
XOR Local Search
for Boolean Brent Equations

Wojciech Nawrocki1 , Zhenjun Liu1, Andreas Fröhlich2 ,
Marijn J.H. Heule1 , and Armin Biere2

1 Carnegie Mellon University, Pittsburgh, United States
{wnawrock, zhenjunl, mheule}@andrew.cmu.edu

2 Johannes Kepler University, Linz, Austria
{andreas.froehlich, biere}@jku.at

Abstract. Combining clausal and XOR reasoning has been studied for
almost two decades, in particular in the context of CDCL and look-
ahead, but not in classical local search. To stimulate research in this
direction, we propose to standardize a hybrid format, called XNF, which
allows both clauses and XORs. We implemented a tool to extract XOR
constraints from a CNF, simplify them, and produce an XNF formula.
The usefulness of XNF formulas is demonstrated by focusing on the
impact of combined clausal and XOR reasoning on local search. Native
support for XOR facilitates satisfying any falsified long XOR using a
single flip, similarly to satisfying a falsified clause. When combined with
XOR-based heuristics, local search performance is significantly improved
on matrix multiplication challenges which are hard for CDCL.

1 Introduction

Two of the most successful approaches to SAT solving are Conflict-Driven Clause
Learning (CDCL) and Stochastic Local Search (SLS). Modern CDCL solvers
are very sophisticated and able to efficiently solve a broad range of problems.
In contrast, the idea of SLS is simple yet works well on certain formulas. Also
look-ahead solvers have been quite successful in the past, but suffer from having
few applications that are not already successfully covered by CDCL.

These solving paradigms usually operate on conjunctive normal form (CNF)
and thus expect their input to be a set of clauses. While in principle all problems
can be translated into pure CNF, additionally allowing the use of XOR con-
straints can provide a more natural representation, which in turn can possibly
lead to more efficient solving approaches. Examples include problems from cryp-
tography, with corresponding formulas often originally denoted in algebraic nor-
mal form, but also all formulas that simply contain parity constraints [4,5,18,31].
Similarly, XOR constraints are important for approximate model counting [13].
As a result, the combination of clausal and XOR reasoning has been consid-
ered an interesting topic and has been studied [37] as well as applied in several
algorithms—usually in the context of CDCL and look-ahead solvers [14,20], with

https://orcid.org/0000-0002-8839-0618
https://orcid.org/0000-0002-0698-3621
https://orcid.org/0000-0002-5587-8801
https://orcid.org/0000-0001-7170-9242


2 Nawrocki, Liu, Fröhlich, Heule, and Biere

CryptoMiniSAT probably being the most prominent example [38]. Nevertheless,
most state-of-the-art solvers still do not support XOR reasoning.

Research on XOR constraints in the context of SLS is sparse and, aside
from loosely related work on gates [6,33], satisfiability modulo theories [17],
and continuous local search [29,30], there have been few successful attempts on
improving SLS solvers by incorporating support for non-CNF representations. In
particular, up-to-date there is no SLS algorithm that combines clausal and XOR
reasoning during the search process by supporting native XOR constraints.

Moreover, SLS solvers have different strengths than other types of solvers.
For instance, they are considered to work well on random k−SAT and satis-
fiable, hard combinatorial problems. On some crafted combinatorial problems
such as VanDerWaeden pd 3k and battleship, the SLS solver Swcca outper-
forms the CDCL solver Glucose in both success rate and average time [12].
Another well-known example is the boolean Pythagorean Triples problem [23]:
the satisfiable [1, 7824] instance can be solved using DDFW local search [24] in
one CPU minute, while complete methods can take years.

A recent problem of interest on which SLS performed particularly well is
related to matrix multiplication [21] expressed as a SAT problem using Boolean
Brent equations [22]. The corresponding matrix multiplication (challenge 1)
benchmarks3, MM-Challenge-1, turn out to be hard for CDCL solvers, but could
be solved by the SLS solver YalSAT. This is particularly surprising since the
benchmark formulas contain a large number of XOR constraints which, encoded
into CNF, should (and actually do) hinder the performance of SLS solvers.

Why do we consider CNF-encoded XOR constraints to be problematic for
SLS solvers? To avoid combinatorial explosion in the number of clauses, the
Tseitin transformation has to be used, particularly for long XOR constraints.
While shortening the formula, this encoding introduces a large number of aux-
iliary variables which, roughly speaking, obscure the XOR constraint from the
solver’s view and drastically affect the neighbourhood of assignments visited dur-
ing the local search. We will give a detailed explanation in Section 2. This obser-
vation, together with the already good performance of SLS on MM-Challenge-1,
provides even more reason to assume that it might be possible to further push
the state-of-the-art by incorporating native XOR support into SLS.

Our contribution. The core observation on which we base our work is that
XOR constraints fit quite naturally into SLS algorithms. Every time a literal is
flipped, the truth values of all XOR constraints containing the literal get flipped
as well, and the core solver loop can be adapted to do this. To support this, we
extended our input format from CNF to XNF, allowing XORs to exist as another
type of constraint alongside the usual disjunctive clauses. We also developed a
tool cnf2xnf, which extracts XOR constraints from a formula given in CNF and
saves the result in XNF format, as well as a related tool extor which reconstructs
solutions for the original CNF from solutions for the XNF. Both algorithms
are described in Section 3. Our main contribution is xnfSAT, an SLS solver
based on the state-of-the-art YalSAT [8] solver—we outline its implementation

3 https://github.com/marijnheule/matrix-challenges

https://github.com/marijnheule/matrix-challenges


XOR Local Search for Boolean Brent Equations 3

in Section 4. We then present experimental results in Section 5 and show that
xnfSAT achieves significant performance improvements on all benchmarks within
MM-Challenge-1, thus confirming the usefulness of our combined representation
and pushing the state-of-the-art on these challenging instances.

2 XOR Constraints

An SLS solver starts with a complete assignment of truth values to variables.
While the formula is not satisfied, it loops flipping literals chosen according to
some probability distribution. The choice of this distribution forms the heart of
an SLS solver [2].

To see why CNF-encoded XOR constraints can negatively impact the per-
formance of SLS solvers, let us first summarize briefly a simplified version of the
SLS algorithm as used in YalSAT [8].

Algorithm 1 outlines the high-level structure of YalSAT, omitting certain
details such as restarts and corresponding strategy changes. The basic loop orig-
inates from WalkSAT [34]. The solver first builds up internal data structures,
preprocesses the formula via unit propagation, and sets an initial truth-value
assignment. It then loops until a solution is found. On each iteration, it picks a
falsified clause and flips the truth value of a literal in it. Details of this process
will be outlined in Section 4—for now, a bird’s eye view suffices.

Algorithm 1 Outline of a typical WalkSAT-based solver

1: for clause in input file do
2: parse and store clause to data structure
3: end for
4: preprocess formula
5: α← complete initial assignment of truth values
6: while there exists a clause falsified by α do
7: C ← pickUnsatClause()
8: x← pickV ar(C)
9: α← α with x flipped

10: update solver state
11: end while

CNF Encodings

Let us now look at how this algorithm interacts with the CNF encoding of XOR
constraints. The direct encoding of an XOR constraint on k variables uses 2k−1

clauses of length k, where each clause consists of variables x1, . . . , xk with an
even number of them negated:

XOR d(x1, x2, . . . , xk) =
∧

even #¬

(±x1 ∨ ±x2 ∨ · · · ∨ ±xk)



4 Nawrocki, Liu, Fröhlich, Heule, and Biere

To avoid an exponential growth in the number of clauses, it is common to
use the Tseitin transformation [40] instead, which recursively translates arbitrary
formulas into CNF by introducing fresh auxiliary variables for its sub-formulas:

f(g(x1, . . . , xk)) = f(y) ∧ (y ↔ g(x1, . . . , xk))

The resulting formula is equisatisfiable to the original one. Due to its recursive
nature and the associative property of certain binary operations, the final CNF
representation can differ in the number of variables and clauses depending on
the structure of the original formula.

We consider two different parameters that describe this structure in the case
of pure XOR constraints and, thus, influence the final CNF representation: the
cutting number and the mode.

The cutting number, roughly speaking, defines the size of the individual slices
that are cut out of an XOR constraint and then encoded in a direct fashion [4].
The smaller the slices (with a minimum of size n = 3), the shorter and fewer the
resulting clauses, since each slice will be encoded into 2n−1 clauses of length n.
However, with larger n, fewer slices are required and, thus, fewer auxiliary vari-
ables need to be introduced.

It is not clear whether there is a universally optimal setting for the cutting
number. Soos and Meel [37] argue that a cutting number of 4 experimentally
turned out to be optimal for their use case in approximate model counting.
In contrast, for some problems in cryptography, it is suggested that a cutting
number of 6 would be the optimal setting for the respective applications [5,10].
In Section 5, we analyze results for xnfSAT on CNF benchmarks constructed
using several cutting numbers.

The second parameter, which we call the mode of translation, influences the
fashion in which the XOR constraint is recursively traversed. For the mode, we
distinguish between linear and pooled encodings. While the linear mode might
be considered the standard approach and has been used before [5], we are not
aware of any previous work using the pooled mode—however, a similar approach
for at-most-one constraints has been contributed to Knuth’s book “The Art of
Computer Programming, Volume 4, Fascicle 6: Satisfiability” [27] (p. 134, Ex.
12) by the fourth author.

From an implementational point of view, the difference between the two
modes basically boils down to whether a stack or a queue is used when removing
a chunk of variables from the XOR constraint and adding fresh auxiliary variables
during translation. In particular, a stack will lead to a linear translation, whereas
a queue will produce a pooled one. We can assume k > n, with k being the length
of the XOR constraint and n denoting the cutting number. If this were not the
case, we could simply use the direct encoding. Let XOR l n and XOR p n denote
the linear and the pooled encoding, respectively, with cutting number n:

XOR l n(x1, . . . , xk) = XOR d(x1, . . . , xn−1, y) ∧ XOR l n(y, xn, . . . , xk)

XOR p n(x1, . . . , xk) = XOR d(x1, . . . , xn−1, y) ∧ XOR p n(xn, . . . , xk, y)

Note that XOR chunks (with length n− 1) are always sliced from the left. The
new auxiliary variable in linear mode or pooled mode is then added to the left or



XOR Local Search for Boolean Brent Equations 5

the right of the remaining XOR constraint, respectively. For the sliced chunks,
the position of y does not matter since the direct encoding is not affected by
variable order. To illustrate the practical difference of the two modes, let us take
a closer look at a short example for an XOR constraint of length 6 (for simplicity,
using a fixed cutting number of 3).

Example 1.

XOR l 3(x1, x2, x3, x4, x5, x6)

= XOR d(x1, x2, y1) ∧ XOR l 3(y1, x3, x4, x5, x6)

= XOR d(x1, x2, y1) ∧ XOR d(y1, x3, y2) ∧ XOR l 3(y2, x4, x5, x6)

= XOR d(x1, x2, y1) ∧ XOR d(y1, x3, y2) ∧ XOR d(y2, x4, y3) ∧ XOR l 3(y3, x5, x6)

= XOR d(x1, x2, y1) ∧ XOR d(y1, x3, y2) ∧ XOR d(y2, x4, y3) ∧ XOR d(y3, x5, x6)

XOR p 3(x1, x2, x3, x4, x5, x6)

= XOR d(x1, x2, y1) ∧ XOR p 3(x3, x4, x5, x6, y1)

= XOR d(x1, x2, y1) ∧ XOR d(x3, x4, y2) ∧ XOR p 3(x5, x6, y1, y2)

= XOR d(x1, x2, y1) ∧ XOR d(x3, x4, y2) ∧ XOR d(x5, x6, y3) ∧ XOR p 3(y1, y2, y3)

= XOR d(x1, x2, y1) ∧ XOR d(x3, x4, y2) ∧ XOR d(x5, x6, y3) ∧ XOR d(y1, y2, y3)

While the structure of the resulting CNF formula (for different modes) as well
as the number of variables and clauses (for different cutting numbers) will vary,
all combinations are effective in reducing the number of clauses at the expense
of adding linearly more variables—a relatively small price to pay. Nevertheless,
this translation can greatly hinder the performance of local search solvers.

To see this, consider XOR l n(x1, . . . , xk). For original variables x1, . . . , xk,
the encoding introduces auxiliary variables y1, . . . , yr (with r ∈ Θ(k)) and r− 1
XOR constraints of length n < k. For simplicity, let us again assume n = 3:

XOR l 3(x1, .., xk) = XOR d(x1, x2, y1)∧XOR d(y1, x3, y2)∧· · ·∧XOR d(yr, xk−1, xk)

Observe that for each assignment of x1, . . . , xk satisfying XOR d(x1, . . . , xk),
there exists a unique assignment of y1, . . . , yr that satisfies XOR l 3(x1, . . . , xk).
This is because, given an assignment of x1, . . . , xk satisfying XOR d(x1, . . . , xk),
there is only one assignment of y1 satisfying XOR d(x1, x2, y1), which subsequently
forces the assignment of y2 in order to satisfy XOR(y1, x3, y2), and so on. The same
kind of argument holds for the general encodings XOR l n and XOR p n.

We say that an assignment satisfies the CNF-encoded XOR constraint (by
XOR l n or XOR p n) on a high level if an odd number of x1, . . . , xk are set to true
(i.e., if the original XOR constraint would be satisfied). However, even when the
constraint is satisfied on a high level, it is possible that the auxiliary variables
do not have the correct unique values. In this way, an XOR constraint can be
satisfied on a high level but falsified in the (low-level) Tseitin CNF encoding.

For the SLS solver to move from a falsifying assignment of x1, . . . , xk to
a satisfying assignment of x1, . . . , xk, it additionally needs to flip the correct



6 Nawrocki, Liu, Fröhlich, Heule, and Biere

auxiliary variables to match the corresponding assignment of y1, . . . , yr. However,
there is only one assignment of y1, . . . , yr satisfying the Tseitin-encoded CNF
representation of (x1 ⊕ · · · ⊕ xk) out of 2r many. While this might not be a big
issue for CDCL solvers (since corresponding values could be propagated), this is
particularly difficult for the probabilistic approach taken by SLS solvers.

Hence, after the XOR constraint becomes satisfied on a high level, the prob-
ability of an SLS solver flipping the correct auxiliary variables and satisfying the
low-level Tseitin-encoded clauses is small. Worse still, it may end up flipping one
of the original variables xi and invalidating the XOR constraint.

Another issue with the Tseitin encoding of XOR constraints that particularly
affects SLS solvers is the change in neighbourhood of assignments within the
search space. If we look at an XOR constraint (x1 ⊕ · · · ⊕ xk) that just got
falsified under a certain assignment by flipping x1, we could easily fix this by
flipping an arbitrary variable in this constraint using a single step, including xk.
This does not hold for the Tseitin-encoded CNF version of the XOR constraint
anymore. Once again, consider XOR l 3: If the CNF version of the constraint is
falsified due to x1, this can only be fixed by x2 or y1. In order to flip xk, we
first would have to take r intermediate steps by flipping all y1, . . . , yr. This can
be particularly problematic with probabilistic algorithms, considering that the
correct variable has to be chosen in each step, decreasing the overall probability
for xk being reached exponentially. Similar arguments have been made in the
context of configuration checking [32] and might have contributed to the success
of CCA-based solvers, such as CCAnr [11].

It is possible to trade off some auxiliary variables for an increased clause
count by increasing the cutting number. However, as the number of clauses
grows exponentially, this explodes quickly. Using pooled mode, the exponential
decrease in probability can be avoided since the resulting structure will roughly
be tree-like, i.e., O(log(r)) steps are sufficient for possibly reaching any other
variable from the original XOR constraint. Nevertheless, the overall probability
distribution is still skewed heavily towards “close” variables and the high-level
vs low-level satisfiability issue is not resolved either. Thus, we can only expect
small improvements compared to the linear version.

XNF Format

Overall, the currently widely-used Tseitin encoding of XOR constraints is inef-
fective in SLS solvers. Thus, our goal is to avoid this conversion by including
XOR constraints natively as part of the input format. This would enable an SLS
solver to handle XOR constraints more effectively, and we hope to standardize
this format to facilitate research on SAT solvers with XOR reasoning.

We use the following extension of the existing CNF format that is compatible
with XOR constraints. For simplicity, we will call this format XNF. This format
is in the spirit of the DIMACS format, which makes it natural to standardize.
An XOR constraint is denoted as a sequence of literals preceded by the symbol
x; OR constraints are denoted the same as in the original CNF format. The



XOR Local Search for Boolean Brent Equations 7

header is changed slightly to “p xnf #variables #constraints”. For example,
the formula (x1 ∨ x2 ∨ x3) ∧ (x1 ⊕ x2) is denoted by the following XNF input:

p xnf 3 2

1 2 -3 0

x -1 2 0

While we came up with this format independently, we later stumbled upon a
blog post4 that briefly mentions CryptoMiniSAT’s [38] support of a very similar
input format5. Support for inputs in XNF also was recently added to the CDCL
solver Satch6, which is CNF-based and uses the pooled encoding presented in
Section 2 to encode XOR constraints into CNF. This extension to Satch turned
out very useful for testing the tools discussed in the next section.

3 Extracting XORs

Existing propositional problems do have XOR constraints but are usually only
available in CNF. Therefore, we have implemented a stand-alone extraction tool
cnf2xnf which allows to extract an XNF file from a given CNF in DIMACS
format. We implemented this tool to make sure that our approach for hybrid
local search also works, in a practical sense, with benchmarks given in CNF. The
more general goal of this tool is to promote the XNF format and thus further
encourage research into hybrid XNF solving.

The SAT solver CryptoMiniSAT [38] contains an internal procedure for ex-
tracting XORs [37] in order to take advantage of sophisticated XOR reason-
ing [35] for applications in approximate model counting [13]. The aim of that
extractor is to recover XORs after encoding them into CNF and running CNF-
based inprocessing. It takes shortened clauses into account—a common side-
effect of CNF-level preprocessing. In earlier work by the fourth author [19],
XORs were found by sorting the CNF, which fails to extract XORs with short-
ened clauses. Our new extractor cnf2xnf7 shares the same problem for prepro-
cessed formulas, but otherwise follows the same principles as used by Soos and
Meel [37], apart from not using Bloom filters. In addition to extracting directly
encoded XORs, our tool also finds XORs encoded in a Tseitin encoding of And-
Inverter-Graphs (AIGs) [28]. Our algorithm is simpler and has successfully been
used for gate-extraction to improve bounded variable elimination [15] and to
implement Gaussian-elimination in some of the last author’s SAT solvers [7,9].

Our extraction algorithm works as follows. We go over all clauses (including
binary clauses) and as soon as we find a clause of length k with at most one
positive literal, called “base clause”, we check whether we can find all 2k−1

target clauses obtained from the base clause by negating an even number of

4 https://www.msoos.org/xor-clauses/
5 We are not aware of any formal publication about this format.
6 https://github.com/arminbiere/satch
7 https://github.com/arminbiere/cnf2xnf

https://www.msoos.org/xor-clauses/
https://github.com/arminbiere/satch
https://github.com/arminbiere/cnf2xnf


8 Nawrocki, Liu, Fröhlich, Heule, and Biere

literals. As in subsumption algorithms [15], we only traverse the occurrence list
of a single literal in a target clause with the smallest number of occurrences. If
all clauses are found, they are marked as garbage and the corresponding XOR
constraint is added. Extracting ternary XORs from AIGs starts with a ternary
base clause which, together with two binary clauses, encodes an AND gate. For
each of the two inputs of that outer AND gate, we then try to find another three
clauses encoding an inner AND gate, which share the same inputs but negated.
The implied XOR constraint is extracted. If the variables encoding the output
of the two inner AND gates occur exclusively in these nine clauses, the clauses
are then marked as garbage.

After extracting all XOR constraints, we eliminate variables which only occur
in XOR constraints through substitution, simulating Gaussian elimination. The
resulting XNF is written to the output file. Optionally, the user can request
to produce an “extension stack”, listing all the eliminated XOR constraints as
well as those sets of nine clauses for XORs extracted from AIGs. This extension
stack can be used to map a satisfying assignment of the XNF back to the original
CNF. This is implemented in another tool called extor8. It takes a satisfying
assignment of the XNF in the output format of the SAT competition together
with the extension stack as inputs and produces a satisfying assignment for the
original CNF—again in the SAT competition output format. The algorithm is
exactly the same as for reconstructing solutions for CNF preprocessing [16,25,26],
except for the semantics of XOR constraints: for those, the value of the first literal
of a processed constraint on the stack is flipped if it has an even number of true
literals. For regular clauses, the value is only flipped if all literals are false.

As mentioned above, XNF parsing was also added to the new SAT solver
Satch, which was then used to test the cnf2xnf extractor as well as solution
reconstruction with extor. For 235 benchmarks of the main track of the SAT
competition 2020, we were able to find and extract XORs successfully. From
those, a subset of 118 allowed to eliminate variables by Gaussian elimination.
This reduced the number of variables substantially—often to less than 50%.
However, note that extracting binary XORs partially simulates equivalent literal
substitution. Thus, it is difficult to give a precise account of the effectiveness of
this flow as a preprocessing technique, which is available in other SAT solvers
anyhow and not the target of this paper. Without any bounds, running XOR
extraction until completion was able to extract all XORs of 224 benchmarks
within one second and all XORs of 333 benchmarks within 10 seconds. For only
30 benchmarks, it took more than 100 seconds.

While these experiments are successful in showing that XNF extraction is
feasible on standard competition instances, running Satch on the extracted XNF
benchmarks had almost identical performance to running it on the original CNF
versions. Furthermore, none of the satisfiable benchmarks was solved through
local search, neither before nor after XNF extraction—however, the focus of
this paper is to improve local search on specific benchmarks where local search

8 also available at https://github.com/arminbiere/cnf2xnf

https://github.com/arminbiere/cnf2xnf


XOR Local Search for Boolean Brent Equations 9

already has an advantage. We consider it a challenge and future work to improve
XOR-based reasoning on competition benchmarks.

4 Implementation

To support the XNF format which natively encodes XOR constraints, we modi-
fied YalSAT [8], a state-of-the-art SLS solver. We call our modified solver xnfSAT.9

Recall the structure of the YalSAT algorithm as outlined in Algorithm 1.
Most of the modifications are natural analogies to XOR constraints. The bulk of
our modifications concerns the internal data structures and the implementation
of pickV ar (line 8). To perform preprocessing efficiently, we adapted this step
to carry out unit propagation on XOR constraints. We did not significantly
change pickUnsatClause (line 7), as the existing code was sufficient to handle
the newly added XOR constraints. For formulas that are encoded in pure CNF,
our modification does not change the behavior of YalSAT.

For preprocessing, we carry out two rounds of unit propagation on clauses
as YalSAT does, including also unitary XOR constraints. After unit propagation
terminates, we want to utilize the partial assignment forced by unit propagation
on XOR constraints. To deduce contradiction is easy, by examining whether
there is a falsified XOR constraint. However, to remove satisfied literals, an
XOR constraint should have its parity flipped: initially, an XOR constraint is
satisfied iff an odd number of its literals are set to true; if one of its literals is
forced to true by unit propagation, then the XOR constraint is true iff an even
number of its remaining literals are set to true. As a result, we need an array to
keep track of the parity of each XOR constraint.

Define parity of an XOR to be 0 if the constraint is satisfied when an odd
number of its literals are set to true, and define parity to be 1 otherwise. This
definition has the convenient property that it is precisely the “base truth value”
of the XOR, so that the actual truth value of the constraint in a local search
step can be calculated by comparing its current value to its parity. Using this
definition, we only need to store the variables (but not whether they are negated)
appearing in each XOR constraint and initialize its parity to the number of
negations modulo 2.

Next to basically being a WalkSAT-based algorithm, YalSAT, more specifically,
is also a probSAT-based algorithm. In probSAT [3], the probability that a variable

x is picked is proportional to c
−break(x)
b , where cb is a constant, called the break

coefficient, and break(x) denotes the number of clauses that would be falsified
when x was flipped. A key extension of YalSAT compared to probSAT is that it
uses a weighted version of break instead. In YalSAT [8], the probability of choos-

ing a variable x is proportional to c
−breakw(x)
b , with breakw(x) =

∑
C∈B(x) w(C),

where B(x) is the set of clauses that would be falsified by flipping x, and w(C) is
the weight of a particular clause C. In its current implementation within YalSAT,

9 https://github.com/Vtec234/xnfsat

https://github.com/Vtec234/xnfsat


10 Nawrocki, Liu, Fröhlich, Heule, and Biere

w(C) is not specific to each single clause though, but defined as a function of its
length—we will get back to that later.

For xnfSAT, we first extend the definition of break and breakw by also taking
into account the XORs that would be falsified. This is straightforward from
a theoretic perspective, but requires to address the concrete implementation as
part of an efficient SLS solver architecture. In the original YalSAT [8], calculating
breakw values using critical literals is crucial to its performance. A literal in
a clause C is critical if flipping it falsifies C. Say a clause is k-satisfied if k
literals in this clause are set to true. Then a clause contains a critical literal iff
it is 1-satisfied. Since break(x) is equal to the number of clauses in which x is
critical, break(x) can be cached and updated efficiently by tracking the number of
true literals in each clause. Whenever a literal is flipped, this can be efficiently
updated while looping through each clause where the corresponding variable
occurs [1]. This is also where weighting is addressed when implementing breakw
in YalSAT [8]—instead of just increasing or decreasing the cached value by 1, it
can be increased or decreased by w(C), respectively. To generalize this idea to
XORs, note that each time a literal in an XOR constraint is flipped, the truth
value of the XOR constraint changes. Thus, in a satisfied XOR constraint, every
literal is critical. When an XOR constraint C becomes satisfied or unsatisfied,
increase or decrease breakw(x) by w(C), respectively, for all its literals x.

In YalSAT [8], the weight w(C) is a function of the length of the clause C.
However, this is not necessarily a good heuristic to measure the importance
of an XOR compared to a clause, especially when XOR constraints are signif-
icantly longer. For example, in MM-Challenge-1, all XORs are more than six
times longer than all the clauses. To simplify the algorithm and not to overtune
on specific parameters, we assign a fixed weight wX to all XOR constraints.
Similarly, we will write wk for w(C) when C is a clause of length k.

Finally, a good choice for cb is very important and has been extensively
studied in the context of distribution-based SLS solvers [1,2,3]—however, mainly
on random k−SAT problems. With hard combinatorial formulas usually not
having uniform clause lengths, the original YalSAT [8] automatically configures
cb as a function of the maximum length of all clauses. This is no longer suitable
when XOR constraints are added: For one thing, it is not clear whether the length
of native XORs should be considered in the same way as the one of clauses. For
another, when translated into CNF, the length of the resulting clauses depends
on the encoding. To facilitate a thorough evaluation, we thus decided to re-expose
cb as a parameter in xnfSAT.

Now there is one remaining issue with YalSAT, which initially was very helpful
to show the general usefulness of SLS on the MM-Challenge-1 benchmarks [21],
but would prevent a clear analysis of the contribution of native XORs to the
algorithm. In its original version [8], YalSAT changes strategy after each restart
interval10. This can help find good settings for a broad range of instances and
thus is supposed to increase overall robustness. On the negative side, it obfus-
cates what exactly contributes to a successful run by possibly causing hard to

10 A detailed explanation of strategies in YalSAT is out of the scope of this paper.



XOR Local Search for Boolean Brent Equations 11

predict, unknown interactions. In preliminary experiments, we still had strategies
switched on. Implementing XOR support in xnfSAT with strategies significantly
improved performance (cf. Figure 1), but we soon realized that it is hard to tell
if this effect was really just because of the XORs and not due to some hidden
interaction with a complex strategy—this could then prevent the same approach
to work with other solvers. We thus decided to disable all strategies and to in-
stead figure out which were the individual components that contributed to the
good performance on MM-Challenge-1. As a side effect, the resulting version of
xnfSAT became much faster. However, note that our goal was not to overtune
to a specific benchmark class nor should this be considered our contribution—
instead, the aim was to simplify the algorithm. As our results in Table 1 show,
adding native XOR support on top of this much simpler, strategy-free version,
still significantly improves performance and we can now conjecture that this is
indeed due to our hybrid implementation. The changes we made by switching
off strategies:

– Caching is always on, i.e. after a restart the algorithm will pick a previous
local minimum. (Had a small effect.)

– cb is now fixed and never modified during run. (Had a medium effect.)
– Weights wk for different clause lengths are now exposed as a parameter and

never modified during run. (Had a large effect.)
– The initial assignment is now always 0 . . . 0. (Had the largest effect.)

5 Experiments

We benchmark xnfSAT on MM-Challenge-1. These instances are hard for CDCL,
and best known performance on them has been achieved by SLS [21]. We compare
several encodings:

– original, handcrafted XNF (before conversion to CNF)
– CNF with linear XOR l n constraints and cutting number n ∈ [3, 8]
– CNF with pooled XOR p n constraints and cutting number n ∈ [3, 8]
– reconstructed XNF as extracted from CNF by cnf2xnf11

Running on different CNF variants allows us to observe the impact of the
choice of XOR encoding on performance. Running on both handcrafted and
extracted XNF allows us to verify that the cnf2xnf outputs perform adequately
compared to hand-written formulas. Note that the runtime of cnf2xnf on these
instances is negligible, around 0.3s per formula. All benchmark formulas involve
a significant amount (more than 700) of XORs or their clausal encodings.

Parameter choices are crucial to the performance of SLS solvers. We optimize
parameter classes outlined in Section 4: the break coefficient cb, the weight wX

assigned to XOR constraints, and the weights wk assigned to clauses of length k.
In preliminary experiments with the strategy-based version described in Sec-

tion 4, we first searched for optimal values of cb and wX on the 4-cut pooled CNF

11 The CNF encoding was generated by using XOR p 4 on the handcrafted XNF.



12 Nawrocki, Liu, Fröhlich, Heule, and Biere

(recall that it was conjectured optimal [37]) and on the original XNF. On both
formulas, we sampled cb in the range [1.5, 5.5]. On XNF, we also sampled wX in
[2, 8]. These ranges were observed to contain most acceptable values. On CNF,
the break constant was sampled with a step size of 0.25—on XNF, a step size
of 1.0 was used for both parameters due to the higher computational resource
requirements of the two-dimensional (cb, wX) grid. We found that the average
best-performing cb value for all instances is around 2.5. Interestingly, this does
not change with the addition of XOR constraints. The best-performing wX is
around 5.0. The strategy-based versions will not be discussed in detail, but the
runtime CDF of the best configuration (with cb = 2.5, wX = 5.0) on CNF and
XNF is plotted in Figure 1 for comparison.

For our full experiments, we then switched off strategies and fixed cb = 2.5
as well as wX = 5.0, next sampling wk for k ∈ [2, 8] (there are no clauses
of other lengths) on every variant of the instances. The sampled ranges varied
as we analyzed preliminary experiments but tended to be within [2, 5]. This
roughly corresponds to the range that was previously used by the strategies in
the original YalSAT. However, these values are now fixed and do not change
after each restart, making the solver much simpler. Having sampled a broad
range of values for wk, we decided to go for w2 = w3 = 2, w4 = w5 = 4.5,
and w6 = w7 = w8 = 5.0 for all encodings, aside from the 3-cut one, where
we chose w3 = 4.5 for reasons that we will explain later. While this setting was
not necessarily optimal for each instance, the overall results were solid12—recall
that our goal was not to perfectly tune every single formula, but to show that
the underlying algorithm profits from adding native XOR support. Note that
we invested significant computational resources into optimizing CNF weights in
order to ensure that our results persist even against well-tuned CNF encodings.

We ran all benchmarks on the Lonestar 5 cluster of Texas at Texas Advanced
Computing Center, which has Xeon E5-2690 processors with 24 hardware threads
per node. Each variant of each instance was attempted 8× 24 = 192 times (for
192 runs) with a timeout of 1000s. Performance is measured by three metrics:
the percentage of instances solved within our timeout, the average number of
variable megaflips (flips×106) before reaching the solution, and the average time
to solution (in seconds). In Table 1, these are abbreviated by frac, Mflips

and time, respectively. In addition, to gain more insights into how the specific
encoding of XOR constraints impacts performance, we measured the percentage
of flips spent on auxiliary variables (aux) for the CNF instances.

Results

Figure 1 shows the overall results of our experiments, plotting a runtime CDF of
what we consider to be the most interesting configurations. For each encoding, we
show the configuration (i.e., choice of parameters) that performed best regarding
the overall number of solved instances with that encoding. In general, hardness
of the individual instances did not differ a lot among the various encodings and

12 In the final version, we will replace this note by a link to the full experimental data.



XOR Local Search for Boolean Brent Equations 13

0 200 400 600 800 1,000
0

200

400

600

800

1,000

1,200

runtime

so
lv

ed
in

st
a
n

ce
s

Extracted XNF

Manual XNF

Manual XNF w/ strategies

Pooled, 6-cut CNF

Pooled, 8-cut CNF

Pooled, 7-cut CNF

Pooled, 5-cut CNF

Linear, 5-cut CNF

Linear, 8-cut CNF

Pooled, 4-cut CNF

Linear, 7-cut CNF

Linear, 6-cut CNF

Pooled, 4-cut CNF w/ strategies

Linear, 3-cut CNF

Pooled, 3-cut CNF

Linear, 4-cut CNF

Fig. 1. Runtime CDF of xnfSAT performance on various encodings and solver versions.

parameter configurations, i.e., easy instances or hard instances for one setting
were also easy or hard, respectively, for all other settings.

We can see that the XNF-based solver outperforms all CNF versions by a
huge margin for both the handcrafted encoding as well as the reconstructed
XNF. In particular, it takes only 200 seconds for the XNF version to solve
approximately the same number of instances as the best CNF configuration.

Furthermore, both XNF versions perform roughly equally—this confirms that
cnf2xnf was successful in extracting the XORs and shows that the resulting
structure is not negatively affected in any way.

Next, we can take a closer look at the different CNF encodings. One trend
seems to be that performance on MM-Challenge-1 increases with larger cutting
numbers, reaching peak at 6. In particular, the 4-cut encoding that we initially
conjectured to be optimal turned out to perform worse than higher cutting
numbers, with just the 3-cut encoding being worse. Note that the 4-cut encoding
was used for initially creating the publicly available CNF representation of the
MM-Challenge-1 benchmark set and for first solving it using YalSAT [21]. This
points towards another central benefit of our native XOR representation, which
we have not explicitly discussed so far: while the optimal cutting number turned
out to be 6, we do not need to care about finding that out since XNF still
outperforms it.

Regarding CNF encodings, there is some mild evidence that the proposed
pooled mode is generally better than the linear mode. While this is not true for
the 3-cut encoding, we think that this might be a special case that could also be
influenced by other factors. Notably, the original XNFs only contain clauses of
length 2 and 3. After encoding the instances into CNF, new clauses of length n



14 Nawrocki, Liu, Fröhlich, Heule, and Biere

Table 1. Performance of xnfSAT on benchmarked instances at the optimal settings:
CNF (cb = 2.5, w2 = w3 = 2, w6 = 5) and XNF (cb = 2.5, w2 = w3 = 2, wX = 5).

MM-23-* frac aux Mflips time frac aux Mflips time frac Mflips time

4-4-4-4-1 76.6 7.8 280.8 67.4 99.5 19.8 31.3 8.2 100.0 0.4 0.1
2-2-2-2-A 94.3 4.1 602.6 154.6 100.0 12.0 245.3 72.7 100.0 55.9 15.6
2-2-2-2-D 79.2 3.2 1171.8 299.6 99.0 10.0 345.7 105.7 100.0 77.1 22.0
2-2-2-3-4 85.4 3.8 967.1 234.6 99.5 11.1 430.0 122.3 100.0 269.0 73.1
2-2-2-2-C 60.4 3.4 1174.1 297.6 85.4 9.7 652.9 192.8 98.4 332.6 90.9
2-2-2-4-B 12.5 4.5 2020.1 487.9 30.7 11.2 1748.8 515.0 42.7 1648.9 432.6
2-2-2-2-B 2.1 4.8 2703.6 676.0 12.5 13.3 1756.5 529.5 41.1 1574.6 429.7
2-2-2-2-M 0.5 3.1 1182.2 316.3 0 – – – 29.2 1516.4 450.3
2-2-2-2-3 1.6 3.8 1543.5 385.6 5.7 11.3 2118.0 612.8 23.4 1439.7 392.3
2-2-2-4-A 0 – – – 0 – – – 2.1 2943.1 835.0

Formula Linear, 6-cut CNF Pooled, 6-cut CNF Extracted XNF

will be introduced for the n-cut encoding. As a result, the 3-cut encoding is the
only one having to use the same weight for original 3-clauses as well as for clauses
representing CNF-encoded XORs. Yet again, this points to another benefit of
using native XORs: for formulas other than in MM-Challenge-1, it may well be
the case that clauses in the original XNF have lengths above 3. Thus, even for
n-cut encodings with n > 3, there is no guarantee that the clauses representing
CNF-encoded XORs can be weighted differently from the original clauses.

Looking at Table 1, we can see a detailed analysis of the best-performing
linear CNF, pooled CNF, and the XNF version. We chose to display the extracted
XNF version because in problems without handcrafted XNF, this could still be
obtained using cnf2xnf. The XNF version outperforms both CNF encodings
across all benchmarks.

6 Conclusion

Combining clausal and XOR reasoning has frequently been looked at in the past.
However, rarely so in the context of SLS solvers. With many possible applica-
tions, particularly in the domain of cryptography [4,5,18,31] or for approximate
model counting [37], progress in this area is certainly of interest.

We argued why CNF encodings of XOR constraints can hinder the perfor-
mance of SLS solvers and, next to presenting the pooled CNF encoding, advocate
for a hybrid representation that allows clauses as well as native XOR constraints.
We thus proposed to standardize a format that we call XNF, being a natural ex-
tension of the CNF DIMACS format, in order to further support research in that
direction. To enable broader use, we also developed the tools cnf2xnf and extor

to find and extract XOR constraints in CNF formulas, convert them into XNF,
and to allow reconstructing the solution for the original formula afterwards.
We then proceeded by presenting our main contribution, a hybrid SLS solver



XOR Local Search for Boolean Brent Equations 15

called xnfSAT. Our detailed experimental evaluation on the matrix multiplica-
tion challenge benchmarks [21] showed that xnfSAT solves XNF representations
way faster than the corresponding CNF representations, thereby confirming the
benefit of supporting native XOR constraints and pushing the state-of-the-art on
these instances. As further side results, we presented several other evaluations,
providing insights into possible effects that various different CNF encodings as
well as parameter settings might have on the performance of SLS solvers.

We hope that our contributions further spark community interest in hybrid
SAT solving for clauses and XORs, and expect our results to generalize to other
instances with XOR constraints. There are certainly many possible directions of
relevance, some of those related to the present work:

While xnfSAT implements support for various clause selection heuristics [1],
we sticked to the default setting, using unfair breadth first search during our
evaluation. Note that all those clause selection heuristics were originally devel-
oped for pure CNF-based solvers. Nevertheless, preliminary experiments showed
that changing the clause selection heuristic can affect the performance of our
solver. For future work, it might be interesting to look in more detail at new
heuristics which allow treating clauses and XORs in a different manner.

We also noted that using a starting assignment of 0 . . . 0 was important and
performed much better than random initialization for the benchmarks we con-
sidered. However, this does not necessarily mean that 0 . . . 0 is already optimal.
Besides, other problem classes could benefit from different initial assignments.
Thus, another interesting direction of research could go into the direction of
combining the approach used by NLocalSAT [41] with xnfSAT or with hybrid
representations in general.

As we saw in Section 5, the CNF encoding using a cutting number of 3
performed worse compared to the other CNF representations. One reason might
be due to the fact that the formulas originally already contain clauses of length
3, but also the XOR constraints are mapped to clauses of this length. While it is
likely that the two kinds of clauses should be treated differently, both are assigned
the same weight w3. To address this, individual clause weighting heuristics as
part of other solvers [2,39] could be of use. Beyond that, more sophisticated
approaches [36] could potentially also be adapted to find individual weights.

Finally, it would also be interesting to look at whether pure CNF-based
CDCL solvers can profit from different encodings of XOR constraints, e.g., using
the pooled mode in contrast to a standard linear encoding.

Acknowledgements

The authors acknowledge the Texas Advanced Computing Center (TACC) at
The University of Texas at Austin for providing HPC resources that have con-
tributed to the research results reported within this paper. The work is also sup-
ported by the National Science Foundation (NSF) under grant CCF-2010951,
Austrian Science Fund (FWF), NFN S11408-N23 (RiSE), and the LIT AI Lab
funded by the State of Upper Austria.



16 Nawrocki, Liu, Fröhlich, Heule, and Biere

References

1. Balint, A., Biere, A., Fröhlich, A., Schöning, U.: Improving implementation of
SLS solvers for SAT and new heuristics for k-sat with long clauses. In: Sinz, C.,
Egly, U. (eds.) Theory and Applications of Satisfiability Testing - SAT 2014 -
17th International Conference, Held as Part of the Vienna Summer of Logic, VSL
2014, Vienna, Austria, July 14-17, 2014. Proceedings. Lecture Notes in Computer
Science, vol. 8561, pp. 302–316. Springer (2014)

2. Balint, A., Fröhlich, A.: Improving stochastic local search for SAT with a new
probability distribution. In: Strichman, O., Szeider, S. (eds.) Theory and Applica-
tions of Satisfiability Testing – SAT 2010. pp. 10–15. Springer Berlin Heidelberg,
Berlin, Heidelberg (2010)

3. Balint, A., Schöning, U.: Choosing probability distributions for stochastic local
search and the role of make versus break. In: Cimatti, A., Sebastiani, R. (eds.)
Theory and Applications of Satisfiability Testing - SAT 2012 - 15th International
Conference, Trento, Italy, June 17-20, 2012. Proceedings. Lecture Notes in Com-
puter Science, vol. 7317, pp. 16–29. Springer (2012)

4. Bard, G.V.: Introduction: How to Use this Book, pp. 1–6. Springer US, Boston,
MA (2009)

5. Bard, G.V., Courtois, N.T., Jefferson., C.: Efficient methods for conversion and
solution of sparse systems of low-degree multivariate polynomials over GF(2) via
SAT-solvers. Cryptology ePrint Archive, Report 2007/024 (2007), https://eprint.
iacr.org/2007/024

6. Belov, A., Järvisalo, M., Stachniak, Z.: Depth-driven circuit-level stochastic local
search for SAT. pp. 504–509 (01 2011)

7. Biere, A.: Lingeling and friends entering the SAT Challenge 2012. In: Balint, A.,
Belov, A., Diepold, D., Gerber, S., Järvisalo, M., Sinz, C. (eds.) Proc. of SAT
Challenge 2012: Solver and Benchmark Descriptions. Department of Computer
Science Series of Publications B, vol. B-2012-2, pp. 33–34. University of Helsinki
(2012)

8. Biere, A.: CaDiCaL, Lingeling, Plingeling, Treengeling, YalSAT Entering the SAT
Competition 2017. In: Balyo, T., Heule, M., Järvisalo, M. (eds.) Proc. of SAT
Competition 2017 – Solver and Benchmark Descriptions. Department of Computer
Science Series of Publications B, vol. B-2017-1, pp. 14–15. University of Helsinki
(2017)

9. Biere, A.: CaDiCaL at the SAT Race 2019. In: Heule, M., Järvisalo, M., Suda, M.
(eds.) Proc. of SAT Race 2019 – Solver and Benchmark Descriptions. Department
of Computer Science Series of Publications B, vol. B-2019-1, pp. 8–9. University
of Helsinki (2019)

10. Bulygin, S., Buchmann, J.: Algebraic cryptanalysis of the round-reduced and side
channel analysis of the full printcipher-48. In: Lin, D., Tsudik, G., Wang, X. (eds.)
Cryptology and Network Security. pp. 54–75. Springer Berlin Heidelberg, Berlin,
Heidelberg (2011)

11. Cai, S., Luo, C., Su, K.: Ccanr: A configuration checking based local search solver
for non-random satisfiability. In: Heule, M., Weaver, S. (eds.) Theory and Ap-
plications of Satisfiability Testing – SAT 2015. pp. 1–8. Springer International
Publishing, Cham (2015)

12. Cai, S., Su, K.: Local search for boolean satisfiability with configuration checking
and subscore. Artif. Intell. 204, 75–98 (2013)

https://eprint.iacr.org/2007/024
https://eprint.iacr.org/2007/024


XOR Local Search for Boolean Brent Equations 17

13. Chakraborty, S., Meel, K.S., Vardi, M.Y.: A scalable approximate model counter.
In: Schulte, C. (ed.) Principles and Practice of Constraint Programming. pp. 200–
216. Springer Berlin Heidelberg, Berlin, Heidelberg (2013)

14. Chen, J.: Building a hybrid SAT solver via conflict-driven, look-ahead and XOR
reasoning techniques. In: Kullmann, O. (ed.) Theory and Applications of Satisfia-
bility Testing - SAT 2009, 12th International Conference, SAT 2009, Swansea, UK,
June 30 - July 3, 2009. Proceedings. Lecture Notes in Computer Science, vol. 5584,
pp. 298–311. Springer (2009)

15. Eén, N., Biere, A.: Effective preprocessing in SAT through variable and clause
elimination. In: Bacchus, F., Walsh, T. (eds.) Theory and Applications of Satisfi-
ability Testing, 8th International Conference, SAT 2005, St. Andrews, UK, June
19-23, 2005, Proceedings. Lecture Notes in Computer Science, vol. 3569, pp. 61–75.
Springer (2005)

16. Fazekas, K., Biere, A., Scholl, C.: Incremental inprocessing in SAT solving. In:
Janota, M., Lynce, I. (eds.) Theory and Applications of Satisfiability Testing -
SAT 2019 - 22nd International Conference, SAT 2019, Lisbon, Portugal, July 9-12,
2019, Proceedings. Lecture Notes in Computer Science, vol. 11628, pp. 136–154.
Springer (2019)

17. Fröhlich, A., Biere, A., Wintersteiger, C.M., Hamadi, Y.: Stochastic lo-
cal search for Satisfiability Modulo Theories. In: Proceedings of AAAI.
AAAI (January 2015), https://www.microsoft.com/en-us/research/publication/
stochastic-local-search-for-satisfiability-modulo-theories/

18. Gwynne, M., Kullmann, O.: On SAT representations of XOR constraints. In:
Dediu, A., Mart́ın-Vide, C., Sierra-Rodŕıguez, J.L., Truthe, B. (eds.) Language
and Automata Theory and Applications - 8th International Conference, LATA
2014, Madrid, Spain, March 10-14, 2014. Proceedings. Lecture Notes in Computer
Science, vol. 8370, pp. 409–420. Springer (2014)

19. Heule, M.J.H.: SmArT solving: tools and techniques for satisfiability solvers. Ph.D.
thesis, Delft University of Technology, Netherlands (2008), http://resolver.tudelft.
nl/uuid:d41522e3-690a-4eb7-a352-652d39d7ac81

20. Heule, M., van Maaren, H.: Aligning cnf- and equivalence-reasoning. p. 145–156.
SAT’04, Springer-Verlag, Berlin, Heidelberg (2004)

21. Heule, M.J.H., Kauers, M., Seidl, M.: Local search for fast matrix multiplication.
CoRR abs/1903.11391 (2019), http://arxiv.org/abs/1903.11391

22. Heule, M.J.H., Kauers, M., Seidl, M.: New ways to multiply 3×3-matrices. J. Symb.
Comput. 104, 899–916 (2021). https://doi.org/10.1016/j.jsc.2020.10.003, https://
doi.org/10.1016/j.jsc.2020.10.003

23. Heule, M.J.H., Kullmann, O., Marek, V.W.: Solving and verifying the boolean
pythagorean triples problem via cube-and-conquer. CoRR abs/1605.00723
(2016), http://arxiv.org/abs/1605.00723

24. Ishtaiwi, A., Thornton, J., Sattar, A., Pham, D.N.: Neighbourhood clause weight
redistribution in local search for sat. In: van Beek, P. (ed.) Principles and Practice
of Constraint Programming - CP 2005. pp. 772–776. Springer Berlin Heidelberg,
Berlin, Heidelberg (2005)

25. Järvisalo, M., Biere, A.: Reconstructing solutions after blocked clause elimination.
In: Strichman, O., Szeider, S. (eds.) Theory and Applications of Satisfiability Test-
ing - SAT 2010, 13th International Conference, SAT 2010, Edinburgh, UK, July
11-14, 2010. Proceedings. Lecture Notes in Computer Science, vol. 6175, pp. 340–
345. Springer (2010)

https://www.microsoft.com/en-us/research/publication/stochastic-local-search-for-satisfiability-modulo-theories/
https://www.microsoft.com/en-us/research/publication/stochastic-local-search-for-satisfiability-modulo-theories/
http://resolver.tudelft.nl/uuid:d41522e3-690a-4eb7-a352-652d39d7ac81
http://resolver.tudelft.nl/uuid:d41522e3-690a-4eb7-a352-652d39d7ac81
http://arxiv.org/abs/1903.11391
https://doi.org/10.1016/j.jsc.2020.10.003
https://doi.org/10.1016/j.jsc.2020.10.003
https://doi.org/10.1016/j.jsc.2020.10.003
http://arxiv.org/abs/1605.00723


18 Nawrocki, Liu, Fröhlich, Heule, and Biere

26. Järvisalo, M., Heule, M., Biere, A.: Inprocessing rules. In: Gramlich, B., Miller,
D., Sattler, U. (eds.) Automated Reasoning - 6th International Joint Conference,
IJCAR 2012, Manchester, UK, June 26-29, 2012. Proceedings. Lecture Notes in
Computer Science, vol. 7364, pp. 355–370. Springer (2012)

27. Knuth, D.E.: The Art of Computer Programming, Volume 4, Fascicle 6: Satisfia-
bility. Addison-Wesley Professional, 1st edn. (2015)

28. Kuehlmann, A., Paruthi, V., Krohm, F., Ganai, M.K.: Robust boolean reason-
ing for equivalence checking and functional property verification. IEEE Trans. on
Computer-Aided Design of Integrated Circuits and Systems 21(12), 1377–1394
(2002)

29. Kyrillidis, A., Shrivastava, A., Vardi, M.Y., Zhang, Z.: Fouriersat: A fourier
expansion-based algebraic framework for solving hybrid boolean constraints (2020)

30. Kyrillidis, A., Vardi, M.Y., Zhang, Z.: On continuous local BDD-based search for
hybrid SAT solving (2020)

31. Leventi-Peetz, A., Zendel, O., Lennartz, W., Weber, K.: CryptoMiniSat switches-
optimization for solving cryptographic instances. In: Berre, D.L., Järvisalo, M.
(eds.) Proceedings of Pragmatics of SAT 2015 and 2018. EPiC Series in Computing,
vol. 59, pp. 79–93. EasyChair (2019), https://easychair.org/publications/paper/
5g6S

32. Luo, C., Cai, S., Wu, W., Su, K.: Double configuration checking in stochastic local
search for satisfiability. pp. 2703–2709 (01 2014)

33. Pham, D.N., Thornton, J., Sattar, A.: Building structure into local search for
SAT. In: Veloso, M.M. (ed.) IJCAI 2007, Proceedings of the 20th International
Joint Conference on Artificial Intelligence, Hyderabad, India, January 6-12, 2007.
pp. 2359–2364 (2007), http://ijcai.org/Proceedings/07/Papers/380.pdf

34. Selman, B., Kautz, H., Cohen, B.: Local search strategies for satisfiabil-
ity testing. Cliques, Coloring, and Satisfiability DIMACS Series in Dis-
crete Mathematics and Theoretical Computer Science p. 521–531 (1996).
https://doi.org/10.1090/dimacs/026/25

35. Soos, M., Gocht, S., Meel, K.S.: Tinted, detached, and lazy CNF-XOR solving
and its applications to counting and sampling. In: Lahiri, S.K., Wang, C. (eds.)
Computer Aided Verification - 32nd International Conference, CAV 2020, Los An-
geles, CA, USA, July 21-24, 2020, Proceedings, Part I. Lecture Notes in Computer
Science, vol. 12224, pp. 463–484. Springer (2020)

36. Soos, M., Kulkarni, R., Meel, K.S.: Crystalball: Gazing in the black box of SAT
solving. In: Janota, M., Lynce, I. (eds.) Theory and Applications of Satisfiability
Testing - SAT 2019 - 22nd International Conference, SAT 2019, Lisbon, Portugal,
July 9-12, 2019, Proceedings. Lecture Notes in Computer Science, vol. 11628, pp.
371–387. Springer (2019)

37. Soos, M., Meel, K.S.: BIRD: Engineering an efficient CNF-XOR SAT solver and
its applications to approximate model counting. In: AAAI. pp. 1592–1599. AAAI
Press (2019), http://dblp.uni-trier.de/db/conf/aaai/aaai2019.html#SoosM19

38. Soos, M., Nohl, K., Castelluccia, C.: Extending SAT solvers to cryptographic prob-
lems. In: Kullmann, O. (ed.) Theory and Applications of Satisfiability Testing -
SAT 2009, 12th International Conference, SAT 2009, Swansea, UK, June 30 - July
3, 2009. Proceedings. Lecture Notes in Computer Science, vol. 5584, pp. 244–257.
Springer (2009)

39. Thornton, J., Pham, D.N., Bain, S., Jr., V.F.: Additive versus multiplicative clause
weighting for SAT. In: McGuinness, D.L., Ferguson, G. (eds.) Proceedings of the
Nineteenth National Conference on Artificial Intelligence, Sixteenth Conference

https://easychair.org/publications/paper/5g6S
https://easychair.org/publications/paper/5g6S
http://ijcai.org/Proceedings/07/Papers/380.pdf
https://doi.org/10.1090/dimacs/026/25
http://dblp.uni-trier.de/db/conf/aaai/aaai2019.html#SoosM19


XOR Local Search for Boolean Brent Equations 19

on Innovative Applications of Artificial Intelligence, July 25-29, 2004, San Jose,
California, USA. pp. 191–196. AAAI Press / The MIT Press (2004), http://www.
aaai.org/Library/AAAI/2004/aaai04-031.php

40. Tseitin, G.S.: On the complexity of derivation in propositional calculus. Automa-
tion of Reasoning p. 466–483 (1983)

41. Zhang, W., Sun, Z., Zhu, Q., Li, G., Cai, S., Xiong, Y., Zhang, L.: NLocalSAT:
Boosting local search with solution prediction. Proceedings of the Twenty-Ninth
International Joint Conference on Artificial Intelligence (Jul 2020)

http://www.aaai.org/Library/AAAI/2004/aaai04-031.php
http://www.aaai.org/Library/AAAI/2004/aaai04-031.php

	XOR Local Searchfor Boolean Brent Equations

