigning e3 to true is necessary as can be seen from a semantical evaluation.
Every path in every PCNF-model has to assign e3 to true.

Example 7. For the PCNF from Example 3 we have ∅ 6∈ QBCP(Abs(ψ, 3),¬e4)
which is in contrast to QBCP-guided Q-resolution. Due to abstraction UR is
not applicable to make {a3, e5} empty. Similarly, clause {e4} cannot be inferred
when UR is excluded from QBCP rules as in [22].

Note that Proposition 4 severely affects QBF solvers relying on Q-resolution for
conflict-driven clause learning (CDCL). For certain PCNFs no such solver will
ever be able to deduce all necessary assignments.

The following result was also obtained in the more general context of clause
learning when SAT solving was combined with search-based QBF solving [24].

Proposition 5. SAT-based FL and QBCP-guided Q-resolution are incompara-
ble with respect to detecting necessary assignments.

Example 8. Given PCNF ψ := ∃e1∀a2∃e3. {e1, a2, e3}, {e1, a2,¬e3}, {e1,¬a2, e3},
{e1,¬a2,¬e3}. A SAT solver will find out that the CNF with assumption ¬e1 is
unsatisfiable, hence {e1} can be learnt. This is possible neither by QBCP-guided
Q-resolution nor by abstraction-based FL.

Example 9. For the PCNF from Example 3, SAT-based FL cannot learn {e4}
because the CNF has a model with assumption ¬e4.

Proposition 6. SAT-based FL and abstraction-based FL are incomparable with
respect to detecting necessary assignments.

Example 10. For the PCNF from Example 2, SAT-based FL cannot detect {e3}
because the CNF has a model with assumption ¬e3.

Example 11. See Example 8.

7 Experiments

We implemented the three approaches of FL for QBF presented in Sections 3
to 5 in our novel preprocessor QxBF5. The idea is to profit from all approaches
based on the observations from the previous section. The tool operates in rounds
with three phases. First, QBCP with the full set of QBF-specific rules is carried
out on the original formula, including any unit clauses learnt in earlier rounds.
The second phase consists of either abstraction-based FL or QBCP-guided Q-
resolution. Finally, SAT-based FL is applied in the third phase because it turned
out to be most effective in practice (see below). Rounds are run in cyclic fashion
until completion unless a time limit is reached.

The SAT solver PicoSAT [3] is used for SAT-based FL by Proposition 2. This
allows for incremental SAT solving and optimizations based on CNF-models to
reduce the number of SAT solver calls like in [21]. Additionally, unit clauses
learnt by PicoSAT are propagated using QBF-specific QBCP rules within QxBF.

Table 1 compares the impact of different FL approaches on the performance of
QBF solvers based on search (DepQBF [17] and QuBE7.1 [10]) and variable elim-
ination (Quantor [2], squolem [15] and Nenofex [16]) using all benchmarks from
QBFEVAL’10 [20]. For QuBE7.1 internal preprocessing was disabled (QuBE7.1-
np). We used latest publicly available versions of solvers except internal versions
of Nenofex and DepQBF, all without proprietary preprocessing6. Results using
sQueezeBF [11], a state-of-the-art QBF preprocessor, are reported for reference.
We cannot expect FL to be competitive with sQueezeBF as the latter applies a
larger pool of inference rules (details are given below).

We combined abstraction-based FL and QBCP-guided Q-resolution with
SAT-based FL (lines “ABS+SAT” and “QRES+SAT”) in rounds and phases as
described above. At most 40 seconds were assigned to each approach, totalling
a maximum of 80 seconds for entire preprocessing. Additionally, heuristic limits
were imposed on numbers of propagations in QBCP and decisions in PicoSAT.
Performance of elimination-based solvers increases considerably both in terms of
solved formulae and run time (lower part of table). Results are less impressive for
search-based solvers. Further, they only differ slightly with respect to individual
FL approaches when applied to DepQBF (middle part of table), with a limit of 80
seconds each. We combined only “ABS+SAT” with elimination-based solvers as
the performance with “QRES+SAT” is likely similar. We did not apply “SAT”
alone due to incomparability observed in Section 6. DepQBF performs best with
SAT-based FL but also preprocessing times are larger. We argue that tuning the
run time of abstraction-based FL and QBCP-guided Q-resolution while main-
taining effectiveness is easier in practice. Run time of QBCP is close to linear
with respect to formula size in contrast to SAT solving time in SAT-based FL.

Our FL approaches are not competitive compared to sQueezeBF. In the
first line of Table 1, we allowed 900 seconds altogether for the combination

5 Project web page: http://fmv.jku.at/qxbf/
6 Setup: Ubuntu Linux 9.04, Intel R©Q9550 2.83 GHz with 900 seconds / 3GB total

time and memory limit. Exceeding the memory limit is counted as a time out.

Table 1. Solver performance with(out) time-limited failed literal preprocessing. Times
are average total run times including preprocessing and time outs, with average pre-
processing times in parentheses. The leftmost column indicates FL approaches: no
preprocessing (“None”), SAT-based FL (“SAT”), abstraction-based FL (“ABS”) and
QBCP-guided Q-resolution (“QRES”).

QBFEVAL’10: 568 formulae

Preprocessing Solver Solved Time (Preproc.) SAT UNSAT

sQueezeBF
DepQBF

435 233.28 (36.94) 201 234
sQueezeBF+(ABS+SAT) 434 239.84 (42.79) 201 233

SAT

DepQBF

379 322.31 (7.17) 167 212
QRES+SAT 378 322.83 (6.22) 167 211
ABS+SAT 378 323.19 (7.21) 167 211

ABS 375 327.64 (3.33) 168 207
QRES 374 327.63 (1.83) 167 207
None 372 334.60 (—) 166 206

ABS+SAT
QuBE7.1-np

320 432.22 (7.21) 143 177
None 318 434.69 (—) 143 175

ABS+SAT
Quantor 229 553.65 (7.21) 112 117

Nenofex
224 553.37 (7.21) 104 120

None
211 573.65 (—) 103 108

Quantor 203 590.15 (—) 99 104
ABS+SAT

squolem
154 658.28 (7.21) 63 91

None 124 708.80 (—) 53 71

of sQueezeBF and DepQBF because the former does not support setting re-
source limits. In this experiment, sQueezeBF alone solved 39 formulae and timed
out on 15. Overall performance decreases slightly (second line) if “ABS+SAT”
with 80 seconds time limit as before is applied additionally to formulae which
were simplified but not solved by sQueezeBF. However, now 64 formulae were
solved solely by preprocessing. This indicates that “ABS+SAT” is incompara-
ble to sQueezeBF at least from a practical perspective. From the 514 formulae
simplified but not solved by sQueezeBF, 489 were not solved by “ABS+SAT”
alone. Among them, still 147 assignments were fixed on average (median 20) by
“ABS+SAT”. Further, the total number of remaining (i.e. neither eliminated nor
assigned) variables in all 489 formulae was reduced by 2% due to “ABS+SAT”.

Table 2 compares the effectiveness of the three FL approaches in more de-
tail. We considered formulae from QBFEVAL’10 where all approaches ran until
completion within 900 seconds but, differently from Table 1, neither with prop-
agation nor decision limits. In general FL fixes substantially more assignments
than QBCP on the original formula (column “None”). Abstraction-based and
SAT-based FL are best according to average and median numbers of fixed as-
signments, but the latter is more costly in terms of run time. The large difference
between average and median values is due to few benchmarks from (blackbox)
model checking (instances “biu*” and “*BMC*”, see also below) where SAT-based
FL fixed fewer assignments. Further, QBCP-guided Q-resolution performs fewer
propagations per assumptions in QBCP than abstraction-based FL. The rea-
son is that the former typically detects spurious empty clauses earlier due to
universal reduction. This also results in smaller run times.

Table 2. Average and median run times, fixed assignments, and propagations per
assumption for FL approaches. “None” is QBCP on original formula only.

QBFEVAL’10: 524 formulae completed by all

Preprocessing None ABS QRES SAT
Avg. Fixed 607.17 730.31 724.10 715.77
Med. Fixed 103.5 137.00 135.00 181.50
Avg. Time 0.02 3.19 0.76 10.80
Med. Time 0.00 0.16 0.02 0.20

Avg. Props/As — 118.80 51.08 —
Med. Props/As — 40.01 6.68 —

Motivated from incomparability observed in Section 6, we compared the sets
of assignments that were fixed by different FL approaches in Table 3. We con-
sidered all three pairwise combinations. Like in Table 2, we focused on formulae
where both FL approaches of a pair ran until completion within 900 seconds.
For each pairwise combination, only formulae where sets of fixed assignments
(FA) were different were taken into account (first line). We then separated for-
mulae by larger numbers of unique FAs (second line), i.e. FAs detected by one
approach but not by the other. For example in section “ABS vs. QRES”, on 121
formulae abstraction-based FL found more unique FAs than QBCP-guided Q-
resolution. Equal numbers of unique FAs do not show up in that statistics. The
third, fourth and fifth line report total, average and median numbers of unique
FAs over formulae with different FAs. For example in section “ABS vs. QRES”,
abstraction-based FL detected 3752 (average 28.86, median 1) unique FAs com-
pared to 58 (average 0.44, median 0) by QBCP-guided Q-resolution. The last
two lines show average and median differences between unique FAs detected by
left and right approaches in each section. Larger values indicate that the left
approach is better than the right one. For example in section “ABS vs. QRES”,
for each of the 130 considered formulae we subtracted the number of unique FAs
detected by abstraction-based FL from the one of QBCP-guided Q-resolution.
On average abstraction-based FL detected 28.41 more unique FAs than QBCP-
guided Q-resolution whereas the median is 1.

In general average values suggest that abstraction-based FL is better than
QBCP-guided Q-resolution and SAT-based FL (sections “ABS vs. QRES” and
“ABS vs. SAT”) and that QBCP-guided Q-resolution is better than SAT-based
FL (section “QRES vs. SAT”). But median values indicate the opposite ten-
dency. As in Table 2, few benchmarks account for skew statistics in Table 3. For
example in section “ABS vs. QRES”, abstraction-based FL found 1603 unique
FAs on instance lognBWLARGEB1-shuffled compared to 0 by QBCP-guided Q-
resolution. In section “ABS vs. SAT”, abstraction-based FL found between 1000
and 7000 unique FAs on some “biu*” instances from bounded model checking
compared to 0 by SAT-based FL. In contrast to this, SAT-based FL found 2668
on instance c3 BMC p1 k256-shuffled compared to 0 by abstraction-based FL.
Similar observations can be made for section “QRES vs. SAT”, hence Table 3
confirms incomparability results from Section 6.

Table 3. Pairwise comparison of FL approaches (complete runs as in Table 2).

QBFEVAL’10: formulae with different fixed assignments (FAs)

ABS vs. QRES ABS vs. SAT QRES vs. SAT
Formulae with Diff. FAs 130 183 220

Formulae wrt. Unique FAs 121 9 57 126 36 180
Total Unique FAs 3752 58 24268 16648 24237 19874
Avg. Unique FAs 28.86 0.44 132.61 90.97 110.16 90.33
Med. Unique FAs 1 0 0 13 0 5

Avg. Diff. in Unique FAs 28.41 41.63 19.83
Med. Diff. in Unique FAs 1 -14 -4.5

8 Conclusion

We studied failed literal detection (FL) for QBF to infer necessary assignments.
Whereas a common approach based on SAT solving turned out to be effective,
it suffers from exponential run time and requires careful tuning in practice. We
presented two alternatives based on abstraction and Q-resolution which rely on
QBCP. The three approaches are incomparable: there are QBFs where a neces-
sary assignment can be detected by one approach but not by the other. Experi-
ments with our implementation in QxBF confirmed that observations. Moreover,
abstraction-based FL is a polynomial-time alternative to SAT-based FL. This
enables efficient dynamic applications in search-based QBF solvers. Incompara-
bility suggests that FL could benefit from combinations of all three approaches in
portfolio-style preprocessors. Combinations of FL with other preprocessing tech-
niques for QBF are future work. Further, it is unclear if clause learning in QBF
solvers could be improved. The common implementations based on Q-resolution
are not optimal due to incomparability and results from [24].

We want to thank Aina Niemetz and Mathias Preiner for implementing parts
of QxBF, Martina Seidl for discussions, and the reviewers for valuable comments.

References

1. D. Le Berre. Exploiting the Real Power of Unit Propagation Lookahead. Electronic
Notes in Discrete Mathematics, 9:59–80, 2001.

2. A. Biere. Resolve and Expand. In H. H. Hoos and D. G. Mitchell, editors, SAT
(Selected Papers), volume 3542 of LNCS, pages 59–70. Springer, 2004.

3. A. Biere. PicoSAT Essentials. JSAT, 4(2-4):75–97, 2008.
4. A. Biere, M. Heule, H. van Maaren, and T. Walsh, editors. Handbook of Satisfia-

bility, volume 185 of Frontiers in AI and Applications. IOS Press, 2009.
5. U. Bubeck and H. Kleine Büning. Bounded Universal Expansion for Preprocessing

QBF. In Marques-Silva and Sakallah [19], pages 244–257.
6. H. Kleine Büning, M. Karpinski, and A. Flögel. Resolution for Quantified Boolean

Formulas. Inf. Comput., 117(1):12–18, 1995.
7. H. Kleine Büning and T. Lettmann. Propositional Logic: Deduction and Algo-

rithms. Cambridge University Press, New York, NY, USA, 1999.
8. M. Cadoli, M. Schaerf, A. Giovanardi, and M. Giovanardi. An Algorithm to Eval-

uate Quantified Boolean Formulae and Its Experimental Evaluation. J. Autom.
Reasoning, 28(2):101–142, 2002.

9. Jon W. Freeman. Improvements To Propositional Satisfiability Search Algorithms.
PhD thesis, University of Pennsylvania, 1995.

10. E. Giunchiglia, P. Marin, and M. Narizzano. QuBE7.0 (System Description). JSAT,
7:83–88, 2010.

11. E. Giunchiglia, P. Marin, and M. Narizzano. sQueezeBF: An Effective Preprocessor
for QBFs Based on Equivalence Reasoning. In Strichman and Szeider [28].

12. E. Giunchiglia, M. Narizzano, and A. Tacchella. Clause/Term Resolution and
Learning in the Evaluation of Quantified Boolean Formulas. J. Artif. Intell. Res.
(JAIR), 26:371–416, 2006.

13. J. F. Groote and J. P. Warners. The Propositional Formula Checker HeerHugo. J.
Autom. Reasoning, 24(1/2):101–125, 2000.

14. M. Heule and H. van Maaren. Look-Ahead Based SAT Solvers. In Biere et al. [4].
15. T. Jussila, A. Biere, C. Sinz, D. Kröning, and C. M. Wintersteiger. A First Step

Towards a Unified Proof Checker for QBF. In Marques-Silva and Sakallah [19].
16. F. Lonsing and A. Biere. Nenofex: Expanding NNF for QBF Solving. In H. Kleine

Büning and X. Zhao, editors, SAT, volume 4996 of LNCS. Springer, 2008.
17. F. Lonsing and A. Biere. DepQBF: A Dependency-Aware QBF Solver (System

Description). JSAT, 7:71–76, 2010.
18. I. Lynce and J. P. Marques Silva. Probing-Based Preprocessing Techniques for

Propositional Satisfiability. In ICTAI, pages 105–. IEEE Computer Society, 2003.
19. J. Marques-Silva and K. A. Sakallah, editors. Proceedings SAT’07, volume 4501 of

LNCS. Springer, 2007.
20. C. Peschiera, L. Pulina, A. Tacchella, U. Bubeck, O. Kullmann, and I. Lynce. The

Seventh QBF Solvers Evaluation (QBFEVAL’10). In Strichman and Szeider [28].
21. F. Pigorsch and C. Scholl. An AIG-Based QBF-Solver Using SAT for Preprocess-

ing. In S. S. Sapatnekar, editor, DAC, pages 170–175. ACM, 2010.
22. J. Rintanen. Improvements to the Evaluation of Quantified Boolean Formulae. In

T. Dean, editor, IJCAI, pages 1192–1197. Morgan Kaufmann, 1999.
23. M. Samer. Variable Dependencies of Quantified CSPs. In I. Cervesato, H. Veith,

and A. Voronkov, editors, LPAR, volume 5330 of LNCS. Springer, 2008.
24. H. Samulowitz and F. Bacchus. Using SAT in QBF. In P. van Beek, editor, CP,

volume 3709 of LNCS, pages 578–592. Springer, 2005.
25. H. Samulowitz and F. Bacchus. Binary Clause Reasoning in QBF. In A. Biere and

C. P. Gomes, editors, SAT, volume 4121 of LNCS, pages 353–367. Springer, 2006.
26. H. Samulowitz, J. Davies, and F. Bacchus. Preprocessing QBF. In F. Benhamou,

editor, CP, volume 4204 of LNCS, pages 514–529. Springer, 2006.
27. J. P. Marques Silva, I. Lynce, and S. Malik. Conflict-Driven Clause Learning SAT

Solvers. In Biere et al. [4], pages 131–153.
28. O. Strichman and S. Szeider, editors. Theory and Applications of Satisfiability

Testing - SAT 2010, 13th International Conference, SAT 2010, Edinburgh, UK,
July 11-14, 2010. Proceedings, volume 6175 of LNCS. Springer, 2010.

29. L. Zhang and S. Malik. Towards a Symmetric Treatment of Satisfaction and Con-
flicts in Quantified Boolean Formula Evaluation. In P. Van Hentenryck, editor,
CP, volume 2470 of LNCS, pages 200–215. Springer, 2002.

