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Abstract
In the field of hardware and software verification, many applications require
to determine satisfiability of first-order-logic with respect to one or more back-
ground theories, also referred to as Satisfiability Modulo Theories (SMT). The
majority of these applications relies on bit-precise reasoning as provided by SMT
solvers for the quantifier-free theory of fixed-size bit-vectors, often combined with
arrays and uninterpreted functions. Fixed-size bit-vectors provide a natural way
to model circuits and programs and arrays allow to reason about memory and
array data structures. Uninterpreted functions, on the other hand, are useful as
abstraction for irrelevant or too complex details of a system.
In this thesis, our main focus is on SMT procedures for bit-vector logics. In

the context of quantifier-free bit-vector formulas in SMT, current state-of-the-
art is a flattening technique referred to as bit-blasting, where the input formula
is eagerly translated into propositional logic and handed to an underlying SAT
solver. While efficient in practice, in particular for increasing bit-widths, bit-
blasting may not scale if the input size can not be reduced sufficiently during
preprocessing. In this thesis, we propose alternative approaches for bit-vector
logics based on local search that do not require bit-blasting or an underlying SAT
solver and yield a substantial gain in performance, in particular in combination
with bit-blasting within a sequential portfolio setting.
In the context of combining quantifier-free bit-vectors with arrays and unin-

terpreted functions, current state-of-the-art SMT procedures are based on lazy
rather than eager techniques. One such lazy technique is the Lemmas on Demand
(LOD) approach, which refines full candidate models of a formula abstraction
with lemmas until convergence. Full candidate models, however, include irrele-
vant parts of the input formula, which may introduce unnecessary overhead. In
this thesis, we propose an optimization of LOD where focusing refinement on
relevant parts of the input formula considerably improves performance.
We implemented all of our techniques within our SMT solver Boolector, which

contributed to Boolector winning several tracks of recent SMT competitions.
Boolector supports the quantifier-free theories of fixed-size bit-vectors, arrays
and uninterpreted functions and natively handles non-recursive first-order lambda
terms. It is a complex piece of software with correctness, robustness and high
performance as its key requirements. and in this thesis, we address automated
testing and debugging techniques for SMT solver development that we consider
as crucial to reach this goal.
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Zusammenfassung
Eine Vielzahl an Applikationen im Bereich der formalen Verifikation von Hard-
ware und Software erfordert das Lösen des Erfüllbarkeitsproblem der Prädikaten-
logik erster Stufe unter Berücksichtigung einer oder mehrerer Theorien, auch
bekannt als Satisfiability Modulo Theories (SMT), und setzt dafür auf SMT-
Prozeduren (sogenannte SMT-Solver) für die quantorenfreien Theorien der Bit-
vektoren, Arrays und nicht-interpretierten Funktionen.
Die bisher gebräuchliste und in der Praxis effizienteste Technik für das Lösen

von quantorenfreien Bitvektorformeln ist “Bit-Blasting”, das eine gegebene Formel
in ein Entscheidungsproblem der Aussagenlogik (SAT) übersetzt und an einen
SAT-Solver delegiert. Für hohe Bitweiten kann es jedoch sein, dass Bit-Blasting
nicht skaliert wenn es dem Präprozessor nicht gelingt die gegebene Formel ausre-
ichend zu vereinfachen bevor sie nach SAT übersetzt wird. Wir stellen eine Meth-
ode vor, Bitvektorformeln in SMT ohne Bit-Blasting zu lösen, die auf lokaler
Suche basiert, und insbesondere in Kombination mit Bit-Blasting in einem so
genannten sequentiellen Portolio eine erhebliche Leistungsverbesserung erzielt.
Aktuell gebräuchliche Prozeduren für das Lösen von Bitvektorformeln, die

Arrays und nicht-interpretierte Funktionen enthalten, sind im Gegensatz zu Bit-
Blasting keine direkten Übersetzungen nach SAT, sondern basieren auf Ansätzen,
die eine Abstraktion der gegebenen Formel iterativ verfeinern. Ein Beispiel
dafür ist die “Lemmas on Demand” (LOD) Technik, die vollständige Modelle
der Formelabstraktion mit Lemmas verfeinert bis Erfüllbarkeit oder Nichterfüll-
barkeit nachgewiesen werden kann. Vollständige Modelle enthalten jedoch auch
irrelevante Teile der Formelabstraktion, was unnötigen Overhead erzeugen kann.
Wir stellen eine Optimierung von LOD vor, die nur relevante Teile der Forme-
labstraktion berücksichtigt und damit die Leistung deutlich verbessert.
Wir haben alle unsere Techniken in unserem SMT-Solver Boolector imple-

mentiert, was erheblich dazu beigetragen hat, dass Boolector mehrere Tracks
der SMT Competitions der letzten Jahre gewonnen hat. Boolector ist ein SMT-
Solver für die quantorenfreien Theorien der Bitvektoren, Arrays und nicht-inter-
pretierten Funktionen und bietet darüberhinhaus native Unterstützung für nicht-
rekursive Lambdaterme erster Ordnung. Boolector ist ein komplexes Tool, das
in erster Linie als Backend eingebunden wird, und als Hauptanforderungen Kor-
rektheit, Robustheit und hohe Performanz erfüllen muss. Wir stellen automa-
tisierte Test- und Debugging-Techniken für die SMT-Solverentwicklung vor, die
wesentlich dazu beigetragen haben diese Ziele zu erreichen.
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Chapter 1

Introduction

In the field of hardware and software verification, many applications require more
expressive logics than propositional logic. Frequently, the most natural way to
formulate their problems is to translate them into first-order logic with respect
to some background theories, also referred to as Satisfiability Modulo Theories
(SMT), which allows reasoning within certain domains. As a consequence, they
typically rely heavily on SMT solvers, which provide efficient and highly special-
ized procedures tailored to the background theories in question. The majority
of verification applications requires bit-precise reasoning, often combined with
arrays and uninterpreted functions. Fixed-size bit-vectors provide a natural way
to reason about circuits and programs, while arrays allow to model memory and
actual array data structures. Uninterpreted functions, on the other hand, can
be useful as an abstraction for irrelevant or too complex details of a system.

In this thesis, we focus on SMT procedures for bit-vector logics, in partic-
ular for the quantifier-free theory of fixed-size bit-vectors. Current state-of-
the-art procedures for determining the satisfiability of quantifier-free bit-vector
formulas in SMT typically rely on a flattening technique generally referred to
as bit-blasting (e.g., [80]), where the input formula is eagerly translated into
propositional logic and delegated to a SAT solver. However, as shown in [79],
translating a quantifier-free bit-vector formula into SAT is in general exponential
in the formula size, and deciding the SMT problem for the quantifier-free theory
of fixed-size bit-vectors is in general NEXPTIME-complete. While bit-blasting is
efficient in practice, its performance entirely depends on sufficiently simplifying
the input prior to handing it to the underlying SAT solver, and in particular for
increasing bit-widths it usually does not scale well. In this thesis, we explore
and propose alternative approaches for solving quantifier-free bit-vector formu-
las based on local search that do not require bit-blasting and yield a substantial
gain in performance in a sequential portfolio combination with bit-blasting.

Bit-blasting is a typical example of eager SMT techniques, which encode
an SMT formula into an equisatisfiable propositional formula and hand it to
a SAT solver back-end. So-called lazy SMT approaches, on the other hand,
usually tightly integrate a SAT solver to enumerate truth assignments of an
abstraction of the input formula. These assignments are then checked for con-
sistency by one ore more theory solvers, which guide the SAT solver through its
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Chapter 1. Introduction

search. The majority of current state-of-the-art SMT solvers employ lazy proce-
dures [11,42,49,53,91]. In this thesis, we propose an optimization of such a lazy
technique, the Lemmas on Demand (LOD) procedure as introduced in [96] for
the quantifier theory of fixed-size bit-vectors with arrays and uninterpreted func-
tions, extended by non-recursive first-order lambda terms. Lemmas on Demand
as in [96] is an abstraction refinement technique similar to Counterexample-
Guided Abstraction Refinement (CEGAR) in the context of model-checking [43]
and refines full candidate models of a bit-vector abstraction of the input for-
mula with lemmas until convergence. Checking the consistency of a full candi-
date model, however, may introduce unnecessary overhead since it may include
parts of the input formula that are irrelevant under the current assignment. By
focusing refinement on relevant parts of the input formula, our optimization
considerably improves performance of the LOD procedure.

We implemented all our techniques in our SMT solver Boolector [91], which
contributed to winning several tracks of the SMT competitions 2014, 2015 and
2016. Boolector is a specialized SMT solver for the quantifier-free theories of
fixed-size bit-vectors, arrays and uninterpreted functions. It further natively
handles non-recursive first-order lambda terms. Unsurprisingly, Boolector is a
complex piece of software and consists of more than 80k lines of code, our testing
framework and testing tools not included. Since SMT solvers usually serve as
back-end to some application, the level of trust in this application strongly de-
pends on the level of trust in the underlying SMT solver. As a consequence, the
key requirements for SMT solvers are correctness, robustness and high perfor-
mance. To ensure correctness and robustness of an SMT solver, solver developers
usually rely on traditional testing techniques such as unit tests and regression
testing. However, due to the complex nature of SMT solver engines, this alone
is often insufficient [32]. In this thesis, we address automated testing and de-
bugging techniques integrated into the development process of Boolector that
we consider crucial for SMT solver development in general.

1.1 Outline and Contributions

This thesis consists of two parts. The second part includes four peer-reviewed
Papers A-D of which the author of this thesis is the main author. These papers
have been included as originally published, with the exception of using a consis-
tent layout and bibliography, and introducing minor fixes (as explicitly stated
at the beginning of each paper chapter) that do not affect the content.

The first part of this thesis is structured as follows. In Chapter 2 we first give
a high-level introduction to the background of this thesis. In Chapters 3-7 we
then introduce, discuss and extend the contributions of Papers A-D.

4



1.1 Outline and Contributions

Paper A [93] Improving Local Search for Bit-Vector Logics in SMT with Path
Propagation with Mathias Preiner, Armin Biere and Andreas Fröhlich. In Pro-
ceedings of the 4th International Workshop on Design and Implementation of
Formal Tools and Systems (DIFTS 2015), affiliated to the 15th International
Conference on Formal Methods in Computer Aided Design (FMCAD 2015),
10 pages, Austin, TX, USA, 2015.
In Paper A we first reimplement the SLS for SMT approach of [58] in our SMT

solver Boolector, and then improve this approach by introducing an additional
propagation-based strategy that takes full advantage of the word-level structure.
The basic idea to extend the technique in [58] with a propagation-based strategy
was a result of discussions of all authors. Based on this idea, A. Niemetz de-
veloped the propagation-based strategy proposed in Paper A. All techniques in
Paper A were described and implemented in Boolector by A. Niemetz. The ex-
perimental analysis was performed and described by A. Niemetz. The co-authors
further contributed with discussions and proof reading Paper A.

Paper B (extends [92]) Propagation Based Local Search for Bit-Precise Rea-
soning with Mathias Preiner and Armin Biere. Accepted for the Special Issue
on Recent Topics in Satisfiability Modulo Theories of the International Jour-
nal on Formal Methods in System Design (FMSD), to appear. This paper is
an extended version of [92], published in Part I of the Proceedings of the 28th
International Conference on Computer Aided Verification (CAV 2016), pages
179–186, Toronto, ON, Canada, 2016. Paper B as included in this thesis is a
preprint version and may slightly differ from the final version.
In Paper B, we present a simple and complete propagation-based local search

variant of the procedure proposed in Paper A. The procedure in Paper B was de-
veloped and implemented in Boolector by A. Niemetz. The completeness proof
presented in Paper B was a joint effort of A. Niemetz and A. Biere. A. Biere
further contributed an example to illustrate that focusing on inverse values only
when down-propagating assignments is incomplete, and as a result, A. Niemetz
and A. Biere developed the notion of consistent values. The techniques in Pa-
per B were mainly described by A. Niemetz, with contributions of A. Biere. The
experimental evaluation was performed and described by A. Niemetz, with con-
tributions by M. Preiner. The co-authors further contributed with discussions
and proof reading Paper B.

Paper C [90] Turbo-Charging Lemmas on Demand with Don’t Care Reasoning
with Mathias Preiner and Armin Biere. In Proceedings of the 14th International
Conference on Formal Methods in Computer Aided Design (FMCAD 2014),
pages 179–186, Lausanne, Switzerland, 2014.
In Paper C we introduce an optimization of the lemmas on demand (LOD)

procedure as implemented in Boolector, which improves performance by fo-
cusing on relevant parts of an inconsistent candidate model for refinement,
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Chapter 1. Introduction

only. We propose a justification-based and a dual-propagation-based strategy
and compare the performance of both techniques. The basic idea of our dual-
propagation-based strategy was developed by A. Niemetz and M. Preiner. The
dual-propagation-based procedure was developed based on this idea and imple-
mented in Boolector by A. Niemetz. A. Biere contributed the idea to com-
pare our dual-propagation-based strategy to a justification-based approach. Our
justification-based strategy was then developed by A. Niemetz and M. Preiner,
and implemented in Boolector by M. Preiner. All techniques in Paper C were
described by A. Niemetz. The experimental evaluation was run by M. Preiner
and the experimental results were analysed and described by A. Niemetz. The
co-authors further contributed with discussions and proof reading Paper C.

Paper D [89] ddSMT: A Delta Debugger for the SMT-LIB v2 Format with
Armin Biere. In Proceedings of the 11th International Workshop on Satisfiabil-
ity Modulo Theories (SMT’13), affiliated to the 16th International Conference
on Theory and Applications of Satisfiability Testing (SAT 2013), pages 36–45,
Helsinki, Finland, 2013.
In Paper D we present ddSMT, a delta debugger for the SMT-LIB v2.0 lan-

guage, which aims to overcome limitations of previous delta debugging tech-
niques for the SMT-LIB v1 language [32]. The tool and all techniques in Paper D
were developed, implemented and described by A. Niemetz. The experimental
evaluation was performed and described by A. Niemetz. The co-author con-
tributed with discussions and proof reading Paper D.
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Chapter 2

Background

Since Cook proved in 1971 that the satisfiability problem of propositional logic
(SAT) is NP-complete [46], it has been established as the classical NP-complete
problem and is considered as one of the most fundamental problems of computer
science. Assuming that P 6= NP, procedures to solve the SAT problem (so-
called SAT solvers) may therefore have exponential runtime in the worst case.
However, in practice, state-of-the-art SAT solvers are efficient and easily tackle
industrial-strength problems involving millions of variables.
For many applications, in particular in the field of formal methods for hard-

ware and software development, it is required to formulate the input problem
in more expressive logics than SAT. These applications are typically interested
in satisfiability of first-order logic (FOL) with respect to some background the-
ories, also referred to as Satisfiability Modulo Theories (SMT), where the back-
ground theories fix the interpretation of certain predicate and function symbols.
The problem of satisfiability of FOL is in general undecidable, however, some
(fragments of) first-order theories are efficiently decidable. In this thesis, we
focus on decision procedures for one such decidable fragment, the quantifier-free
theory of fixed-size bit-vectors (often combined with arrays and uninterpreted
functions), which is of particular importance since it provides a natural way
to reason about circuits, memory, programs and array data structures. Proce-
dures for solving SMT, so-called SMT solvers, are efficient in practice and serve
as back-end for applications in academia and industry. The most prominent
example is the whitebox fuzz testing tool SAGE at Microsoft [62]. Other use
cases include symbolic execution and test case generation (e.g., [40,61,78,101]),
model checking (e.g., [9, 69]), extended static checking and program verification
(e.g., [1, 10, 44, 45, 56]), compiler verification (e.g., [84, 85]) and theorem proving
(e.g., [27]). This chapter gives a high level introduction to SAT and SMT and
provides an overview of the background of this thesis.

2.1 SAT

Propositional logic, or Boolean logic, reasons about the truth values of proposi-
tions and is defined over Boolean variables, the Boolean operators negation (¬)
and conjunction (∧), and the Boolean constants true (1 or >) and false (0 or ⊥).
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Chapter 2. Background

All other Boolean operators can be constructed using {¬, ∧}, e.g., a disjunction
over two variables a and b can be expressed as a ∨ b = ¬(¬a ∧ ¬b).
Given a Boolean formula φ defined over the Boolean variables {a1, . . . , an},

the SAT problem is to decide if there exists an assignment of truth values to
the variables such that φ(a1, . . . , an) = 1. If this is the case, we say that φ is
satisfiable and refer to the set of truth assignments that satisfy φ as satisfying
assignment or model. Else, we say that φ is unsatisfiable.

Example 2.1. As an example, consider formula φ1 = (¬a ⇔ b) ∧ (a ⇒ b).
A satisfying assignment for φ1 is {a 7→ 0, b 7→ 1}. However, if we rule out
assignment b 7→ 1, we yield the unsatisfiable formula (¬a⇔ b) ∧ (a⇒ b) ∧ ¬b.

A majority of decision procedures for SAT expect the input formula to be in
conjunctive normal form (CNF), which is a conjunction of disjunctions defined
over the Boolean operators {¬, ∧,∨}. Formula φ1, e.g., can be directly translated
into CNF by expressing (¬a ⇔ b) as (a ⇒ b) ∧ (b ⇒ a), which then yields
φ1 = (a ∨ b) ∧ (¬a ∨ ¬b) ∧ (¬a ∨ b). Note that any arbitrary Boolean formula
defined over the Boolean operators {¬, ∧,∨} can be converted into CNF with
at most linear growth in formula size via Tseitin transformation by introducing
auxiliary variables for the Boolean operators [102].
The majority of current state-of-the-art SAT procedures are based on Conflict-

Driven Clause Learning (CDCL) [100], which is a powerful extension of the
resolution-based Davis-Putnam-Logemann-Loveland (DPLL) procedure [47]. In
this thesis, we will not directly address procedures for SAT. However, SAT
solvers, and in particular CDCL-based SAT solvers, often serve as back-end
to SMT procedures. For a more in depth introduction to SAT and SAT solv-
ing techniques, refer to the Handbook of Satisfiability [25] or Knuth’s Chapter
7.2.2.2. of The Art of Computer Programming on Satisfiability [77].

2.2 SMT

First-order logic extends propositional logic with quantifiers, first-order variables,
and predicate and function symbols. We focus on quantifier-free fragments of
FOL, in particular the first-order theories of quantifier-free fixed-size bit-vectors
in the context of SMT. In the following, we adopt the notions of FOL and first-
order theories as defined in [25,28] and the SMT-LIB standard v2 [13].
A first-order theory T is defined by a signature Σ and a set of axioms A.

A signature Σ is a set of predicate and function symbols, and since FOL extends
propositional logic, Σ also includes propositional symbols. All symbols in Σ are
associated with a sort and an arity greater or equal 0, e.g., the Boolean operator ¬
has sort Bool and arity 1. We generally refer to 0-arity symbols as constants,
and in the context of quantifier-free theories we call 0-arity propositional symbols
Boolean variables. The axioms inA are constructed from symbols in Σ and define
the interpretation of all non-constant symbols in Σ. We refer to symbols that

8



2.2 SMT

are not in Σ as uninterpreted symbols. Note that Σ is not necessarily finite, e.g.,
the theory of fixed-size bit-vectors has an infinite signature.

Given a quantifier-free Σ-formula ψ, i.e., a formula constructed from symbols
in Σ, the SMT problem is to decide if there exists an assignment of domain values
to its constant, predicate and function symbols such that ψ evaluates to true
under the interpretation of theory T . If this is the case, we say that formula ψ
is T -satisfiable (or satisfiable), and else T -unsatisfiable (or unsatisfiable). We
refer to the set of assignments that satisfy ψ as a T -model (or model) of ψ.

Procedures for SMT are referred to as SMT solvers and are usually divided into
so-called eager and lazy approaches [99]. Eager approaches usually apply various
theory-level simplification techniques before translating a given Σ-formula into
an equisatisfiable propositional formula, which is then handed to a SAT solver.
As a consequence, they can only be applied to theories that can be reduced to
propositional logic, at the cost of a possibly considerable blow-up in formula
size. The most prominent example of an eager approach is bit-blasting, e.g., [80],
which is currently state-of-the-art for the theory of quantifier-free fixed-size bit-
vectors. While efficient in practice, bit-blasting may suffer from an exponential
blow-up [79] and usually does not scale well for increasing bit-widths. Note that
in the past it has often been assumed that the SMT problem for the quantifier-
free theory of fixed-size bit-vectors as defined in the SMT-LIB standard is NP-
complete. However, it is actually NEXPTIME complete [79].

In Paper A and B we will discuss alternative approaches based on local search
that solve bit-vector problems on the theory-level and do not require bit-blasting
or an underlying SAT solver. Starting with a random but complete initial as-
signment, local search procedures aim to locally improve the current state until
a solution is found. As a consequence, they are in general incomplete in the
sense that it is not possible to determine unsatisfiability. In Paper A we pro-
pose a propagation-based extension of an existing stochastic local search (SLS)
procedure for SMT [58], which lifts SLS for SAT (e.g., [72]) from the bit-level
to the theory-level and mainly relies on “guessing” guided by heuristics. A more
detailed introduction to SLS for SMT is given in Paper A.

In contrast to eager SMT approaches, which directly translate an input prob-
lem into SAT, lazy techniques usually iteratively refine an abstraction of the
input formula and tightly integrate a SAT solver and one or more theory solvers.
The SAT solver typically enumerates truth assignments of a Boolean formula
abstraction while the theory solvers check these assignments for consistency and
guide the SAT solver through its search. The majority of state-of-the-art SMT
solvers implement lazy approaches [11, 42, 49, 53, 91]. They are usually either
based on the DPLL(T) framework [94], which lifts the DPLL procedure from
SAT to SMT, or employ an abstraction refinement technique similar to the
Counterexample-Guided Abstraction Refinement (CEGAR) approach for model
checking introduced in [43].

9



Chapter 2. Background

Bit-Width
Operator SMT-LIB Arity Output Input

− bvneg 1 w w - - Two’s complement
∼ bvnot 1 w w - - Bit-wise negation

[j : i] extract 1 j − i+ 1 w w - Extraction (w ≥ j ≥ i ≥ 1)
= = 2 1 w w - Equality
& bvand 2 w w w - Bit-wise conjunction
< bvult 2 1 w w - Unsigned less than
<< bvlshl 2 w w w - Logical shift left
>> bvlshr 2 w w w - Logical shift right
+ bvadd 2 w w w - Addition
· bvmul 2 w w w - Multiplication
÷ bvudiv 2 w w w - Unsigned division

mod bvurem 2 w w w - Unsigned remainder
◦ concat 2 p+ q p q - Concatenation

if-then-else ite 3 w 1 w w Conditional

Table 2.1: The set of bit-vector operators in ΣBV .

In Paper C, we will focus on an optimization of such a lazy technique, the
Lemmas on Demand (LOD) procedure for the quantifier-free theories of fixed-
size bit-vectors, arrays and uninterpreted functions [96]. Lemmas on Demand as
in [96] is a CEGAR-style SMT procedure that enumerates truth assignments of
a bit-vector abstraction of the input formula and refines this assignments with
lemmas until convergence. A more detailed overview of the LOD procedure
in [96] is given in Paper C.

2.2.1 The Theory of Fixed-Size Bit-Vectors

A fixed-size bit-vector is defined as a finite sequence of bits of length w ∈ N.
The length of a bit-vector is usually referred to as bit-width and bit-vectors with
different widths correspond to different sorts. We call 0-arity bit-vector symbols
bit-vector variables and bit-vector values bit-vector constants, and usually repre-
sent bit-vector constants as binary numbers. Further, for the sake of simplicity
we interpret Boolean expressions as bit-vector expressions of bit-width one and
define bit indices as starting with 1 rather than 0.
A bit-vector expression n of width w is denoted as n[w] and we will omit

the subscript if the context allows. We refer to the i-th bit of n[w] as n[w][i]
(or simply n[i]) and denote bit ranges from index i to j as n[j : i] with i ≤ j.
We interpret n[1] as the least significant bit (LSB) and n[w] as the most sig-
nificant bit (MSB) of n[w], and when representing a bit-vector value as binary
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number we identify the far left bit as the MSB and the far right bit as the LSB.
Note that we sometimes use decimal values for bit-vector constants as short
hand, e.g., 2[4] corresponds to the binary value 0010.
We define the quantifier-free theory of fixed-size bit-vectors TBV according

to the SMT-LIB standard v2 [13, 14]. The signature ΣBV of theory TBV is
infinite and introduces the set of interpreted bit-vector predicate and function
symbols listed in Table 2.1. For convenience, bit-vector logics usually introduce
additional bit-vector operators, e.g., signed alternatives to the predicate and
function symbols in Table 2.1. All bit-vector operators not listed in Table 2.1
can be expressed with the symbols defined in ΣBV .
Note that the semantics of arithmetic bit-vector operators of bit-width w cor-

respond to the semantics of the respective arithmetic operators in N modulo 2w,
e.g., 1[2] + 3[2] = 2[2]. Further, rather than introducing uninterpreted functions,
we define an unsigned division ÷[w] by 0 to return the greatest possible value
2w− 1, i.e., n÷ 0 = ∼ 0. Similarly, n mod 0 = n.

2.3 Bit-Blasting in Boolector

Bit-blasting is a flattening technique that eagerly translates a quantifier-free
bit-vector formula into an equisatisfiable propositional formula as described in,
e.g., [80]. Bit-blasting as implemented in our SMT solver Boolector [91] first con-
structs an intermediate And-Inverter-Graph (AIG) [81] circuit representation of
a quantifier-free bit-vector formula by mapping each bit-vector operation to a
corresponding AIG circuit. Each AIG is simplified via local two-level AIG rewrit-
ing as described in [31] during construction. The resulting AIG representation
of the bit-vector formula is then converted into CNF via Tseitin transforma-
tion and handed to the underlying SAT solver. Boolector currently supports
Lingeling [23], PicoSAT [20] and MiniSat [55] as SAT solver back-end.
In this thesis, we will not directly address bit-blasting techniques. However,

bit-blasting as implemented in Boolector will serve as a reference for the local
search approaches presented in Papers A and B.
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Chapter 3

Paper A: Improving Local
Search for Bit-Vector Logics in
SMT with Path Propagation
The most common approach for deciding SMT for the quantifier-free theory of
fixed-size bit-vectors is bit-blasting, usually in combination with sophisticated
rewriting and simplification techniques to simplify the input before eagerly re-
ducing it to propositional logic. While bit-blasting is current state-of-the-art
and efficient in practice, it may suffer from an exponential blow-up [79] and in
general does not scale well for large bit-widths. To avoid this problem, in [58],
Fröhlich et al. lifted SLS from the SAT to the SMT level and proposed an SLS
procedure for bit-vector logics that does not reduce the input problem to SAT
but operates directly on the theory level, with promising initial results. However,
their approach mostly simulates bit-level local search by focusing on single bit
flips rather than fully exploiting the advantages of working on the theory level.
In Paper A we first reimplement the SLS for bit-vector logics approach in [58]
in our SMT solver Boolector and confirm its effectiveness. We then improve
the technique presented in [58] by introducing an additional propagation-based
strategy that takes full advantage of the word-level structure. Our results sug-
gest a combination of our techniques with a state-of-the-art bit-blasting engine
within a sequential portfolio setting [104].

3.1 Discussion

In Paper A we observed that initializing the random number generator (RNG)
of Boolector with different seeds has almost no influence on the number of solved
instances of our SLS configurations. This is, however, not true and was caused
by a bug in Boolector where passing a seed via the command line was ignored
and instead the default value 0 was used.
In the following, we evaluate randomization effects of our reimplementation

of [58] and the propagation-based techniques presented in Paper A. We use the
same identifiers for configurations that correspond to a configuration in Paper A
and consider the following configurations.
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(1) Bsls The SLS engine of the current version 2.4 of Boolector, option-
ally with random walks enabled (+rw).

(2) Bprop The SLS engine of the current version 2.4 of Boolector with our
propagation-based strategy enabled. This configuration uses propagation
moves only, optionally with conflict recovery via random walk (+frw).

We use the same benchmark set as in Paper A, which consists of all 16436
benchmarks with status sat and unknown of the QF_BV category of the SMT-
LIB [14] except those proved by Boolector’s bit-blasting engine to be unsatisfiable
within 1200 seconds. The current version 2.4. of Boolector, however, determined
that 210 of these benchmarks are actually unsatisfiable. In order to be able to
compare the results in Paper A with the results in this section, we still include
these unsatisfiable instances and use the full benchmark set for our evaluation.
All experiments were run on the same hardware setup as in Paper A (a cluster

of 30 nodes of 2.83 GHz Intel Core 2 Quad machines running Ubuntu 14.04.5
LTS) with the same time and memory limits. In case of a time or memory out,
a penalty of the given time limit was added to the total CPU time.
In order to evaluate the influence of using different seeds for the RNG of

Boolector, we ran a batch of 11 runs per configuration, one with default seed 0
and ten with different random seeds. Figure 3.1 and 3.2 show the results for
configurations Bsls, Bsls+rw, Bprop and Bprop+frw in terms of number of solved
instances with a time limit of 10 and 1 seconds as box-and-whiskers plots, with
the values of the runs with default seed 0 indicated as a red diamond.
Overall, with a time limit of 10 seconds, configuration Bsls outperforms the

other three configurations and increases the number of solved instances compared
to the results of Paper A by approximately 11%. This is due to an optimization
of the score computation of Boolector’s SLS engine, which had a huge impact on
performance. However, Bsls outperforms our propagation-based strategy only
on three benchmark families (sage, Sage2, and stp_samples), and in particular
families sage and Sage2 are overrepresented in our benchmark set since they
make up more than 80% of its instances. In Chapter 4 we will analyse why the
SLS strategy of configuration Bsls performs better than our propagation-based
strategy on these particular benchmark families.
As observed in Paper A, enabling random walks (+rw) does not improve

performance for configuration Bsls, and using random walks rather than regular
SLS moves when recovering from a conflict (+frw) for configuration Bprop does
not increase the number of solved instances within ten seconds but delivers the
best results of all four configurations with a time limit of one second.
In terms of randomization effects, with an inter-quartile range (IQR) of 75 in-

stances and a median absolute deviation (MAD) of 53.4, configuration Bsls seems
to be the least robust with respect to randomization effects within a time limit of
ten seconds. Our propagation-based strategy Bprop, on the other hand, seems
to be least affected with an IQR of 24 instances and a MAD of 22.2. When de-
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Figure 3.1: Number of solved instances and randomization effects over 11 runs
of configurations Bsls, Bsls+rw, Bprop and Bprop+frw with different seeds for
the RNG and a time limit of 10 seconds.
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Figure 3.3: Runtime comparison of Bsls and Bprop+frw with the bit-blasting
configuration Bb with a time limit of 10 (top) and 1 (bottom) seconds. Note
that for configurations Bsls and Bprop+frw we used the runs with default seed 0.

creasing the time limit to one second, the configuration most affected is Bprop
(with an IQR of 56 instances and a MAD of 51.9) and the configuration least
affected is Bprop+frw (with an IQR of 11 instances and a MAD of 11.9).
In terms of runtime, as illustrated in Figure 3.3, both when considering a

time limit of 10 and of 1 seconds, compared to the bit-blasting engine Bb our
propagation-based strategy Bprop+frw shows a considerably better improve-
ment in performance than configuration Bsls. This is in particular interesting
since Bsls solves considerably more instances than Bprop+frw within a time
limit of 10 seconds (albeit with a time limit of 1 seconds it is vice versa).
As concluded in Paper A, these results suggest that Bprop+frw is the best

choice for a sequential portfolio combination with bit-blasting where we assume
that Bprop is run for one second prior to falling back to the bit-blasting engine.
In Paper A, we performed a virtual experiment simulating such a combination,
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with promising results. Since then we implemented a sequential portfolio config-
uration in Boolector that allows to combine the SLS-based techniques described
in Paper A with the bit-blasting engine of Boolector. However, since using ac-
tual runtime as a limit for the strategy run prior to bit-blasting is unreliable for
practical reasons, we use metrics that do not require to measure time. For our
evaluation, we consider the following configurations.

(1) Bb The bit-blasting engine of the current version 2.4 of Boolector.

(2) Bb+Bsls-virtual-Xs A virtual sequential portfolio combination of
Bb and Bsls where we assume that configuration Bsls is run exactly X
seconds prior to invoking Bb.

(3) Bb+Bsls-X The sequential portfolio combination of Bsls and Bb as
implemented in Boolector 2.4 where configuration Bsls is run with a
limit of X explorations of neighboring states.

(4) Bb+Bprop+frw-virtual-Xs A virtual sequential portfolio combi-
nation of Bb and Bprop+frw where we assume that Bprop+frw is run
exactly X seconds prior to invoking Bb.

(5) Bb+Bprop+frw-X The sequential portfolio combination of
Bprop+frw and Bb as implemented in Boolector 2.4 where configuration
Bprop+frw is run with a limit of X propagations.

We run all our experiments with our sequential portfolio combinations with a
time limit of 1200 seconds. Further, we used configurations Bsls and Bprop+frw
with default seed 0 for the RNG.

Figure 3.4 compares the performance of the bit-blasting configuration Bb with
the virtual configuration Bb+Bsls-virtual-1s and the sequential portfolio combi-
nations Bb+Bsls-1k, Bb+Bsls-10k and Bb+Bsls-100k with a time limit of 1200
seconds. Overall, a virtual configuration Bb+Bsls-virtual-1s improves runtime
by 4% and solves 31 instances more than Bb. Within a real sequential portfolio
setting, configuration Bb+Bsls-10k shows the best performance and even out-
performs Bb+Bsls-virtual-1s in the number of solved instances (+53 compared
to Bb). However, in terms of runtime it introduces too much overhead for in-
stances that can not be solved by Bsls within the given limit which implies that
using the number of explored neighboring states as a limit is not good enough.
Finding a better metric as a limit for Bsls is left to future work.

Figure 3.5 compares the runtime of Bb and the virtual and actual sequential
portfolio combinations Bb+Bprop+frw-virtual-1s and Bb+Bprop+frw-10k with
a time limit of 1200 seconds. We chose 10k propagation steps as a limit for con-
figuration Bb+Bprop+frw-X since in Paper B this delivered the best results for
a sequential portfolio combination of Bb and the propagation-based local search
procedure presented in Paper B. Overall, a virtual combination Bb+Bprop+frw-
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Figure 3.4: Runtime comparison of Bb versus Bb+Bsls-virtual-1s, Bb+Bsls-1k,
Bb+Bsls-10k and Bb+Bsls-100k with a time limit of 1200 seconds.
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virtual-1s improves runtime by 6% and solves 51 instances more than Bb. A real
sequential portfolio combination Bb+Bprop+frw-10k comes very close to the
virtual simulation, with a runtime improvement of more than 5% and 52 more
solved instances than Bb. In comparison to Bb+Bsls-10k, Bb+Bprop+frw-10k
solves one instance less but improves runtime performance by more than 3%.
Note that our propagation-based approach as presented in Paper A still relies

on brute-force randomization and restarts as in [58] to achieve completeness.
Further, it can get stuck when down-propagation assignments, in which case
it has to fall back on regular SLS moves (or random walks as in configuration
Bprop+frw) to recover. This is due to the fact that inverse computation as
in Paper A is too restrictive since it introduces short cuts for some operators,
e.g., when choosing the simplest rather than some random but valid solution.
Relying on inverse computation alone is actually too restrictive in general and
may inadvertently prune the search space. In Paper B, we propose a complete
propagation-based local search technique that simplifies and extends our ap-
proach in Paper A and avoids this problem. Further, it neither relies on regular
SLS moves nor brute-force randomization or restarts to achieve completeness.
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Chapter 4

Paper B: Propagation Based
Local Search for Bit-Precise
Reasoning
In Paper A, we extended SLS for bit-vector logics in SMT as presented in [58]
with an additional strategy based on propagating assignments from the outputs
to the inputs. This significantly improves performance. However, to achieve
completeness we still have to rely on brute-force randomization and restarts as
in [58]. Further, down-propagating assignments as in Paper A can get stuck,
in which case we have to fall back on the SLS techniques described in [58], and
focusing on inverse value computation only when down-propagating assignments
is too restrictive in general since it may inadvertently prune the search.
In Paper B, we present a simple and complete propagation-based local search

variant of the procedure proposed in Paper A. Our approach relies entirely on
propagating assignments and does not need to fall back on SLS techniques,
brute-force randomization or restarts to achieve completeness. To decide on
propagation paths, we extend the notion of bit-level observability don’t cares as
in the context of Automatic Test Pattern Generation (ATPG) [82] by introducing
the notion of essential inputs, which lifts the concept of controlling inputs to the
word-level. To down-propagate assignments, we formalize the ATPG concept
of backtracing and lift it from the bit-level to the word-level, which overcomes
the problem of too restrictive inverse value computation. We implemented our
propagation-based local search strategy and combine it in a sequential portfolio
combination with bit-blasting in our SMT solver Boolector. Our experimental
results show that our techniques yield a substantial gain in performance. Note
that we first presented our propagation-based local search procedure in [92].
Paper B is an extended and revised version of [92].

4.1 Discussion

The results in Paper B show that overall, our propagation-based strategy (con-
figuration Pw) outperforms the SLS for SMT approach as introduced in [58]
and implemented in Boolector (configuration Bsls). However, we observed that
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in comparison to Bsls, configuration Pw seems to struggle on certain instances
of the sage, Sage2 and stp_samples benchmark families. In Paper B we iden-
tified 461 such benchmarks, and since recently introducing an optimization of
the score computation of Bsls which considerably improved its performance (see
Chapter 3) this number even increased to 777. Note that families sage and Sage2
are overrepresented since they make up more than 80% of our benchmark set.
In Paper B we concluded that the better performance of Bsls on these partic-

ular benchmarks seems to be due to the fact that Pw is oblivious to bits that
can be simplified to constant values since it propagates target values towards
the inputs. Bsls, on the other hand, implicitly considers such constant bits since
it explores neighboring states of the current assignment by flipping input bits
and then computing a score that determines if a certain move brings the cur-
rent assignment closer to a satisfying assignment. As an example consider an
expression 0[4] ◦x[4] where the first four resulting bits are constant 0. Configura-
tion Bsls will try to flip bits of bit-vector variable x and will then decide on the
best move based on the resulting score. Our propagation-based strategy Pw, on
the other hand, may propagate a target value towards this expression that can
never be assumed, e.g., 11001111, in which case it will decide on move x = 1111
(since 1111 is a consistent value for x) and continue. However, in this particular
situation this seems to be disadvantageous.
In the current version 2.4 of Boolector we introduced a heuristic for the sce-

nario above, where we discard the down-propagated target value with a certain
probability if it can never be assumed by a concatenation expression and rather
flip a random bit of the current assignment of the non-constant expression (x in
our example above). We evaluated the effects of this heuristic by running a batch
of 11 runs of our propagation-based configuration Pw with different seeds for the
RNG (one with default seed 0 and ten with different random seeds) on the same
benchmark set as in Paper B (16436 instances) with the same time and memory
limits (10 seconds and 7 GB). Overall, by introducing the heuristic described
above the performance of configuration Pw in the number of solved instances in-
creased by more than 1%. This suggests that introducing knowledge on constant
bits into our propagation-based strategy will indeed increase performance.
In an additional experiment, we evaluated the models of the 777 benchmarks

on which our propagation-based strategy Pw seems to have a disadvantage over
configuration Bsls, and we identified an interesting pattern. For 80% out of
all 777 instances, the assignment of more than 50% of the inputs was 0, and
for more than 30% of the non-zero inputs only one bit was set to 1. Since
Bsls starts with an initial assignment where all inputs are set to 0, this means
that its focus on single bit flips quickly moves the initial assignment towards
a satisfying assignment. For almost 50% of these instances, Bsls required even
less than 50 moves. Configuration Pw starts with the same initial assignment
as Bsls, however, the majority of these 777 benchmarks contain a considerable
amount of expressions with constant bits, and as mentioned above this seems to
handicap Pw. These results suggests that for this set of benchmarks the strategy
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Figure 4.1: Number of solved instances and randomization effects over 11 runs
with different seeds for the RNG for each configuration Bsls, Bsls-1, Pw and
Pw-1 with a time limit of 10 seconds.
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of Bsls is clearly advantageous over Pw and in particular profits from an initial
assignment where all inputs are set to 0. Hence, in an additional experiment we
initialized the inputs with all bits set to 1 rather than 0 (configurations Bsls-1
and Pw-1) and evaluated the performance of Bsls, Bsls-1, Pw and Pw-1 on the
full benchmark set of Paper B over 11 runs with different seeds (again, one with
default seed 0 and ten with different random seeds). The results in terms of
solved instances within a time limit of 10 seconds are illustrated in Figure 4.1 as
box-and-whiskers plots with the values of the runs with default seed 0 indicated
as red diamond. Overall, configuration Bsls obviously profits considerably from
initializing the inputs with 0 since in comparison to Bsls the performance of
Bsls-1 drops by almost 10%. In particular on the set of 777 benchmarks where
Bsls had an advantage over our propagation-based strategy Pw, initializing the
inputs with 1 resulted in Bsls-1 only solving 97 instances (12.5%) within a time
limit of 10 seconds. Our propagation-based strategy, on the other hand, is much
more robust than Bsls with respect to the input initialization value and seems
to overall even profit from initializing the inputs with 1.
Overall, our results suggest that introducing knowledge on constant bits into

our propagation-based approach will indeed considerably increase performance.
Further, exploiting knowledge about conflict scenarios as described in the ex-
ample above may allow to introduce strategies such as lemma generation to
obtain an algorithm that allows to also prove unsatisfiability. We leave these
improvements to future work.
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Chapter 5

Paper C: Turbo-Charging
Lemmas on Demand with Don’t
Care Reasoning

The LOD procedure as implemented in Boolector [93] is a lazy SMT technique
for the quantifier-free theories of fixed-size bit-vectors, arrays and uninterpreted
functions, which natively and lazily handles non-recursive first-order lambda
terms. It is a CEGAR-based model-driven abstraction refinement technique that
iteratively enumerates TBV -models (the candidate models) of a ΣBV -abstraction
of the input formula (the bit-vector skeleton) and refines this abstraction until
convergence. Each of these candidate models is a complete assignment of the bit-
vector skeleton and may include parts of the input formula irrelevant under the
current assignment. Consider, e.g., a bit-vector skeleton x[2] = y[2] ∨ a[2] > b[2]

of some input formula ψ and a candidate model {x 7→ 00, y 7→ 01, a 7→ 01,
b 7→ 00}, where the consistency of x and y with ψ is irrelevant since x = y is
unsatisfied. The cost for abstraction refinement of our LOD procedure, how-
ever, directly depends on the number of refinement iterations until convergence,
and as a consequence, producing refinements for irrelevant parts of the formula
abstraction may introduce unnecessary and costly overhead.
In Paper C we aim to reduce this overhead based on the notion of observability

don’t cares (e.g., [82]), i.e., parts of the formula abstraction irrelevant under the
current assignment. Our optimization improves the performance of our LOD
procedure by focusing on the relevant parts of an inconsistent candidate model
for refinement, only. We employ two different techniques to achieve this goal.
One is based on justification heuristics as in the context of ATPG [87], and the
other is inspired by dual propagation techniques in the context of QBF [64, 65].
Both optimizations are competitive and considerably reduce the number of re-
finement iterations until convergence. They outperform the LOD procedure
in [96] and perform equally well in terms of number of solved instances. In
terms of runtime, however, our dual-propagation-based technique introduces
considerably more overhead than our justification-based technique due to the
use of an additional (dual) SMT solver instance. Disregarding the dual solver
overhead, our dual-propagation-based technique considerably outperforms our

25



Chapter 5. Paper C: Turbo-Charging Lemmas on Demand with Don’t Care Reasoning

justification-based technique in terms of runtime. This suggests to adopt a more
eager dual propagation approach to render the dual solver overhead negligible,
which is rather involved and still left to future work.

5.1 Discussion

The LOD procedure as described in [96] serves as the base procedure for the opti-
mized techniques presented in Paper C. It implements an abstraction refinement
loop that generates lemmas lazily with strictly one lemma per iteration, i.e., only
for the first inconsistency of a candidate model encountered. A candidate model,
however, may contain multiple inconsistent assignments, even though some of
them usually directly influence each other. Generating and adding lemmas more
eagerly as proposed in [95], i.e., for more than one inconsistency of a candidate
model, considerably decreases the number of refinement iterations of the LOD
procedure. This consequently improves performance, however, at the possible
cost of a considerable increase in the overall number of lemmas generated.

As shown in Paper C, adding lemmas lazily as in [96] may produce a con-
siderable number of iterations where a lemma for a conflict in a part of the
formula abstraction irrelevant under the current assignment is generated. Since
such don’t care conflicts are not considered for abstraction refinement with our
justification- and dual-propagation-based techniques, refinement iterations that
cover a don’t care conflict are essentially skipped entirely. Adding lemmas more
eagerly as in [95], on the other hand, increases the probability that a refinement
iteration does not only cover don’t care conflicts but also conflicts in relevant
parts of the formula abstraction. As a consequence, this leaves less room for im-
provement for the optimization techniques described in Paper C. However, not
considering don’t care conflicts for abstraction refinement when adding lemmas
more eagerly may still be beneficial and increases performance. Further, since
the overall number of refinement iterations decreases considerably when adding
lemmas more eagerly, this also decreases the overhead introduced by the dual
solver instance for our dual-propagation-based optimization.

In the following, we combine the improved lemma generation techniques de-
scribed in [95] with our justification- and dual-propagation-based optimizations
in our SMT solver Boolector and evaluate the following base configurations.

(1) Btor The current version 2.4 of Boolector.

(2) Btor+ju The current version 2.4 of Boolector with justification-
based partial model extraction enabled.

(3) Btor+dp The current version 2.4 of Boolector with dual-propagation-
based partial model extraction enabled.
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5.1 Discussion

As in [95], we distinguish between three different lemma generation strategies,
depending on their level of eagerness:

(a) semi-eager (default)
The default strategy as implemented in configuration Btor, where in each
refinement iteration, lemmas for all independent conflicts of a candidate
model up to the first that is influenced by any of the others are added
to the formula abstraction.

(b) eager (el)
An eager strategy, where lemmas for all conflicts of a candidate model
are generated and added to the formula abstraction. We identify con-
figuration Btor with this strategy enabled as Btorel and use Btorel+ju
and Btorel+dp for configuration Btorel with our justification- and dual-
propagation-based optimization enabled.

(c) lazy (ll)
The original lemma generation strategy as described in [96] and em-
ployed in Paper C, where in each refinement iteration only the first
conflict encountered contributes to abstraction refinement. We iden-
tify configuration Btor with this strategy enabled as Btorll and use
Btorll+ju and Btorll+dp for configuration Btorll with our justification-
and dual-propagation-based optimization enabled. Note that configura-
tion Btorll in essence corresponds to an improved version of configuration
Boolectorba in Paper C.

We evaluate the configurations listed above on the full QF_ABV benchmark
set (15091 instances) of the SMT-LIB [14]. Our experiments were run on the
same hardware setup (a cluster with 30 nodes of 2.83 GHz Intel Core 2 Quad
machines running Ubuntu 14.04.5 LTS) with the same time and memory limit
(1200 seconds and 7 GB) as in Paper C. In case of a time or memory out, a
penalty of the given time limit was added to the total CPU time.

Table 5.1 summarizes the overall results of base configuration Btor in com-
bination with our justification- and dual-propagation-based optimizations on
benchmark set QF_ABV. It lists the number of solved instances (Solved), the
number of uniquely solved instances (U), time outs (TO), memory outs (MO),
total CPU time (Time), and the dual solver overhead (DS) introduced by our
dual-propagation-based optimization, if enabled. Overall, even when generating
lemmas more eagerly, enabling our justification-based optimization (Btor+ju)
still increases performance, in particular in terms of runtime. This is further
illustrated in Figure 5.1a. Our dual-propagation-based optimization Btor+dp,
on the other hand, performs slightly worse than Btor and Btor+ju due to the
overhead introduced by the dual solver instance, which is mainly responsible for
losing instances configuration Btor+ju is able to solve within the given time limit.
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Solver Solved U TO MO Time [s] DS [s]

Btor 15047 0 43 1 75076 -
Btor+ju 15049 1 39 3 73801 -
Btor+dp 15044 2 45 2 88067 18314

Table 5.1: Overall results of configurations Btor, Btor+ju and Btor+dp on the
QF_ABV benchmark set of the SMT-LIB [14].

Solver Solved LOD ITER Time [s] DS [s]

Btor 15039 349486 57233 21821 -
Btor+ju 15039 266427 57520 20599 -
Btor+dp 15039 296682 52708 28709 7707

Table 5.2: Results for configurations Btor, Btor+ju and Btor+dp on commonly
solved instances of the QF_ABV benchmark set of the SMT-LIB [14].

Solver Solved LOD ITER Time [s] DS [s]

Btorll+ju 15037 226428 169995 23985 -
Btor+ju 15037 257943 56775 18890 -

Btorel+ju 15037 315394 45878 21096 -

Btorll+dp 15007 170979 115598 42170 23824
Btor+dp 15007 197310 46596 19672 3595

Btorel+dp 15007 207418 41036 18729 2646

Table 5.3: Results for our justification- and dual-propagation-based optimiza-
tions with different strategies for lemma generation on commonly solved in-
stances of the QF_ABV benchmark set of the SMT-LIB [14].
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Figure 5.1: Runtime comparison of Btor, Btor+ju and Btor+dp on the full
benchmark set QF_ABV with a time limit of 1200 seconds.

Btor

B
to

r+
ju

1 10 100 1000 10000

1

10

100

1000

10000

(a) Btor vs. Btor+ju
Btor

B
to

r+
dp

1 10 100 1000 10000

1

10

100

1000

10000

(b) Btor vs. Btor+dp

Figure 5.2: Comparison of the number of generated lemmas of Btor, Btor+ju
and Btor+dp on commonly solved instances of benchmark set QF_BV.
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(a) Btor vs. Btor+dp with DS
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Figure 5.3: Runtime comparison of Btor vs Btor+dp on commonly solved in-
stances of benchmark set QF_BV with and without dual solver overhead (DS).
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As illustrated in Figure 5.1b, however, for a considerable number of instances
our dual-propagation-based optimization improves runtime despite introducing
additional overhead by the dual solver instance.
Table 5.2 illustrates the number of generated lemmas (LOD), the number of

refinement iterations (ITER) and the dual solver overhead (DS) for commonly
solved instances on set QF_ABV. In comparison to configuration Btor, our
justification-based optimization Btor+ju considerably decreases the number of
lemmas generated, however, at the cost of an increase in the overall number
of refinement iterations. Our dual-propagation-based optimization Btor+dp, on
the other hand, not only decreases the number of generated lemmas but also
the number of refinement iterations considerably. Figure 5.2 further illustrates
the number of generated lemmas of Btor+ju and Btor+dp in comparison to the
base configuration Btor on commonly solved instances of the QF_ABV set.
Table 5.3 shows the results for our justification- and dual-propagation-based

optimization techniques in combination with different lemma generation strate-
gies for commonly solved instances on the QF_ABV benchmark set. Overall,
when generating lemmas (more) eagerly, the number of refinement iterations
until convergence drops by 60-75%. In case of our dual-propagation-based op-
timization, the dual solver overhead even drops by 85-90%. The overhead in-
troduced by the dual solver, however, is still considerable. Figure 5.3 further
illustrates this by comparing the runtime of Btor and Btor+dp with and with-
out dual solver overhead on the commonly solved instances of set QF_ABV.
Overall, our results show that generating lemmas more eagerly leaves less room

for improvement for our optimization techniques. However, they still improve
performance, in particular in terms of runtime. When generating lemmas eagerly,
our dual-propagation-based technique introduces a considerable overhead due to
the use of an additional dual solver instance. Generating lemmas more lazily
significantly decreases this overhead. Introducing techniques to render the dual
solver overhead negligible is still left to future work.
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Chapter 6

Paper D: ddSMT: A Delta
Debugger for the SMT-LIB v2
Format

In Papers A-C, we presented techniques to improve state-of-the-art SMT proce-
dures for the theories of bit-vectors, arrays and uninterpreted functions. Imple-
menting such procedures within an SMT solver is a low-level engineering task,
with performance, correctness and robustness as its key requirements. State-of-
the-art SMT solvers are typically highly complex pieces of software and since
they usually serve as back-end to some application, the level of trust in this
application strongly depends on the level of trust in the underlying solver. Full
verification of SMT solvers, however, is difficult due to their complex nature and
still an open question. To ensure robustness, solver developers therefore usually
rely on traditional testing techniques such as unit and regression tests.
In [32], grammar-based black-box fuzz testing has been shown to be effective

to uncover bugs in SMT solvers, in particular in combination with delta de-
bugging tools for minimizing failure inducing input. An input fuzzer for some
language typically generates random but valid input in this language, and if this
input triggers faulty behavior of the system under test, minimizing this input as
much as possible while preserving its failure-inducing characteristics by means
of delta debugging enables the localization of failure-inducing code in a time
efficient manner. The delta debugger DeltaSMT presented in [32], is tailored to
quantifier-free logics in the previous version of the SMT-LIB language, the now
obsolete SMT-LIB v1 [97]. As a consequence, it is incompatible with the current
version SMT-LIB v2 [13], which is a major upgrade of its predecessor. Further
limiting is the fact that it employs a hierarchical minimization approach that in-
troduces too much overhead in terms of runtime and may even cause DeltaSMT
to not being able to minimize certain input files.
In Paper D, we present ddSMT, a delta debugger for the SMT-LIB v2.0 lan-

guage [15] that aims to overcome the limitations of DeltaSMT by employing a
different algorithmic approach. It provides grammar-based minimization strate-
gies with full support of all SMT-LIB v2 logics, and in particular handles macros,
annotations and term-level and command-level scoping. Our results confirm its

31



Chapter 6. Paper D: ddSMT: A Delta Debugger for the SMT-LIB v2 Format

effectiveness, and in the development process of Boolector, ddSMT is one of the
integral tools of our testing workflow.
Note that the SMT-LIB language is continuously evolving, and as a conse-

quence, ddSMT is a continuous work in progress. Recent changes to the SMT-
LIB language as defined in v2.5 of the SMT-LIB standard [13] are currently not
yet supported and left to future work.

6.1 Discussion

Delta debugging techniques are automated procedures that enable efficient local-
ization of faulty code by minimizing failure-inducing input. Grammar-based fuzz
testing tools have been shown to be effective to uncover bugs in SMT solvers [32],
in particular in combination with delta debugging tools such as ddSMT. How-
ever, they are entirely input-based.
In [5], model-based API fuzzing for SAT solvers was reported to be more

effective than input fuzzing, in particular in combination with option fuzzing. In
Chapter 7, we introduce a model-based API testing tool set for our SMT solver
Boolector and compare it to the input fuzzing approach presented in [32]. Our
results confirm the results in [5].
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Chapter 7

BtorMBT: A Model-Based API
Tester for Boolector

In [32], grammar-based black-box fuzz testing techniques have been shown to
be effective to uncover bugs in SMT solvers, in particular in combination with
automated delta debugging procedures for minimizing failure-inducing input.
In Paper D, we present such a procedure for the SMT-LIB v2 language [15].
Fuzz testing techniques as in [32] are entirely input-based and, as a consequence,
restricted to a certain input language. State-of-the-art SMT solvers, however,
usually provide a rich application programming interface (API) as the direct
connection between an application and its solver back-end. This API often
introduces additional functionality not supported by the input language. As a
consequence, by merely generating randomized valid input sequences, it may not
be possible to test the full feature set an SMT solver actually provides.
In [5], the authors proposed to apply a model-based testing framework to SAT

solvers. This framework randomly generates valid sequences of API calls rather
than randomized valid input, and further allows to test all possible valid system
configurations by randomly setting and combining configuration options of the
solver. In case of an error, an API trace is generated and replayed by a ded-
icated trace interpreter to reproduce the undesired behavior. Delta debugging
techniques reduce an API error trace while preserving its failure-inducing char-
acteristics and enable to locate the cause of the error in a time efficient manner.
Applying this approach to the SAT solver Lingeling [23] yields convincing results,
and is in particular promising for other solver back-ends.
In this chapter, based on the results in [5] we introduce a model-based API

testing framework for our SMT solver Boolector. It consists of the model-based
API tester BtorMBT, the trace execution tool BtorUntrace, and the delta debug-
ger ddMBT, and is an integral part of the testing workflow in the development
process of Boolector, complemented by basic unit testing, a regression test suite
and parser testing tools (e.g., FuzzSMT [30] in combination with ddSMT to test
valid input, and the ddsexpr tool set [21] to test for robustness and correct error
handling). Since version 1.6, our model-based tester BtorMBT and our trace ex-
ecution tool BtorUntrace are shipped together with Boolector, and in particular
BtorMBT can be considered as continued work in progress while Boolector is
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under active development. Our model-based testing workflow improved consid-
erably since version 1.6 and our practical experience is extremely positive. Our
experimental results confirm the claim in [5] that model-based API testing in
particular in combination with delta debugging is effective for testing verification
back-ends.

7.1 Workflow

The core test case generation engine in our model-based testing framework is our
model-based API testing tool BtorMBT, which implements a model of Boolec-
tor’s API and generates valid sequences of API calls. In case that one of these
sequences causes an error, Boolector generates an API error trace, which al-
lows to replay and reproduce faulty behaviour with our trace execution tool
BtorUntrace. Our delta debugging tool ddMBT then minimizes such an API
error trace while preserving its fault-inducing characteristics when replayed with
BtorUntrace. Figure 7.1 describes the general workflow of our framework and
its components as follows.

Data Model Boolector, our system under test, is an SMT solver for the
quantifier-free theory of fixed-size bit-vectors, arrays, and uninterpreted func-
tions as defined in the SMT-LIB v2 [13], and natively supports the use of non-
recursive first-order lambda terms.

Option Model Boolector provides multiple solver engines, which are config-
urable via more than 70 options in total. All options and their default values
and value ranges can be queried via its API. BtorMBT identifies valid option
values based on these queries and defines invalid option combinations. Else, any
random combination of options is allowed.

API Model Boolector provides a rich public API with full access to the com-
plete feature set of the solver. It is available in C and Python, but since both
BtorMBT and BtorUntrace, which tightly integrate Boolector via its API, are
written in C, we will in the following focus on its C API, which consists of more
than 150 API functions. Figure 7.2 illustrates the API model of Boolector as im-
plemented in BtorMBT. It incorporates Boolector’s option model and the data
model as above, and will be described in more detail in Section 7.2.

BtorMBT Our model-based API testing tool BtorMBT generates test cases
as valid sequences of calls to Boolector’s API and implements the API model
illustrated in Figure 7.2. It aims to exploit the full feature set of Boolector as
available via its API. We will describe BtorMBT in more detail in Section 7.2.
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API Error Trace Boolector provides the possibility to trace all API calls
with their arguments into a dedicated trace file. Given such an API trace, the
trace execution tool BtorUntrace then replays the sequence of API calls listed in
the trace file and reproduces undesired behavior in case of an error. An example
of an API trace generated by Boolector is given in Figure 7.3. We will describe
API tracing and the trace in Figure 7.3 in Section 7.3 in more detail.

BtorUntrace The trace execution tool BtorUntrace allows to replay a se-
quence of API calls given an API trace file as above. We will describe BtorUn-
trace in Section 7.3 in more detail.

ddMBT Given an API Error trace file which logs a sequence of API calls
leading to undesired behavior of Boolector, the delta debugger ddMBT mini-
mizes the API trace while preserving this behavior reproduced via BtorUntrace.
We will describe ddMBT in more detail in Section 7.4.

7.2 Test Case Generation with BtorMBT

Our model-based API tester BtorMBT is a dedicated tool for testing random
configurations of Boolector. It is explicitly tailored to Boolector and supports
the quantifier-free theories of fixed-size bit-vectors, arrays and uninterpreted
functions, extended with non-recursive first-order lambda terms.

BtorMBT serves as the test case generation engine in our model-based testing
workflow and fully supports all functionality provided by Boolector via its API.
In contrast to input fuzzers such as FuzzSMT [30,32], which generate a random
but valid input file to be handed to the system under test, BtorMBT tightly
integrates Boolector via its C API and generates test cases in the form of valid
sequences of API calls. In case that an API sequence triggers an error, Boolector
produces an API error trace, which can then be replayed with BtorUntrace
for debugging purposes. BtorMBT further allows to test Boolector’s cloning
feature [91], which generates a disjunct copy of a Boolector instance, in a test
setting we refer to as shadow clone testing. We will describe shadow clone testing
in more detail in Section 7.2.2.

Note that Boolector makes heavy use of runtime assertions and provides means
to internally check key features of the solver. This includes model validation
for satisfiable instances, checking the inconsistency of the set of inconsistent
assumptions (also called failed assumptions [55]) for unsatisfiable instances when
incremental solving is enabled, and checks for Boolector’s cloning feature. Errors
triggered by BtorMBT therefore include failed internal checks, assertion failures,
segmentation faults, and any other kind of abort.
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Figure 7.1: General workflow of model-based API testing for Boolector.
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Figure 7.2: The API model of Boolector as implemented in BtorMBT.
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7.2.1 Architecture

The general architecture of BtorMBT is defined by a state machine implement-
ing the data, options and API Model of Boolector as illustrated in Figure 7.2.
Test case generation with BtorMBT is performed in rounds, each with a different
configuration of Boolector. One round corresponds to a sequence of states from
state New to state Delete and the states are defined as follows.

New In each round, a fresh instance of Boolector is generated. Further, all
parameters that influence formula size and structure such as probability dis-
tributions and maximum numbers for generating and releasing expressions are
(re)initialized with random values (within certain ranges).

Set Options Boolector provides multiple solver engines, with some of them re-
lying on an underlying SAT solver. As back-end SAT solver, Boolector supports
the solvers Lingeling [23], PicoSAT [20] and MiniSat [55]. BtorMBT randomly
chooses a solver engine and, if required, a SAT solver to use. The solver en-
gine is then configured by randomly choosing and setting configuration options
and their values within their predefined ranges. Note that option combinations
identified as invalid according to the option model of Boolector are explicitly
excluded. Further note that some options, e.g., incremental solving, are chosen
with higher probability than others, depending on their relevance.

Generate Initial Expressions After a new Boolector configuration and all
parameters that influence the formula size and structure have been set up, an
initial set of inputs and non-input expressions is generated. The set of inputs is
divided into randomly sized shares of uninterpreted functions, array variables,
and Boolean and bit-vector constants and variables. Non-input expressions are
randomly generated by combining inputs and already existing non-input expres-
sions until the maximum number of non-input expressions is reached. Note that
in case that the chosen solver engine only supports the quantifier-free theory of
fixed-size bit-vectors, only bit-vector expressions are generated.

Main After generating an initial set of expressions, in state Main a random
number of operations that influence the structure of the input formula is per-
formed in random order: (1) new expressions are generated, (2) existing expres-
sions are released, (3) and existing Boolean expressions are added to the input
formula as assertions and, in the incremental case, assumptions. Note that when
selecting expressions to generate new non-input expressions, in order to increase
expression depth, expressions from the initial set are chosen with lower proba-
bility. After finalizing the current input formula, BtorMBT randomly performs
various operations that operate on the current state of the input formula and
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possibly manipulate the current state of the Boolector instance e.g., simplifying
the input formula by means of rewriting and other techniques, or generating a
clone of the current Boolector instance. Next, BtorMBT randomly picks between
dumping the input formula (state Dump Formula) or determining its satisfiabil-
ity (state Sat). Note that the latter is chosen with higher probability.

Dump Formula Boolector allows to dump the current state of the input
formula (without assumptions) anytime during the solving process and supports
BTOR [34], SMT-LIB v2 [16] and AIGER [19] as output format. Depending on
the structure of the formula, either of these formats is chosen randomly. Note
that AIGER is a bit-blasted and-inverter-graph (AIG) representation of the in-
put formula and can therefore only be produced if it is a bit-vector formula
without uninterpreted functions, arrays and lambda terms. If the output format
is BTOR or SMT-LIB v2, the formula is dumped to a temporary file. This file is
then parsed into a temporary Boolector instance in order to check the dump for
errors. If the output format is AIGER, the formula is dumped to stdout without
checking for correctness since Boolector does not provide support for parsing
input files in AIGER format. Checking the correctness of AIGER dumps is left
to future work. Next, BtorMBT randomly picks between concluding the current
round (state Delete) and continuing (state Main) with equal probability.

Sat After setting up the current input, a call to determine its satisfiability
is issued. Boolector supports incremental solving under assumptions and, in
case of unsatisfiability, allows to determine the set of failed assumptions [55],
i.e., those assumptions that are inconsistent with the input formula. If failed as-
sumptions checking is enabled, the set of failed assumptions is internally checked
for inconsistency with the current input. In case of satisfiability, Boolector pro-
vides a model of the input formula, and if model checking is enabled, this model
is internally checked for validity. Next, if the input formula is satisfiable and
model generation is enabled, BtorMBT continues with printing and querying
model assignments (state Query Model Assignments). If incremental solving is
enabled, BtorMBT may randomly choose to continue with an incremental step
(state Reset for Incremental Usage). Else, it proceeds to conclude the current
round (state Delete).

Query Model Assignments If the input formula is satisfiable and model
generation is enabled, calls to query the model assignments of all generated ex-
pressions are issued. Further, if model printing is enabled, the model of the input
formula is printed to stdout. Boolector supports model output formats based
on BTOR [34] and SMT-LIB v2 [16], and BtorMBT may pick either of them
randomly. Note that as of version 2.5, model output in SMT-LIB format is not
yet fully standardized.
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Reset for Incremental Usage Prior to performing an incremental step,
parameters such as maximum numbers and probability distributions are reini-
tialized with random values (within certain ranges). Note that the value ranges
for these parameters may differ from the ranges employed in state New.

Delete State Delete concludes one round (one test case) with releasing all
generated expressions and deleting the current Boolector instance.

7.2.2 Shadow Clone Testing

As of version 2.0, Boolector provides a cloning feature which allows to generate a
disjunct copy of a Boolector instance [91]. A clone captures the current state of
the solver and can be either a deep copy (full clone) or a term layer copy (term
layer clone) of the original instance. As a deep copy, a full clone includes the un-
derlying SAT solver and the (bit-blasted) AIG layer (if present) and requires cor-
responding cloning support of the SAT solver back-end (e.g., Lingeling [22,23]).
A full clone is required to behave exactly the same as the instance it has been
cloned from. Generating full clones for producing independent subproblems is,
e.g., one of the key requirements for the work splitting approach implemented in
PBoolector [98], a parallel prototype implementation of Boolector. A term layer
clone, on the other hand, only copies the term layer of the original instance,
which does not guarantee exact same behavior but is sufficient for many appli-
cations (e.g., generating a dual solver instance for the dual-propagation-based
optimization of the lemmas on demand approach described in Paper C).
In order to test and guarantee that a full clone behaves exactly the same as

the instance it has been cloned from, BtorMBT provides a dedicated shadow
clone test setting similar to shadow clone testing as implemented for Lingeling.
Shadow clone testing is randomly enabled and when enabled, BtorMBT initially
generates a full clone (the shadow clone) of the current Boolector instance, which
then mirrors every API call to the original instance and cross-checks return values
for equivalence. Additionally, Boolector implements extensive checks for freshly
generated clones and internally checks the state of the shadow clone after each
API call. A shadow clone may be initialized anytime prior to the first SAT
call and is usually randomly released and regenerated multiple times after being
initialized, at different stages during one test round, to prevent that clones are
only generated and checked prior to (incremental) API calls.

7.3 API Trace Execution with BtorUntrace

Our SMT solver Boolector allows to record all API calls with their arguments to
a trace file, which then serves as input for our trace execution tool BtorUntrace.
An example of an API trace generated by Boolector is given in Figure 7.3, with
each line of the trace either listing an API call or the return value of an API call
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1 new 21 ne b1 e6@b1 e8@b1
2 return b1 22 return e-10@b1
3 set_opt b1 1 incremental 1 23 assert b1 e9@b1
4 set_opt b1 14 rewrite-level 0 24 assume b1 e-10@b1
5 bitvec_sort b1 25 sat b1
6 return s1@b1 26 return 20
7 array_sort b1 s1@b1 s1@b1 27 failed b1 e-10@b1
8 return s3 28 return true
9 array b1 s3@b1 array1 29 sat b1

10 return e2@b1 30 return 10
11 var b1 s1@b1 index1 31 release b1 e2@b1
12 return e3@b1 32 release b1 e3@b1
13 var b1 s1@b1 index2 33 release b1 e4@b1
14 return e4@b1 34 release b1 e6@b1
15 read b1 e2@b1 e3@b1 35 release b1 e8@b1
16 return e6@b1 36 release b1 e9@b1
17 read b1 e2@b1 e4@b1 37 release b1 e-10@b1
18 return e8@b1 38 release_sort b1 s1@b1
19 eq b1 e3@b1 e4@b1 39 release_sort b1 s3@b1
20 return e9@b1 40 delete b1

Figure 7.3: An example API trace as generated by Boolector.

in chronological order. A line representing an API call consists of an identifier,
the Boolector instance to issue the call to, and the arguments to the call. A line
representing the return value of an API call must immediately follow the line
of the call and consists of the keyword return and the return value, which can
either be an identifier or a numerical value. As an example, consider the API call
in line 7 and its return value in line 8. Identifier array_sort in line 7 refers to the
API call to create an array sort with bit-vector sort s1 as its first (index sort)
and second (element sort) argument, issued to Boolector instance b1. Line 8
identifies the return value of this call as array sort s3.

BtorUntrace is a dedicated tool for replaying traces generated by Boolector
and tightly integrates Boolector via its C API. In our model-based API testing
workflow, BtorUntrace is used in combination with BtorMBT to reproduce faulty
behavior when a test case generated by BtorMBT fails. However, BtorUntrace
is also useful outside of our testing workflow when debugging undesired behavior
triggered by any (real world) application of Boolector. Since BtorUntrace only
requires the API trace to replay a faulty run of Boolector, it is, e.g., not necessary
to have the original (possibly complex) setup of the tool chain available for
debugging purposes. Further, some errors triggered via the API may not be
triggered with a dump of the corresponding input formula since some (sequences
of) Boolector API calls can not be expressed in the input file formats it supports.
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7.4 API Error Trace Minimization with ddMBT

Our delta debugger ddMBT minimizes a given API error trace while preserv-
ing its failure-inducing characteristics based on the exit code and error message
produced by Boolector when replaying the trace with BtorUntrace. Trace min-
imization with ddMBT works in rounds until fixpoint, with each round divided
into three phases. In the first phase, lines of the trace file are eliminated in
a divide-and-conquer manner similar to the original delta debugging algorithm
proposed in [70]. In the second and third phase, children of terms are sub-
stituted with fresh variables and already existing expressions of the same sort.
These three substitution strategies are in practice usually sufficient to obtain
a trace file small enough to allow efficient debugging. In some cases, however,
modifying numeric parameters such as bit-widths, shift widths, or indices for
slicing might be beneficial. We leave these enhancements to future work.

7.5 Experimental Evaluation

In the following, similarly as in [5], we evaluate the effectiveness of our model-
based API tester BtorMBT in terms of code coverage, throughput and the suc-
cess rate when inserting defects into the code of Boolector. We further compare
the performance of BtorMBT to grammar-based input fuzz testing, in particular
to FuzzSMT [30,32], the only currently available input fuzzer for SMT. Note that
since FuzzSMT originally is an input fuzzer for the SMT-LIB v1 [97] language,
we applied an available patch [103] for SMT-LIB v2 [13] support. However, this
patch only provides SMT-LIB v2 compliant output of SMT-LIB v1 test cases.
As a consequence, extensions of the language introduced in SMT-LIB v2, e.g.,
support for incremental solving, are not included, which may have a considerable
impact on the performance of the tool. Measuring this impact without extending
the tool to support the full feature set of the SMT-LIB v2 language, however, is
difficult. We still include a comparison with FuzzSMT since up until now it was
the de facto state-of-the-art for generating random test cases in SMT, and leave
the extension of the tool to fully support SMT-LIB v2 to future work.

7.5.1 Configuration

Since we aim to evaluate BtorMBT and FuzzSMT on as even terms as pos-
sible, we provide a script for FuzzSMT that simulates option fuzzing and the
round-based behavior as implemented in BtorMBT. In the following, we refer to
this script as FuzzSMT, and compare against the version of BtorMBT released
together with the current version 2.4 of Boolector.
We optionally switch off option fuzzing (while still randomly choosing solver

engines and SAT solvers) and refer to BtorMBT and FuzzSMT without option
fuzzing as BtorMBTno and FuzzSMTno. Note that we compiled Boolector with
all three supported SAT solvers Lingeling [23], PicoSAT [20] and MiniSat [55].
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Figure 7.4: Code coverage evolution over 100k rounds.

We evaluated BtorMBT and FuzzSMT on runs of 100k rounds and chose a
time limit of 2 seconds per round. Note that since increasing this time limit did
not increase code coverage for 100k rounds for configuration BtorMBT, we chose
this limit as a good compromise between throughput and test coverage.
In order to be able to determine if either of the tools is able to identify faulty

mutations of Boolector (see Section 7.5.4), we thoroughly tested our base version
2.4 of Boolector prior to our experimental evaluation and run 10M rounds with
each BtorMBT and FuzzSMT, all of which did not result in a single error.
We performed all our experiments on a cluster with 30 nodes of 2.83 GHz Intel

Core 2 Quad machines running Ubuntu 14.04.5 LTS.

7.5.2 Code Coverage

We used the tool gcov of the GNU Compiler Collection (GCC) suite to determine
the code coverage over 100k non-faulty rounds of BtorMBT and FuzzMBT with
and without option fuzzing. The evolution of line coverage for configurations
BtorMBT, BtorMBTno, FuzzSMT and FuzzSMTno as measured by gcov over
100k rounds is illustrated in Figure 7.4.
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After 10k runs, BtorMBT already achieves 75% line coverage without option
fuzzing, and 87% when option fuzzing is enabled. FuzzSMT, on the other hand,
reaches a coverage of 64% and 72%. After 100k runs, BtorMBT improves cov-
erage up to 78% (+3%) and 90% (+12%), while FuzzSMT achieves a coverage
of 65% (+1%) and 73% (+1%).
Unsurprisingly, BtorMBT covers more than 98% of Boolector’s API, with error

handling code as the uncovered rest that is not triggered due to the fact that all
test cases were error free. FuzzSMT, on the other hand, only achieves a coverage
of 52%, which is likely to be improved by introducing full SMT-LIB v2 support,
however, not up to the coverage rate BtorMBT achieved.
Note that for both tools, a coverage rate of 100% for error free test cases is

in general impossible due to the fact that error handling code is not triggered.
Further, since FuzzSMT only generates input in SMT-LIB v2 format, all code
related to parsing BTOR format (3%) remains unused.

7.5.3 Throughput

When fuzz testing an SMT solver, no matter if it is input fuzzing or API fuzzing,
the number of tests completed within a certain time frame (the throughput) is
an important measure of efficiency and effectiveness of the test method. A high
number may indicate that the generated test cases are too trivial and therefore
less likely to trigger errors. A low number, on the other hand, may be caused by
too difficult and therefore too time consuming test cases, which may considerably
slow down progress when testing. We aim to perform as many good test cases,
i.e., test cases with a high code coverage rate, in as little time as possible, which
is a balancing act between the two extremes above.
For 100k rounds, BtorMBT achieves a throughput of on average 45 rounds per

second, which increases by 20% when shadow clone testing is disabled. FuzzSMT,
on the other hand, achieves a far lower throughput of 7 test cases per second
since it first generates an input file that is then handed to the SMT solver.
Further, FuzzSMT is written in Java, and (re)starting the Java VM in each
round introduces additional overhead which further decreases throughput.
Note that in 100k rounds with BtorMBT, 20% of all calls to determine satisfi-

ability are incremental. Further, one in four solved instances is satisfiable, which
corresponds to a rather unbalanced ratio of 1:3 of satisfiable to unsatisfiable
instances. We leave improving this ratio to future work.

7.5.4 Defect Injection

In our final experiment, we evaluated the success rate of BtorMBT and Fuzz-
SMT in identifying faulty configurations of Boolector. We compiled a set of test
configurations TC (4626 in total), which consists of two subsets TCA and TCD
and contains configurations where we introduced artificial defects into the source
code of Boolector. Set TCA contains 2305 configurations with a randomly in-
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BtorMBT BtorMBTno FuzzSMT FuzzSMTno

Found [%] Found [%] Found [%] Found [%]

100k

TCA (2305) 2088 90.6 1789 77.6
TCD (2321) 1629 70.2 1366 58.9

TC (4626) 3717 80.4 3155 68.2

10k

TCA (2305) 2028 88.0 1719 74.6 1735 75.3 1523 66.1
TCD (2321) 1510 65.1 1277 55.0 1304 56.2 1153 49.7

TC (4626) 3538 76.5 2996 64.8 3039 65.7 2676 57.8

Table 7.1: Number of faulty configurations of Boolector identified by BtorMBT,
BtorMBTno, FuzzSMT and FuzzSMTno within 100k and 10k rounds.

serted abort statement, and set TCD consists of 2321 configurations where we
deleted a random statement from the code. All 4626 configurations in set TC
are faulty configurations. However, some defects, e.g., modifications of heuris-
tics due to a missing statement, may result in performance bugs rather than
producing incorrect results or any other erroneous behavior and are therefore
impossible to detect with either test method.
For each faulty test configuration, we set a limit of 100k rounds for BtorMBT.

However, since the low throughput of FuzzSMT (7 rounds per second) would
require too much runtime for our experiment with 100k rounds even on a cluster
with 30 nodes (26 days in the worst case), we limited the number of rounds for
FuzzSMT to 10k and compare its results to the number of faulty configurations
identified by BtorMBT within 10k rounds.
Table 7.1 shows the number of faulty configurations identified by BtorMBT

and FuzzSMT with and without option fuzzing within 100k and 10k rounds.
Overall, within 10k rounds BtorMBT has a 11% higher success rate than Fuzz-
SMT, which is increased by 14% to 80.4% when the limit is extended to 100k
rounds. Disabling option fuzzing, on the other hand, decreases the number of
configurations identified as faulty for both tools by 12%.
Not surprisingly, for both tools the success rates for configuration set TCA

correspond to their code coverage as determined in Section 7.5.2. The number
of successfully identified faulty configurations in set TCD, on the other hand, is
significantly lower due to the fact that set TCD contains test cases with defects
that concern error handling code or decrease performance rather than introduc-
ing erroneous behavior. Further, in case of BtorMBT, since dumps in AIGER
format are not tested for correctness it is not possible to detect configurations
that produce incorrect AIGER output. The same applies in case of FuzzSMT
for configurations that produce incorrect dump output in any format since it is
not checked for correctness.
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7.6 Discussion

Our model-based API fuzzer BtorMBT generates random but valid sequences of
calls to Boolector’s API and allows to test random configurations of Boolector on
random input formulas. With a success rate of 80% on our artificial set of faulty
configurations of Boolector and a line coverage of 90% over 100k rounds, our
experiments suggest that BtorMBT is an effective method for testing Boolector.
Our extremely positive practical experience confirms this claim.
Our model-based API testing framework is the core component of the testing

workflow in the development process of Boolector. However, it still needs to be
complemented by several other tools to cover cases that can not be tested with
BtorMBT alone. The solver front end, for example, can only be tested by using
the solver as standalone tool with files in BTOR or SMT-LIB format as input.
For that purpose, we use a suite of regression tests and FuzzSMT, even though
its support for the SMT-LIB v2 format is incomplete. Another example is parser
testing, which is incomplete with BtorMBT since Boolector is currently not able
to dump incremental input and in general does not use the full feature set of
the SMT-LIB language when dumping. Further, dumping with Boolector only
produces valid input files. However, a parser must be tested for correct parse
error handling on invalid input, too. We test Boolector’s parsers by means of the
tool fzsexpr of the ddsexpr tool set [21], which generates (mostly) invalid input
by mutating existing files based on lines, S-expressions and characters.
Currently, BtorMBT produces a rather unbalanced ratio of 1:3 of satisfiable

to unsatisfiable instances. Further, AIGER dump output is not checked for
correctness since Boolector does not allow to parse AIGER input files. We leave
improving the ratio of satisfiable to unsatisfiable instances and checking the
correctness of AIGER dumps to future work.
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Chapter 8

Conclusion
In this thesis we presented several techniques for bit-precise reasoning in SMT
that improve the current state-of-the-art and were the topic of four peer-reviewed
publications, which are included as Papers A-D. We discussed the contributions
and results of these publications and expanded on related topics of interest. Of
all four publications, the author of this thesis is the main author.
In Paper A we first reimplemented the SLS for bit-vector logics approach

in [58] in our SMT solver Boolector. We then improved the strategy in [58] with a
propagation-based extension that takes full advantage of the word-level structure
of the input formula by propagating assignments from the outputs to the inputs.
Our results suggested that combining our propagation-based techniques with bit-
blasting considerably improves performance. In Chapter 3 we implemented such
a combination for our propagation-based strategy and the SLS for SMT approach
in [58] and showed that combining local search techniques with a bit-blasting
within a sequential portfolio setting indeed considerably improves performance.
However, the metric used as a limit for our sequential portfolio combination
with the SLS for SMT approach in [58] introduces too much overhead in terms
of runtime. We leave finding a better metric to future work. In Chapter 3 we
further provided an extensive experimental analysis of randomization effects for
both the SLS for SMT approach in [58] (as implemented in Boolector) and our
propagation-based techniques, which was not included in Paper A. Our results
showed that our propagation-based techniques are more robust with respect to
randomization effects than the SLS for SMT approach in [58].
The propagation-based strategy presented in Paper A still relies on brute-force

randomization and restarts to achieve completeness. It further still has to fall
back on regular SLS techniques as described in [58]. In Paper B we proposed
an improvement of our propagation-based techniques and introduced a complete
propagation-based local search procedure for quantifier-free bit-vector formulas
in SMT. We further implemented a combination of our improved propagation-
based techniques with bit-blasting, which considerably improved performance.
However, we observed that on certain benchmarks, our propagation-based strat-
egy is at a disadvantage compared to the SLS-based strategy proposed in [58].
In Chapter 4 we provided an in-depth analysis why this might be the case and
observed that our propagation-based strategy struggles if the input formula con-
tains a considerable amount of expressions with constant bits. Our results sug-
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gest that introducing knowledge about constant bits into our propagation-based
techniques will considerably improve performance. We leave this improvement
to future work. Extending our techniques by introducing strategies for conflict
detection and resolution during backtracing as well as lemma generation in or-
der to obtain an algorithm that is able to also prove unsatisfiability is another
challenging direction for future work.
In Paper C we proposed two optimization techniques for the LOD procedure

for the quantifier-free theory combination of fixed-size bit-vectors, arrays and
uninterpreted functions as implemented in Boolector. In Chapter 5 we then
evaluated and analyzed the relation between our optimization techniques and a
recent improvement of the base LOD procedure, which introduces a more eager
lemma generation approach. We observed that generating lemmas more eagerly
leaves less room for improvement for our optimization techniques. However, they
still improve performance, in particular in terms of runtime. Further, generating
lemmas more lazily significantly decreases the overhead introduced by the dual
solver instance of our dual-propagation-based technique. Introducing techniques
to render this overhead negligible is still left to future work.
We implemented all our techniques in our SMT solver Boolector, which con-

tributed to winning several tracks of the SMT competitions 2014, 2015 and
2016. However, this would not have been possible without rigorous test methods
to ensure correctness and robustness of the solver. In Paper D and Chapter 7
we addressed two such methods. In Paper D we introduced a delta debugging
procedure for the SMT-LIB v2 language that enables solver developers to locate
failure-inducing code in a time efficient manner. Our delta debugging tool is in
particular efficient in combination with input fuzzing. State-of-the-art solvers
such as Boolector, however, require additional test methods that are not en-
tirely input-based but allow to exhaustively test the functionality provided by
the solver via its API. In Chapter 7 we lifted the successful application of model-
basted API fuzzing from SAT [5] to SMT and introduced our model-based API
testing framework for Boolector. Overall, our results and practical experience
suggest that our model-based API testing tool set is an effective method for
testing Boolector. However, currently, our model-based API tester produces a
rather unbalanced ratio of 1:3 of satisfiable to unsatisfiable instances and does
not support checking the correctness of AIGER dumps. We leave improving this
ratio and introducing correctness checks for AIGER dumps to future work.
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Bit-Vector Logics in SMT with
Path Propagation
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of procedure select_move (Figure 2), total number of benchmarks in our bench-
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columns in results tables, total time for configuration Z3sls in Table 1, number of
benchmarks solved faster by configuration Bb+Bprop+frw (Figure 5, instances
with a runtime < 0.01 seconds were previously not considered).

Abstract Bit-blasting is the main approach for solving word-level constraints
in SAT Modulo Theories (SMT) for bit-vector logics. However, in practice it
often reaches its limits, even if combined with sophisticated rewriting and sim-
plification techniques. In this paper, we extended a recently proposed alternative
based on stochastic local search (SLS) and improve neighbor selection based on
down propagation of assignments. We further reimplemented the previous SLS
approach in our SMT solver Boolector and confirm its effectiveness. We then
added our novel propagation-based extension and provide an extensive experi-
mental evaluation, which suggests that combining these techniques with Boolec-
tor’s bit-blasting engine enables Boolector to solve substantially more instances.
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1 Introduction

SAT Modulo Theories (SMT) procedures for deciding the satisfiability of first-
order formulas w.r.t. the theory of fixed-size bit-vectors usually employ a so
called bit-blasting approach, where the input formula is eagerly reduced to propo-
sitional logic (SAT). While efficient in practice, it heavily relies on rewriting to
simplify the input prior to bit-blasting, and consequently, on the underlying
SAT solver. This method, however, does in general not scale if the input size
can not be reduced sufficiently. Lazy approaches based on DPLL(T) as in [38,67],
on the other hand, aim to improve solver performance by employing a layered
approach—in the latter case in a parallel portfolio setting together with the
standard bit-blasting approach. Attacking the problem from a different angle,
in [58], Fröhlich et al. proposed a stochastic local search (SLS) procedure to solve
bit-vector formulas directly on the theory level, i.e., on the word-level, without
the need for a SAT solver. In contrast to [66], where Griggio et al. attempted to
reproduce previous successful applications of SLS in the SAT domain (e.g. [74])
by integrating a bit-level SLS solver with the SMT solver MathSAT [42], lifting
SLS to the theory level delivered promising initial results. However, we argue
that neighborhood exploration, as suggested in [58], does not yet fully exploit
the advantage of working on the theory level. In essence, it mostly simulates
bit-level local search by focusing on single bit flips.
In this paper, we first reimplemented the word-level local search approach

introduced in [58] in our SMT solver Boolector, the winner of the QF_BV track
of the SMT competition 2015, and confirm its effectiveness as presented in [58].
We then aim at improving neighbor selection as in [58] by introducing so called
propagation moves. That is, rather than almost solely relying on bit flips of
bit-vector and Boolean variables (driven by a scoring function), we introduce an
additional strategy to satisfy lines by propagating assignments from the outputs
to the inputs. We extended the SLS engine in Boolector with our propagation-
based strategy and provide an extensive experimental evaluation which shows
that using these techniques in combination with Boolector’s bit-blasting engine
in a sequential portfolio manner [104] considerably improves its performance.

2 SLS for QF_BV at a glance

The core SLS engine as implemented in Boolector is similar to the SLS archi-
tecture presented in [58] with some exceptions, which are mainly due to im-
plementation issues. In the following, we will highlight all relevant differences
and give an overview of the general workflow corresponding to the algorithm
depicted in Figure 1. Note that, as in bit-level local search, the given word-level
local search procedure is incomplete in the sense that it is not able to determine
unsatisfiability.
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Given a bit-vector formula φ, procedure sat initially applies several rewriting
and simplification techniques to yield a simplified formula π (line 5), which
in the following serves as the input to the actual SLS procedure. In contrast
to [58], we do not impose restrictions to the bit-vector logic definition, i.e.,
we do not require π to be in Negation Normal Form (NNF). However, without
loss of generality, we do restrict the set of Boolean expressions to the set of
unary and binary operators {¬, ∧, =, <}. We further represent formula π as a
directed acyclic graph (DAG) with (possibly) multiple roots, which we also refer
to as constraints.

Given a set of constraints {a1, ..., am} in π, we adopt the constraint weighting
scheme in [58] and associate each constraint ai with a weight wi, which is ini-
tialized with 1 and updated whenever no propagation and no regular SLS move
could be found, and a random variable/value pair is chosen. As in [58], we then
define the notion of states of a local search algorithm for an SMT bit-vector
problem based on the values of the constraint weights and the assignments to its
inputs, i.e., a set of Boolean and bit-vector variables. In the following, we refer
to 0-arity bit-vector function symbols as bit-vector variables, and to numerical
constants (e.g. #bvX in SMT-LIB notation [13]) as bit-vector constants. We
further implicitly treat Boolean variables as bit-vector variables of bit-width one
and include them in all definitions over bit-vector variables if not otherwise noted.

Given the simplified formula π, as in [58], we define the initial state of the
SLS procedure by initializing all constraint weights with one (line 6) and all
bit-vector variables with zero (line 8), and yield an initial assignment α. Start-
ing from this initial assignment, the SLS procedure then iteratively moves to
neighboring states until a satisfying assignment is found. The actual local
search procedure consists of two loops (line 7-18), where the inner loop (line 10-
18) represents a single round of search, and the outer loop realizes restarts
after a certain number of moves has been performed. Given a constant c2

(we choose c2 = 100), the maximum number of moves in a single search round
is defined as in [58] as

max_moves (i) =

{
c2 if i is odd
c2 · 2

i
2 if i is even.

In each iteration of the outer loop, we compute the score for all Boolean expres-
sions (line 9) as a floating value, and recursively define a scoring function s to
drive the search and assess the quality of an assignment as follows.

Given α and a Boolean variable v, its score s(v, α) is defined as in [58]
as its assignment in α, i.e.,

s(v, α) = α(v).
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1 procedure sat (φ)
2 global α // assignment
3 global s // score
4 global π // simplified formula
5 π := simplify (φ)
6 init_constraint_weights ()
7 for i = 1 to ∞
8 α := init_inputs (π)
9 s := compute_score ()

10 for j = 0 to max_moves (i)
11 if all_constraints_sat ()
12 return SAT
13 root := select_constraint ()
14 (var, val) := select_move (root)
15 update_assignments (var, val)
16 if is_randomized_move (var, val)
17 update_constraint_weights ()
18 update_score ()

Figure 1: The core SLS procedure in pseudo-code.

1 procedure select_move (root)
2 choose depending on ratio n:m
3 (var, val) := select_prop_move (root)
4 else
5 (var, val) := select_sls_move (root)
6 return (var, val)

Figure 2: Procedure select_move in pseudo-code. Move selection depends on
a ratio n : m of propagation to sls moves.

1 procedure select_sls_move (root)
2 V := select_vars (root)
3 choose with propability wp
4 (var, val) := random_walk (V)
5 else
6 (var, val) := find_best_move (V)
7 if (var, val) = none
8 (var, val) := randomize (V)
9 return (var, val)

Figure 3: A regular SLS move in pseudo-code.
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Analogously, given α and the negation of a Boolean variable v, the score of ¬v
is defined as

s(¬v, α) = ¬α(v).

Given two Boolean expressions a and b, the score of an and-expression over a
and b is adopted from [58] as

s(a ∧ b, α) = 1
2 · (s(a, α) + s(b, α))

s(¬(a ∧ b), α) = max(s(¬a, α), s(¬b, α)).

The score of an equality over bit-vector expressions a and b of bit-width n
is defined as in [58] via the hamming distance h of their assignments in α, i.e.
given a constant 0 ≤ c1 ≤ 1 (we choose c1 = 0.5), we define

s(a = b, α) =


1.0 if α(a) = α(b)

c1 ·
(

1− h(α(a), α(b))

n

)
otherwise

s(a 6= b, α) =

1.0 if α(a) 6= α(b)

0.0 otherwise.

The score definition of an inequality over bit-vector expressions a and b of bit-
width n significantly differs from [58] due to implementation issues and is defined
via a function m, which is a cheap heuristic to determine an upper bound on the
number of bit flips required such that α(a) and α(b) match the given inequality
relation. Note that m is pessimistic in the sense that the actual number of
required bit-flips might be smaller. The score of a bit-vector inequality is then
defined as

s(a < b, α) =


1.0 if α(a) < α(b)

c1 ·
(
1− m<(α(a), α(b))

n

)
otherwise

s(a ≥ b, α) =


1.0 if α(a) ≥ α(b)

c1 ·
(
1− m≥(α(a), α(b))

n

)
otherwise.

Lastly, given α, a set of constraints {a1, · · · , am} in π, and its corresponding
set of weights {w1, · · · , wm}, we define the overall score of formula π as in [58]
as s(π, α) = w1 · s(a1, α) + · · · + wm · s(am, α). Note that the score of a con-
straint ai is normalized and therefore bound to 0 ≤ s(ai, α) ≤ 1. The overall
score of formula π, however, may be greater than 1.
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As in [58], we perform score computation bottom-up, i.e., starting from the
inputs. However, due to the fact that we do not require formula π to be in NNF,
it is not possible to employ what [58] refers to as “early pruning”. Hence, in
order to still minimize the overhead for score computation, in contrast to [58] we
do not recompute the score for all nodes in a formula’s DAG representation on
update. Rather, we identify the cone of influence, i.e., those parts of the formula
affected by changing a given input, and update its score accordingly (line 18).

In each iteration of the inner loop (lines 10-18), depending on a yet unsatisfied
constraint root and assignment α, a variable var and a value val is selected
(line 14), and assignment α and all scores are updated accordingly (lines 15
and 18). Note that given constraints {a1, · · · , am} in π, constraint root is selected
as in [58] as the unsatisfied constraint ai that, given a constant c3 (we choose
c3 = 20), maximizes

s(ai, α) + c3 ·
√

log selected(ai)

nmoves
,

where selected(ai) is the number of times ai has already been selected, and
nmoves is the overall number of moves performed so far.

In the general SLS case, i.e., without enabling our additional propagation
strategy, we adopt the notion of (extended) neighborhood for regular SLS moves
from [58], which includes single bit flips, increment, decrement, and bitwise nega-
tion. Move selection is then performed as in [58] corresponding to Figure 3 as
follows. Given an unsatisfied constraint root, all bit-vector variables reachable
while traversing from the root to the inputs are collected into a set of candidate
variables V (line 2). Out of all possible combinations in V and its extended
neighborhood, the variable/neighbor pair with the most improvement of the
overall score s(π, α) is determined as the best move (line 6). If no best move
is found, a random variable and value is chosen (line 8), and the weights of all
constraints are updated as in [58] (Figure 1, line 17). That is, with a prob-
ability sp (we choose sp = 0.95), the weights of all unsatisfied constraints are
increased by 1. Otherwise, the weights of all satisfied constraints are decreased
to a minimum of 1.

Note that in the general SLS case, all moves performed are regular SLS moves
as described in Figure 3, which corresponds to a ratio 0 :∞ of propagation
moves to regular SLS moves in Figure 2. Further, as in [58], select_sls_move
optionally supports so called random walks, i.e., if enabled, with a probability wp
(we choose wp = 0.1) a random move out of all variable / neighbor combinations
is chosen.

3 Propagation Moves

The notion of (extended) neighborhood in [58] combines a simple SAT-style SLS
neighborhood relation, given by flipping single bits of a variable assignment, with
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three additional bit-vector moves: increment, decrement, and bitwise negation.
With a neighborhood size of n+ 3 for a single bit-vector variable of bit-width n,
it is easy to see that exploring its neighborhood is dominated by bitwise flips. As
a consequence, neighborhood exploration in [58] mainly simulates bit-level local
search without fully exploiting possible benefits of the word-level. Further, for
variables with increasing bit-width, SLS moves as described in Section 2 become
increasingly expensive.

Even though the approach in [58] showed promising results on the Sage2
benchmark family, it still struggles in general in comparison to state-of-the-art
bit-blasting approaches. Especially when dealing with a certain type of problem,
the shortcomings of the chosen neighborhood relations become evident. Consider
the following example in SMT-LIB notation:

(set-logic QF_BV)
(declare-fun v () (_ BitVec 65))
(assert (= (_ bv18446744073709551617 65) (bvmul (_ bv274177 65) v)))
(check-sat)
(exit)

Assuming that we disable possible simplification techniques, it is not possi-
ble to determine the (single) solution v = 67280421310721 within a time limit
of 1200s on a 3.4GHz Intel Core i7-2600 machine (355837 moves, 21 restarts)
with the SLS procedure as described in Section 2. With our propagation-based
strategy, however, the example above is solved instantly within one single prop-
agation move. In this section, we will introduce this strategy and its application
in detail as follows.

3.1 Propagation-Based Move Selection

When enabling our propagation-based strategy, within the core procedure as
described in Figure 1, we support three different scenarios, depending on the
type of move to be selected (line 14):

(i) all moves performed are propagation moves
(i.e., propagation and regular SLS moves are performed with a ratio∞ : 0)

(ii) propagation and regular SLS moves are performed with a ratio n : m

In case of propagation moves, move selection is performed corresponding to
Figure 4 as follows. Given an unsatisfied constraint root, a simplified formula
π, and assignment α, we force root to be true (line 3) and iteratively propagate
its new assignment along one path towards the inputs while assuming all other
paths to be fixed with respect to assignment α.
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1 procedure select_prop_move (root)
2 cur := root
3 val := 1
4 loop
5 if is_bv_var (cur)
6 return cur, val
7 if not has_non_const_input (cur) // conflict
8 return select_sls_move (root) // recover with SLS move
9 // path selection

10 if is_ite (cur)
11 if flip_cond ()
12 cur := get_cond_node (cur)
13 val := flip_bv (α(cur))
14 else
15 cur := get_enabled_branch (cur)
16 continue
17 if is_boolean_and (cur) and has_exactly_one_ctrl_input (cur)
18 inp := get_ctrl_input (cur)
19 else
20 inp := select_random_input (cur)
21 // path propagation
22 oth := get_other_inputs (cur, inp)
23 val := compute_value (cur, val, oth)
24 if val = none // conflict
25 return select_sls_move (root) // recover with SLS move
26 cur := inp

Figure 4: A propagation move in pseudo-code.
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In each iteration, path selection (lines 10-20) is implemented as choosing one
of the current node’s inputs, which in general happens randomly except for two
cases. If the current node is an if-then-else (ite) node (line 10), with probability ip
(we choose ip = 0.1), the first (and else, the second) out of two options is chosen:

(1) flip the condition, or

(2) assume the assignment of the condition to be fixed and follow the enabled
branch.

In (1), we reset cur to the condition and val to the flipped value of its assignment
in α (lines 12-13). In (2), we reset cur to the enabled branch (line 15) before
continuing with the next iteration.

If the current node is a Boolean AND node (line 17), on the other hand,
path selection is based on the notion of (a posteriori) observability don’t cares
as defined in the context of ATPG [87]. Given an unsatisfied constraint root,
while propagating its flipped assignment α(root) = 1 along one path towards
the inputs, as a consequence, the assignments of all AND-gates along this path
are flipped as well. Given a concrete assignment to the inputs of an AND-
gate, however, we can determine lines that do not influence its output under the
current assignment. Consequently, if the output of an AND node is currently
assigned to 0 (i.e., to be flipped to 1), we follow its controlling input, i.e., the
input with controlling value 0, if only one of its inputs is controlling. Else, we
choose randomly.

Note that the procedure in Figure 4 aims at finding an assignment for a bit-
vector variable. As a consequence, during path selection, we do not choose
bit-vector constants as input inp. If a node cur has only bit-vector constants
as inputs, assignment val conflicts with the inputs of cur and we recover with a
regular SLS move (line 8).

After selecting a path, we implement down propagation of assignments by
computing a new assignment for input inp as the inverse of the current node
given its assignment and the assignment to its other inputs, which are assumed
to be fixed (line 23). Note that in general, if the other inputs are not bit-vector
constants and such an inverse value does not exist, procedure compute_value
concludes with an assignment for the chosen input that matches the assignment
of the current node, disregarding its other inputs. However, if its other inputs
are bit-vector constants, it concludes with ‘none’ and we again recover with a
regular SLS move (line 25). Finally, if we were able to successfully propagate all
assignments along a path from root to a bit-vector variable, we conclude with
this variable and its new assignment (line 5).

Note that procedure select_prop_move optionally supports to force a ran-
dom walk rather than performing a regular SLS move (where random walks,
if enabled, occur only with probability wp, otherwise) when recovering from a
conflicting assignment (lines 8 and 25).
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3.2 Propagating Assignments via Inverse Computation

Down propagation of assignments is implemented by procedure compute_value
via computing the inverse of a given node (representing a bit-vector operation)
given its assignment and the assignment of all but one of its inputs. Without
loss of generality, we restrict the set of bit-vector operations to {=, bvnot, bvult,
bvshl, bvshr, bvadd, bvand, bvmul, bvudiv, bvurem, concat, extract} as defined
in the SMT-LIB standard v2 [13], where all but bvnot and extract are binary
operations. Note that for some operations in this set no well-defined inverse
operation exists. In that case, procedure compute_value in general produces
non-unique values via randomization (of bits or bit-vectors). Further note that
given the assignment of the bit-vector operation and one of its inputs, if the
input is not a bit-vector constant and no inverse value could be found, com-
pute_value disregards the assignment of the given input and chooses an inverse
value that matches the assignment of the given operation. However, if the input
is a bit-vector constant, its assignment conflicts with the assignment of the given
operation, and compute_value concludes with ‘none’.
In the following, we assume that given a bit-vector v, its least significant bit

(LSB) is positioned at index 0 (LSB = v[0]). We further denote a bit-vector slice
expression (extract in SMT-LIB notation) from index i to j (incl.) with v[i : j]
and assume that i and j are numerical constants. Procedure compute_value
determines the assignment x of an input of a given operation, given its assign-
ment c and the assignment a of its other input (if any), as follows:

=

Given a bit-vector expression c := a = x or c := x = a, its inverse with respect
to x is defined as x := a if c = 1, and a random value other than a, otherwise.

bvnot

Given a bit-vector expression c := ∼ x, its inverse with respect to x is defined
as x := ∼ c.

bvult

• Given a bit-vector expression c := a < x, we determine its inverse
with respect to x as follows:

(1) If c = 1 and a 6= 2n − 1, we choose a random value for x with a < x.

(2) If c = 0, we choose a random value for x with a ≥ x.
(3) If a is not a bit-vector constant, and neither 1) nor 2) apply, we disre-

gard a and choose a random value for x with x > 0.

If a is a bit-vector constant and neither 1) nor 2) apply, the current value
of c is conflicting with a and we can not find a value for x.
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• Given a bit-vector expression c := x < a, we determine its inverse
with respect to x as follows:

(1) If c = 1 and a 6= 0, we choose a random value for x with x < a.

(2) If c = 0, we choose a random value for x with x ≥ a.
(3) If a is not a bit-vector constant, and neither 1) nor 2) apply, we disre-

gard a and choose a random value for x with x < 2n − 1.

If a is a bit-vector constant and neither 1) nor 2) apply, the current value
of c is conflicting with a and we can not find a value for x.

bvshl

• Given a bit-vector expression c := a << x, its inverse with respect to x is
defined as the number n0 of least significant bits set to 0 in c. If a is a
bit-vector constant and n0 is equal to the bit-width of a, or if a << n0

and c do not match, the current value of c is conflicting with a and we can
not find a value for x.

• Given a bit-vector expression c := x << a, its inverse with respect to x is
defined as x := c >> a. Note that the bits shifted in may be set arbitrarily.
If a is a bit-vector constant and the a least significant bits in c are not
set to 0, the current value of c is conflicting with a and we can not find
a value for x.

bvshr

Is defined analogous to bvshl.

bvadd

Given a bit-vector expression c := a + x or c := x + a, its inverse with respect
to x is defined as x := c− a.

bvand

Given a bit-vector expression c := a & x or c := x & a, its inverse with respect
to x is defined depending on the bits set in both a and c, i.e., given position i,
• if c[i] = 1, then x[i] := 1

• if c[i] = 0 and a[i] = 1, then x[i] := 0

• if c[i] = 0 and a[i] = 0, then x[i] := dc

Note that don’t care values (dc) may be set arbitrarily. If a is a bit-vector
constant, and a[i] = 0 for any position i where c[i] = 1, the current value of c
is conflicting with a and we can not find a value for x.
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bvmul

Given a bit-vector expression c := a · x or c := x · a of bit-width n, we deter-
mine its inverse with respect to x as follows.

(1) If a is a divisor of c, then x := c/a.

(2) If gcd(a, 2n) = 1, we determine the multiplicative inverse a−1 of value a
via the Extended Euclidean algorithm and define x := a−1 · c.

(3) If neither applies and a is not a bit-vector constant, we try if any
v ∈ {7, 5, 3, 2} is a divisor of c. If so, we choose x := c / v, and x := 1,
otherwise.

If a is a bit-vector constant and neither 1) nor 2) apply, the current value of c
is conflicting with a and we can not find a value for x.

bvudiv

• Given a bit-vector expression c := a/x of bit-width n, we determine its
inverse with respect to x as follows:

(1) If a = c = 0, we choose a random value for x.

(2) If a 6= 0, and c is a divisor of a, then x := a/c.

(3) If a is not a bit-vector constant, and neither 1) nor 2) apply, we
disregard a, and choose a random value x such that x · c does not
overflow.

If a is a bit-vector constant and neither 1) nor 2) apply, the current value
of c is conflicting with a and we can not find a value for x.

• Given a bit-vector expression c := x/a of bit-width n, we determine its
inverse with respect to x as follows:

(1) If a = 0 and c = 2n − 1, we choose a random value for x. This is due
to the fact, that given a value v of bit-width n, Boolector handles
division by zero as v/0 = 2n − 1.

(2) If a 6= 0, and c · a does not overflow, then x := c · a.

(3) If a is not a bit-vector constant, and neither 1) nor 2) apply, we
disregard a, choose a random value v such that v · c does not overflow,
and define x := c · v.

If a is a bit-vector constant and neither 1) nor 2) apply, the current value
of c is conflicting with a and we can not find a value for x.
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bvurem

• Given a bit-vector expression c := a mod x of bit-width n, we determine
its inverse with respect to x as follows:

(1) If a = c and a 6= 2n − 1, we choose a random value for x with x > a.
(2) If a > c and a− c > c, since c+m · x = a we choose m = 1

and define x := a− c.
(3) If a is not a bit-vector constant, and either a > c and a− c ≤ c,

or a < c and c < 2n − 1, we disregard a and choose a random value
for x with x > c.

If a = c = 2n − 1, or if a is a bit-vector constant and 2) does not apply, the
current value of c is conflicting with a and we can not find a value for x.

• Given a bit-vector expression c := x mod a of bit-width n, we determine
its inverse with respect to x as follows:

(1) If a > c, with probability 0.5 we either choose

a) x := c, or,
b) since c+m · a = x we choosem such that c+m · a does not over-

flow and define x := c+m · a. If c+ a overflows, but a is not a
bit-vector constant, we choose a).

(2) If a ≤ c and a is not a bit-vector constant, we choose x := c.

If a is a bit-vector constant and 1) does not apply, current value of c is
conflicting with a and we can not find a value for x.

concat

• Given a bit-vector expression c := a ◦ x where a is of bit-width m and c of
bit-width n, its inverse with respect to x is defined as the slice
x := c[0 : n−m− 1]. If a is a bit-vector constant and c[n−m : n− 1] 6= a,
the current value of c is conflicting with a and we can not find a value for x.

• Given a bit-vector expression c := x ◦ a where a is of bit-width m and c of
bit-width n, its inverse with respect to x is defined as the slice
x := c[m : n− 1]. If a is a bit-vector constant and c[0 : m− 1] 6= a, the
current value of c is conflicting with a and we can not find a value for x.

extract

Given a bit-vector expression c := x[l : u], where x is of bit-width n (and c
of bit-width u− l + 1), we determine its inverse with respect to x given a
position i as follows. If l ≥ i ≤ u, then x[i] = c[i− l]. Else, we choose a
random value for x[i].
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4 Experiments

We implemented the core SLS engine and its propagation-based extension in our
SMT solver Boolector as described in Sections 2 and 3, and provide an evalua-
tion of the following configurations.

(1) Bb The core Boolector engine, which uses a bit-blasting approach.
This configuration is a version close to the version that won
the QF_BV track of the SMT competition 2015.

(2) Bsls The SLS Boolector engine, optionally with random walks
enabled (+rw).

(3) Bprop The SLS Boolector engine with our propagation-based strat-
egy enabled. This configuration by default uses propagation
moves only. It optionally supports the configuration of a ra-
tio n : m of propagation to regular SLS moves (+n:m) and
conflict recovery via random walk rather than performing a
regular SLS move (+frw).

We further compare our Boolector configurations Bsls(+rw) against the origi-
nal implementation of [58] in Z3 [49] and refer to version 4.4.0 of Z3 with its SLS
engine enabled as configuration Z3sls. Note that Z3sls enables random walks
by default.
We compiled a benchmark set from all benchmarks with status sat and un-

known in the QF_BV category of the SMT-LIB [14] benchmark library, and
excluded all benchmarks that configuration Bb proved to be unsatisfiable within
a time limit of 1200 seconds (16436 instances in total). We excluded 449 bench-
marks from the Sage2 benchmark family that were not SMT-LIB v2 compliant
due to non-compliant operators.
All experiments were performed on a cluster with 30 nodes of 2.83GHz Intel

Core 2 Quad machines with 8GB of memory using Ubuntu 14.04.2 LTS. The
results in [58] indicate that even though there still exists a considerable gap
between the performance of state-of-the-art bit-blasting and word-level local
search as introduced in [58], the latter significantly outperforms bit-blasting on
several instances. Based on these findings, we evaluated our Bsls and Bprop
configurations with regard to an application within a sequential portfolio setting
and set a time limit of 10 seconds for all solver instances of these and the Z3sls
configurations. The memory limit for each solver instance was set to 7GB. In
case of a time or memory out, a penalty of the given time limit was added to
the total CPU time.
Table 1 summarizes the results of configurations Bb, Bsls, Bsls+rw, and Z3sls

on our benchmark set, grouped by family, within a time limit of 10 seconds.
Configuration Bsls+rw corresponds to the configuration of Z3sls as both enable
random walks, whereas configuration Bsls disables random walks by default. On
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Bb Bsls Bsls+rw Z3sls

Family Solved Time [s] Solved Time [s] Solved Time [s] Solved Time [s]

asp (376) 46 3542.7 0 3760.0 0 3760.0 0 3760.0
bench (223) 223 0.1 223 0.0 223 0.0 223 0.0

bmc (22) 21 56.8 11 118.1 12 114.6 7 150.5
brubiere2 (10) 3 71.9 10 4.3 10 3.1 1 90.2
brubiere3 (6) 4 45.6 6 4.0 6 0.2 2 40.0

brubiere4 (10) 0 100.0 9 10.0 9 10.0 10 0.0
calypto (13) 4 92.6 4 91.6 3 100.1 3 100.2
check2 (1) 1 0.0 1 0.0 1 0.0 0 10.0
crafted (1) 1 0.0 1 0.0 1 0.0 1 0.0
dwp (103) 103 0.3 103 0.0 103 0.0 103 0.9

fft (19) 4 160.5 0 190.0 0 190.0 0 190.0
float (126) 23 1094.7 2 1253.0 0 1260.0 0 1260.0
gulwani (6) 5 17.3 1 50.3 1 51.8 1 50.0
mcm (155) 14 1452.4 8 1508.0 5 1517.0 8 1473.5
pspace (21) 0 210.0 21 16.3 21 16.3 0 210.0

rubik (3) 2 17.1 0 30.0 0 30.0 0 30.0
RWS (20) 13 97.8 0 200.0 0 200.0 0 200.0

sage (6236) 6236 2179.2 5315 10497.0 5275 10626.9 5969 5261.0
Sage2 (6981) 1037 63022.8 604 64306.7 620 64289.8 1597 56890.2
spear (1675) 1524 7434.7 1188 6348.9 1187 6336.6 456 13288.6

stp (1) 0 10.0 0 10.0 0 10.0 0 10.0
stp_s (149) 149 3.6 127 410.0 128 421.3 149 6.1
tacas07 (3) 2 20.2 2 10.2 2 10.2 2 10.1
uclid (262) 258 426.4 29 2533.2 23 2551.1 259 297.4
VS3 (10) 0 100.0 0 100.0 0 100.0 0 100.0

wienand (4) 0 40.0 0 40.0 0 40.0 0 40.0

total (16436) 9673 80196.8 7665 91491.6 7630 91635.0 8791 83468.9

Table 1: Results by benchmark family for configurations Bb, Bsls, Bsls+rw,
and Z3sls with a time limit of 10 seconds.
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family pspace, Z3sls terminated with an error, for which a penalty of the given
time limit was added to the total CPU time. Compared to the bit-blasting con-
figuration Bb, as in [58], the overall results of configuration Bsls+rw confirm both
the effectiveness of the SLS approach on certain instances, and the overall gap
in performance. The performance of configurations Bsls+rw and Z3sls, however,
considerably differs on some benchmark families. Z3sls outperforms Bsls+rw by
694 and 977 instances on the sage and Sage2 benchmarks, whereas on the spear
family, with a difference of 731 instances, it is vice versa. Running Bsls+rw with
different seeds for initializing the random number generator, however, has al-
most no influence on the number of solved instances. Out of 10 randomly seeded
runs of configuration Bsls+rw on our benchmark set, we observed a maximum
deviation of 0.04% in the number of solved instances. We therefore believe that
the difference in performance between Bsls+rw and Z3sls is mainly due to the
following reasons. Similar to the influence of rewriting and simplification tech-
niques on the performance of state-of-the-art bit-blasting approaches, rewriting
and the choice of rewriting and simplification techniques considerably influence
the performance of the actual SLS procedure. Given our benchmark set and a
time limit of 10 seconds, Boolector’s SLS engine in configuration Bsls+rw with
rewriting and simplification disabled solves 2166 less instances. The choice of
rewriting and simplification techniques employed by Boolector and Z3 differs
significantly, which might be one reason for the difference in performance on
certain benchmark families. Further, even though Bsls+rw corresponds to Z3sls
as far as implementation issues allowed, both still differ in several implementa-
tion aspects, in particular, the scoring function for the < operator, which might
influence the performance of the SLS approach considerably.

The overall results in Table 1 imply that enabling random walks in Boolector’s
SLS engine does not improve its performance. We therefore use configuration
Bsls as base for our further experiments. Further note that even though the last
two authors of this paper were also involved in [58], the reimplementation of the
approach in [58] within Boolector by the first author should be considered as
independent. The results of Table 1, as a consequence, should be considered as
an independent confirmation of the results in [58].

Table 2 compares the results of our base SLS configuration Bsls to con-
figuration Bprop (propagation moves only), and Bprop+100:1, Bprop+10:1,
Bprop+1:1, Bprop+1:10, and Bprop+1:100 (with ratios 100:1, 10:1, 1:1, 1:10,
and 1:100 of propagation moves to regular SLS moves) on our benchmark set,
grouped by family, within a time limit of 10 seconds. Overall, the results sug-
gest that configurations with a higher ratio of propagation to regular SLS moves
perform better in terms of solved instances and runtime. With an additional 90
solved instances, configuration Bprop shows the most improvement in compari-
son to configuration Bsls. Out of the 7755 instances solved by Bprop, more than
56% (4366 instances) were solved with propagation moves only, i.e., no recov-
ery by means of a regular SLS move was necessary; and for roughly 85% (6568
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Table 2: Results by benchmark family for configurations Bsls, Bprop (propaga-
tion moves only), and Bprop+n:m (with ratio 1:100, 1:10, 1:1, 10:1, and 100:1
of propagation moves to regular SLS moves) with a time limit of 10 seconds.

69



Paper A. Improving Local Search for BV Logics in SMT with Path Propagation

instances), less than 8 recovery moves were required. When recovering with a
random walk rather than a regular SLS move, i.e., in configuration Bprop+frw,
out of 7540 solved instances roughly 72% (5427 instances) required less than 8
recovery moves. This suggests that regular SLS recovery moves, even though
expensive, yield a better performance. Given a time limit of 1 second, though,
as depicted in Table 3, configuration Bprop+frw outperforms Bprop by 85 in-
stances. In particular on benchmark family spear, within 1 second and compared
to configurations Bb, Bsls, and Bprop, configuration Bprop+frw solves 1586, 843,
and 363 more instances. These results suggest a combination of configurations
Bb and Bprop+frw into configuration Bb+Bprop+frw in a sequential portfolio
manner [104], where configuration Bprop+frw is run prior to bit-blasting for a
given time limit of 1 second. In the following, configuration Bb+Bprop+frw
is a virtual configuration as it has not been realized within Boolector yet. All
results attributed to Bb+Bprop+frw have been determined based on the results
of configuration Bb and Bprop+frw on our benchmark set with a time limit of
1200 and 1 seconds, respectively, as follows. On instances where configuration
Bprop+frw timed out within 1 second, a penalty of 1 second has been added to
the result of configuration Bb, else the result of configuration Bprop+frw was
chosen.

Table 4 summarizes the results of configurations Bb and Bb+Bprop+frw on
our benchmark set, grouped by family, within a time limit of 1200 seconds.
Even though invoking the Bprop+frw engine prior to bit-blasting produces an
overhead of 1 second for instances that Bprop+frw can not solve within the
given time limit, the combination of both engines considerably improves the
performance of the bit-blasting approach both in terms of solved instances and
total runtime. Overall, configuration Bb+Bprop+frw is able to solve 38 more
instance than configuration Bb, while requiring only 96% of its total runtime.
In particular benchmark families brubiere4, Sage2, and spear show the most
improvement with speed-ups of up to a factor of 39. Even when considering the
1 second overhead of Bb+Bprop+frw on each benchmark of the full QF_BV
benchmark set of the SMT-LIB, which is a total of 50429 instances including all
unsat benchmarks, the performance gain of 85181 seconds on the benchmarks
of our set of 16436 instances still yields a performance improvement in terms of
the overall runtime.

The results in Table 4 are further illustrated in Figure 5 by means of a scat-
ter plot. It shows that configuration Bb+Bprop+frw solves benchmarks up to
orders of magnitude faster than the pure bit-blasting approach Bb. In fact, 156,
595, and 1464 instances are solved more than 1000, 100, and 10 times faster
when combining Bprop+frw with Bb. The overhead generated by unsuccessful
Bprop+frw invocations, i.e., for instances that cannot be solved by Bprop+frw
within the 1 second time limit, does not outweigh the performance gain by the
successful ones.
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4 Experiments

Bsls Bprop Bprop+frw

Family Solved Time [s] Solved Time [s] Solved Time [s]

asp (376) 0 376.0 0 376.0 0 376.0
bench (223) 223 0.0 223 0.0 223 0.2

bmc (22) 10 12.9 10 12.8 9 13.6
brubiere2 (10) 9 2.7 9 3.3 3 7.0
brubiere3 (6) 4 2.0 4 3.7 6 2.1
brubiere4 (10) 9 1.0 8 2.0 8 2.0
calypto (13) 3 10.0 3 10.1 5 9.0
check2 (1) 1 0.0 1 0.0 1 0.0
crafted (1) 1 0.0 1 0.0 1 0.0
dwp (103) 103 0.0 103 0.0 103 0.0

fft (19) 0 19.0 0 19.0 0 19.0
float (126) 0 126.0 3 124.3 2 124.7
gulwani (6) 1 5.3 0 6.0 0 6.0
mcm (155) 1 154.7 2 154.3 1 154.7
pspace (21) 20 16.3 0 21.0 0 21.0

rubik (3) 0 3.0 0 3.0 0 3.0
RWS (20) 0 20.0 0 20.0 0 20.0

sage (6236) 5038 1385.2 4971 1418.4 4769 1579.1
Sage2 (6981) 509 6604.9 473 6657.1 452 6614.0
spear (1675) 819 1249.4 1299 604.2 1662 186.6

stp (1) 0 1.0 0 1.0 0 1.0
stp_s (149) 74 94.4 73 93.9 23 127.4
tacas07 (3) 2 1.2 2 1.2 2 1.2
uclid (262) 0 262.0 0 262.0 0 262.0
VS3 (10) 0 10.0 0 10.0 0 10.0

wienand (4) 0 4.0 0 4.0 0 4.0

total (16436) 6827 10361.1 7185 9807.4 7270 9543.7

Table 3: Results by benchmark family for configurations Bsls, Bprop, and
Bprop+frw with a time limit of 1 second.
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Bb Bb+Bprop+frw

Family Solved Time [s] Solved Time [s]

asp (376) 285 147790.3 285 148075.3
bench (223) 223 0.1 223 0.2

bmc (22) 22 58.8 22 71.5
brubiere2 (10) 10 842.8 10 847.9
brubiere3 (6) 6 49.4 6 2.1
brubiere4 (10) 1 10980.7 8 2400.0
calypto (13) 7 9307.5 7 8358.5
check2 (1) 1 0.0 1 0.0
crafted (1) 1 0.0 1 0.0
dwp (103) 103 3.3 103 0.0

fft (19) 5 17014.5 5 17019.5
float (126) 94 53264.1 94 53356.1
gulwani (6) 6 34.2 6 40.2
mcm (155) 56 135932.1 56 135983.0
pspace (21) 21 687.9 21 708.9

rubik (3) 3 94.5 3 97.5
RWS (20) 16 5031.7 16 5047.7

sage (6236) 6236 2179.2 6236 3526.9
Sage2 (6981) 5621 2213659.7 5648 2148247.0
spear (1675) 1671 12747.3 1675 323.4

stp (1) 1 15.5 1 16.5
stp_s (149) 149 3.6 149 130.7
tacas07 (3) 3 28.7 3 19.7
uclid (262) 262 434.1 262 696.1
VS3 (10) 3 8844.0 3 8847.0

wienand (4) 0 4800.0 0 4800.0

total (16436) 14806 2623801.1 14844 2538615.8

Table 4: Results by benchmark family for configurations Bb and
Bb+Bprop+frw with a time limit of 1200 seconds.
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5 Conclusion
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Figure 5: Bb vs. Bb+Bprop+frw on our benchmark set with a time limit of
1200 seconds and a 1 second time limit for Bprop+frw.

Finally, we tried to further increase the time limit for Bprop+frw of config-
uration Bb+Bprop+frw to 2 and 3 seconds. Compared to the 1 second time
limit, with a time limit of 2 seconds, Bb+Bprop+frw solves an additional 8 in-
stances while requiring 3500 seconds less runtime. The best results, however, are
achieved with a time limit of 3 seconds, where Bb+Bprop+frw solves an addi-
tional 14 instances requiring 3700 seconds less runtime compared to the 1 second
time limit.

5 Conclusion

In this paper, we reimplemented the word-level local search procedure presented
in [58] within our SMT solver Boolector and independently confirmed its effec-
tiveness. We further introduced an extension based on propagating assignments
from the outputs to the inputs and evaluated our approach in particular with re-
spect to a combination with Boolector’s bit-blasting engine, which considerably
improves its performance on satisfiable instances.
We chose all parametric values either as in [58], or such that they provide a

good overall performance if newly introduced. Further optimizing those values
with respect to performance is left to future work.

73



Paper A. Improving Local Search for BV Logics in SMT with Path Propagation

Our technique currently still relies on regular SLS tactics in certain conflict
scenarios. However, this might not be necessary if path propagation via inverse
computation guarantees that search space is not inadvertently pruned on conflict.
This might currently be the case due to short cuts introduced for some bit-
vector operations when e.g. choosing the simplest (and not some randomized)
valid solution. Extending inverse computation to eliminate this kind of short
cuts, and the implementation of the sequential portfolio style combination of our
techniques and Boolector’s state-of-the-art bit-blasting engine is left to future
work.

Binaries of Boolector and all log files of our experimental evaluation can be found at
http://fmv.jku.at/difts15-prop.
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Abstract Many applications of computer-aided verification require bit-precise
reasoning as provided by Satisfiability Modulo Theories (SMT) solvers for the
theory of quantifier-free fixed-size bit-vectors. The current state-of-the-art in
solving bit-vector formulas in SMT relies on bit-blasting, where a given formula
is eagerly translated into propositional logic (SAT) and handed to an underlying
SAT solver. Bit-blasting is efficient in practice, but may not scale if the input
size can not be reduced sufficiently during preprocessing. A recent approach
lifting stochastic local search (SLS) from the bit-level (SAT) to the word-level
(SMT) without bit-blasting proved to be quite effective on hard satisfiable in-
stances, particularly in the context of symbolic execution. However, it still relies
on brute-force randomization and restarts to achieve completeness. Guided by
a completeness proof, we simplified, extended and formalized our propagation-
based variant of the SLS for SMT approach. We obtained a clean, simple and
more precise algorithm that does not rely on SLS techniques, brute-force ran-
domization or restarts to achieve completeness and yields substantial gain in
performance. In this article, we discuss our complete propagation based local
search approach for bit-vector logics in SMT in detail. We further provide an
extended and extensive experimental evaluation including an analysis of ran-
domization effects.
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1 Introduction

A majority of applications in the field of hardware and software verification re-
quires bit-precise reasoning as provided by Satisfiability Modulo Theories (SMT)
solvers for the quantifier-free theory of fixed-size bit-vectors. In many of these ap-
plications, e.g., (constrained random) test case generation [88,101,105] or white
box fuzz testing [62], a majority of the problems is satisfiable. For this kind of
problems, local search procedures are useful even though they do not allow to
determine unsatisfiability. Previous work [58, 93] showed that local search ap-
proaches for bit-vector logics in SMT are orthogonal to other approaches, which
suggests that they are in particular beneficial within a portfolio setting [93].
Current state-of-the-art SMT solvers for the quantifier-free theory of fixed-

size bit-vectors [11, 42, 49, 53, 91] employ the so-called bit-blasting approach
(e.g., [80]), where an input formula is eagerly translated to propositional logic
(SAT) and handed to an underlying SAT solver. While efficient in practice, bit-
blasting approaches heavily rely on rewriting and other techniques [29,37,38,39,
57,59,60,67,68] to simplify the input during preprocessing and may not scale if
the input size can not be reduced sufficiently. In [58], Fröhlich et al. proposed to
attack the problem from a different angle and lifted stochastic local search (SLS)
from the bit-level (SAT) to the word-level (SMT) without bit-blasting. In previ-
ous years, and in particular since the SAT challenge 2012 [7], a new generation
of SLS for SAT solvers with very simple architecture [8] achieved remarkable
results not only in the random but also in the combinatorial tracks of recent
SAT competitions [6, 7, 18]. However, previous attempts to utilize SLS tech-
niques in SMT by integrating an SLS SAT solver into the DPLL(T)-framework
of the SMT solver MathSAT [42] were not able to compete with bit-blasting [66].
In contrast, the SLS for SMT approach in [58] showed promising initial results.
However, [58] does not fully exploit the word-level structure but rather simulates
bit-level local search by focusing on single bit flips. Hence, in [93], we proposed
a propagation-based extension of [58], which introduced an additional strategy
to propagate assignments from the outputs to the inputs. This significantly im-
proved performance. Our results further suggested that these techniques may be
beneficial in a sequential portfolio setting [104] in combination with bit-blasting.
However, [93] still relies on brute-force randomization and restarts to achieve
completeness, so does [58]. Further, focusing only on inverse values as in [93]
when down-propagating assignments may inadvertently prune the search.
In this paper, guided by a formal completeness proof we present a simple,

precise and complete local search variant of the procedure proposed in [93]. Our
approach does not use SLS techniques but relies on propagation of assignments
only. It further does not require brute-force randomization or restarts to achieve
completeness. To determine propagation paths, we extend the concept of con-
trolling inputs to the word-level, which allows to further prune the search. To
propagate assignments down, we lift the Automatic Test Pattern Generation
(ATPG) [82] concept of “backtracing”, which goes back to the PODEM algo-
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rithm [63], to the word-level. We further provide a formalization of backtracing
for the bit-level and the word-level. Note that in contrast to backtracing in
ATPG, our algorithm works with complete assignments. Existing algorithms for
word-level ATPG [73, 75] are based on branch-bound, use neither backtracing
nor complete assignments, and in general lack formal treatment.
We implemented our techniques in our SMT solver Boolector and show that

combining our propagation-based strategy with bit-blasting within a sequential
portfolio setting is beneficial in terms of performance. We provide an extensive
experimental evaluation, including an analysis of randomization effects as a result
of different seeds for the random number generator, in particular in comparison
to the SLS for SMT approach in [58] as implemented in Boolector. Our results
show that our techniques yield a substantial gain in performance.
This article extends and revises work presented earlier in [92]. We provide a

more detailed description of the propagation-based local search strategy intro-
duced in [92], including extensive examples illustrating the core concepts of our
approach. We further include a complete set of rules for determining assign-
ments during backtracing. Our previous experimental evaluation of a sequential
portfolio combination of our propagation-based technique with bit-blasting was
a virtual experiment. For this paper, we implemented such a sequential portfolio
combination within Boolector and provide an extensive experimental evaluation
of our techniques. This evaluation includes the evaluation of randomization
effects of our techniques, which was not included in previous work.

2 Overview

Our propagation-based local search procedure is based on propagating target
assignments from the outputs to the inputs and does not need to rely on restarts
or brute-force randomization to achieve completeness. Our notion of complete-
ness follows the traditional notion of non-deterministic computation of Turing
machines and is equivalent to the more established property of probabilistically
approximately complete (PAC) [71], which is commonly used in the AI commu-
nity to discuss completeness properties of local search algorithms. Note that this
entails that we treat probabilistic choices as non-deterministic choices [71].
The basic idea of our approach is illustrated in Figure 1 and described more

precisely in pseudo code in Figure 2. It is applied to propositional formulas (the
bit-level) and quantifier-free bit-vector formulas (the word-level) as follows.
Given a formula φ, we assume without loss of generality that φ is a directed

acyclic graph (DAG) with a single root r (the so-called root constraint or output
of φ). We use the letter σ to refer to complete but non-satisfying assignments
to all inputs and operators in φ. We further identify complete satisfying as-
signments with the letter ω. Starting from a random but non-satisfying initial
assignment σ1 with σ1(r) = 0, our goal is to reach a satisfying assignment ω
with ω(r) = 1 by iteratively changing the values of primary inputs. We identify
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Figure 1: Basic idea of our propagation-based (local search) strategy. Starting
from an unsatisfying assignment σ1, we force root constraint r to assume its
target value ω(r) = 1 and iteratively propagate this information towards the
primary inputs until we reach a satisfying assignment ω.

ω(r) = 1 as the target value of output r (line 3), denoted as 0 1 in Figure 1,
and propagate this value along a path towards the primary inputs (lines 4-7. We
also refer to this process as “backtracing” [63].
Recursively propagating target value ω(r) = 1 from the output to the primary

inputs yields a new value xi 6= σi(vi) for an input vi (e.g., x1 for v1 in Figure 1).
By updating assignment σi on input vi to σi+1(vi) = xi (e.g., σ2(v1) = x1 in
Figure 1) without changing the value of other primary inputs but recomputing
consistent values for inner nodes (lines 8-9), we move from σi to σi+1 and repeat
this process until we reach a satisfying assignment, i.e., σi+1 = ω.
When down-propagating assignments, we identify path selection (line 5) and

selecting the value to propagate (line 6) as the only sources of non-determinism.
However, we aim to maximally reduce non-deterministic choices without sacri-
ficing completeness. Hence, on the bit-level, path selection prioritizes controlling
inputs w.r.t. the current assignment, a well-known concept from ATPG, while
value selection for a selected input is uniquely defined. On the word-level, we
introduce the corresponding new notion of essential inputs, which lifts the bit-
level concept to the word-level, and restrict value selection to the computation
of what we refer to as consistent and inverse values.
As expected for local search, our propagation-based approach is not able to

determine unsatisfiability. Thus the algorithm in Figure 2 does not terminate in
case that a given input formula is unsatisfiable. When determining satisfiability,
however, our strategy is complete (PAC), i.e., there exists a non-deterministic
choice of moves according to the strategy that leads to a solution.
In the following, we first introduce and formalize our propagation-based ap-

proach on the bit-level and prove its completeness. We then lift it to the word-
level, and prove its completeness on the word-level. We further analyze random-
ization effects as result of using different seeds for the random number generator
and show that our techniques yield substantial performance improvements, in
particular in combination with bit-blasting within a sequential portfolio setting.
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3 Bit-Level

1 function sat (r, σ)
2 while σ(r) 6= 1 // while not satisfied
3 g := r, t := 1 // initialize path as root path
4 while ¬leaf (g) // while current node is an operator
5 n := child (σ, t, g) // select backtracing node
6 x := value (σ, t, g, n) // select backtracing value
7 g := n, t := x // backtracing step (propagation)
8 if ¬constant (g) // check if leaf is variable v = g
9 σ := update (σ, g, t) // apply move to variable v = g

10 return true // return with true if satisfied

Figure 2: The core sat procedure in pseudo-code.

3 Bit-Level

For the sake of simplicity and without loss of generality we consider a fixed
Boolean formula φ and restrict the set of Boolean operators to {∧,¬}. We
interpret φ as a single-rooted And-Inverter-Graph (AIG) [81], where an AIG is
a DAG represented as a 5-tuple (r,N,G, V,E).

The set of nodes N = G ∪ V contains the single root node r ∈ N, and is further
partitioned into a set of gates G and a set of primary inputs (or variables) V .
We require that the set of variables is non-empty, i.e., V 6= ∅, and assume that
the Boolean constants B = {0, 1}, i.e., {false, true}, do not occur in N . This
assumption is without loss of generality since every occurrence of true and false
as input to a gate g ∈ G can be eliminated through rewriting.
The set of gates G = A ∪ I consists of a set of and -gates A and a set of

inverter -gates I. We write g = n ∧ m if g ∈ A, and g = ¬n if g ∈ I. We
further refer to the children of a node g ∈ G as its (gate) inputs (e.g., n or m).
Let E = EA ∪ EI be the edge relation between nodes, with EA : A→ N2 and
EI : I → N describing edges from and - resp. inverter -gates to its input(s). We
write E(g) = (n,m) for g = n∧m and E(g) = n for g = ¬n and further introduce
the notation g → n for an edge between a gate g and one of its inputs n.

We define a complete assignment σ of the given fixed formula φ as a complete
function σ : N → B. Similarly, a partial assignment α of formula φ is defined as
a partial function α : N → B. We say that a complete assignment σ is consistent
on a gate g ∈ I with g = ¬n iff σ(g) = ¬σ(n), and consistent on a gate g ∈ A
with g = n ∧m iff σ(g) = σ(n) ∧ σ(m).
A complete assignment σ is globally consistent on φ (or just consistent) iff it

is consistent on all gates g ∈ G. An assignment σ is satisfying if it is consistent
(thus complete) and satisfies the root, i.e., σ(r) = 1. We use the letter ω to
denote a satisfying assignment. A formula φ is satisfiable if it has a satisfying
assignment. We use C to denote the set of consistent assignments, and W with
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W ⊆ C to denote the set of satisfying assignments of formula φ.

Given two consistent assignments σ and σ′, we say that σ′ is obtained from σ by
flipping the (assignment of a) variable v ∈ V, written as σ v−→ σ′, iff σ(v) = ¬σ′(v)
and σ(u) = σ′(u) for all u ∈ V \{v}. We also refer to flipping a variable as a
move. Note that σ′(g) for gates g ∈ G is defined implicitly due to consistency of
assignment σ′ after fixing the values for the primary inputs V .
Given a set of variables V that can be flipped non-deterministically, let S : C →

P(M) be a (local search) strategy that maps a consistent assignment to a set of
possible movesM = V . A move v ∈ V is valid under strategy S for assignment
σ ∈ C if v ∈ S(σ). Similarly, a sequence of moves µ = (v1, . . . , vk) ∈ V ∗ of
length k = |µ| with v1, . . . , vk ∈ V is valid under strategy S, iff there exists a
sequence of consistent assignments (σ1, . . . , σk+1) ∈ C∗ such that σi

vi−→ σi+1 and
vi ∈ S(σi) for 1 ≤ i ≤ k. In this case, assignment σk+1 can be reached from
assignment σ1 under strategy S (with k moves), also written as σ1 →∗ σk+1.

Definition 1 (Complete Strategy). If formula φ is satisfiable, then a strategy S
is called complete iff for all consistent assignments σ ∈ C there exists a satisfying
assignment ω ∈ W such that ω can be reached from σ under S, i.e., σ →∗ ω.

Given an assignment σ ∈ C and a satisfiable assignment ω ∈ W, let ∆(σ, ω) =
{v ∈ V | σ(v) 6= ω(v)} be the set of variables with different values in σ and ω.
Thus, |∆(σ, ω)| is the Hamming Distance between σ and ω on V .

Definition 2 (Distance-Reducing Strategy). A strategy S is (non-deterministi-
cally) distance reducing, if for all assignments σ ∈ C\W there exists a satisfying
assignment ω ∈ W and a move σ v−→ σ′ valid under S which reduces the Hamming
Distance. That is, move v ∈M is in ∆(σ, ω), thus |∆(σ, ω)| − |∆(σ′, ω)| = 1.

Obviously, any distance reducing strategy can reach a satisfying assignment
(though not necessarily ω) within at most |∆(σ, ω)| moves. This first observa-
tion is the key argument in the completeness proofs for our propagation based
strategies (both on the bit-level and word-level).

Proposition 3. A distance reducing strategy is also complete.

In the following, our ultimate goal is to define a strategy that maximally
reduces non-deterministic choices without sacrificing completeness. In the al-
gorithm shown in Figure 2, path selection (selecting the backtracing node in
line 5) and value selection (selecting the backtracing value in line 6) while down-
propagating assignments constitute the only sources of non-determinism. As we
will show later, in contrast to value selection on the word-level, selecting a back-
tracing value on the bit-level is uniquely defined. When selecting a backtracing
node on the bit-level, non-determinism can be reduced by utilizing the notion of
controlling inputs from ATPG [82], which is defined as follows.

Definition 4 (Controlling Input). Let node n ∈ N be an input of a gate g ∈ G,
i.e., g → n, and let σ be a complete assignment consistent on g. We say that
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3 Bit-Level

input n is controlling under σ if for all complete assignments σ′ consistent on g
with σ(n) = σ′(n) we have σ(g) = σ′(g).

In other words, gate input n is controlling if the assignment of g (i.e., its output
value) remains unchanged as long as the assignment of n does not change.

Given an assignment σ consistent on g ∈ G, we denote a target value t for
gate g as σ(g)  t. On the bit-level, target value t is implicitly given through
assignment σ as t = ¬σ(g), i.e., t can not be reached as long as the controlling
inputs of g remain unchanged. On the word-level, t may be any value t 6= σ(g).

Example 5. Figure 3 shows all possible assignments σ consistent on a gate
g ∈ G. At the outputs we denote current assignment σ(g) and target value t as
σ(g)  t with t = ¬σ(g), e.g., 0  1. At the inputs we show their assignment
under σ. All controlling inputs are indicated with an underline. Note that
and -gate g = n ∧m has no controlling inputs for σ(g) = 1.

¬

0 1

1

¬

1 0

0

∧

0 1

0 1

∧

0 1

1 0

∧

0 1

0 0

∧

1 0

1 1

Figure 3: An inverter -gate and an and -gate and their controlling (underlined)
inputs. Given output values indicate the transition from current to target value.

We define a sequence of nodes π = (n1, . . . , nk) ∈ N+ as a path of length k
with k = |π| iff ni → ni+1 for 0 < i < k, also written as n1 → . . .→ nk. A path π
is rooted if n1 = r, and (fully) expanded if nk ∈ V . We refer to nk ∈ V as the
leaf of π in this case. As a restriction on φ, we require all nodes n ∈ N to be
reachable from the root r, i.e., there exists a path π such that π = (r, . . . , n).
We further require all paths to be acyclic, i.e., for all n ∈ N there exists no path
n→+ n. Note that as a consequence of representing φ as a DAG, this is the case
for any path in φ. Given a path π = (. . . , g) with gate g ∈ G and g → n, we say
that π.n = (. . . , g, n) is an extension of path π with node n.

Definition 6 (Path Selection). Given a complete assignment σ ∈ C and a path
π = (. . . , g) as above. Gate input n can be selected w.r.t. assignment σ to extend
path π to π.n if input n is controlling or if gate g has no controlling input.

Path selection based on the notion of controlling inputs as introduced above
exploits observability don’t cares as defined in the context of ATPG [82]. Simi-
larly, we adopt the ATPG idea of backtracing [63,82] as follows.

Definition 7 (Backtracing Step). Given a complete assignment σ ∈ C and a gate
g ∈ G with g → n. A backtracing step w.r.t. assignment σ selects gate input n
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w.r.t. assignment σ as in Definition 6 and determines a backtracing value x for
input n as follows. If g = ¬n, then x = σ(g). Else, if g = n∧m, then x = ¬σ(g).

As an important observation it turns out that performing a bit-level backtrac-
ing step always flips the value of the selected input under σ. For a selected input,
the backtracing value is therefore always unique. This can be checked easily by
considering all possible scenarios shown in Figure 3.

Proposition 8. A backtracing step yields as backtracing value x = ¬σ(n).

Example 9. Consider g = n ∧m and the assignment σ = {g 7→ 0, n 7→ 0,
m 7→ 1} consistent on g as depicted in Figure 3. Assume that t = ¬σ(g) = 1 is
the target value of g, i.e., σ(g)  t with 0  1. We select n as the single con-
trolling input of g (underlined), which yields backtracing value x = ¬σ(n) = 1.

A trace τ = (π, α) is a rooted path π = (n1, . . . , nk) labelled with a partial
assignment α, where α is defined exactly on {n1, . . . , nk}. A trace (π, α) is (fully)
expanded, if π is a fully expanded path, i.e., node nk ∈ V is the leaf of π and τ .

Let σ ∈ C\W be a complete consistent but non-satisfying assignment. Then
the notion of extension is lifted from paths to traces as follows. Given a trace
τ = (π, α) with π = (. . . , g), g ∈ G and g → n. A backtracing (or propagation)
step w.r.t. σ and target value t = ¬σ(g) = α(g) yields backtracing value x =
¬σ(n) = α′(n) and extends trace τ to τ ′ = (π′, α′) (also denoted as τ → τ ′) if
path π′ = π.n is an extension of π and α′(m) = α(m) for all nodes m in π.

We define the root trace ρ = ((r), {r 7→ 1}) as a trace that maps root r to
its target value ω(r) = 1. A propagation trace w.r.t. assignment σ is a (possibly
partial) trace τ that starts from the root trace ρ and is extended by propagation
steps w.r.t. assignment σ, denoted as ρ→∗ τ .
Note that given a path π and σ, partial assignment α is redundant on the bit-

level. However, we use the same notation on the word-level, where α captures
updates to σ along π, which (in contrast to the bit-level) are not uniquely defined.

Definition 10 (Propagation Strategy). Given a non-satisfying but consistent
assignment σ ∈ C\W, the set of valid moves P(σ) for σ under propagation
strategy P contains exactly the leafs of all expanded propagation traces w.r.t σ.

In the following, we present and prove the main Lemma of this paper, which
then immediately gives completeness of strategy P in Theorem 12. It is reused
for proving completeness of the extension of P to the word-level in Theorem 25.

Lemma 11 (Propagation Lemma). Given a non-satisfying but consistent assign-
ment σ ∈ C\W, then for any satisfying assignment ω ∈ W, used as an oracle,
there exists a fully expanded propagation trace τ w.r.t. σ with leaf v ∈ ∆(σ, ω).
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3 Bit-Level

Proof. The basic idea of our completeness proof is to inductively extend the root
trace ρ to traces τ = (π, α), i.e., ρ →∗ τ , through propagation steps, which all
satisfy the (key) invariant

α(n) = ω(n) 6= σ(n) for all nodes n in π. (1)

The root trace ρ = ((r), {r 7→ ω(r)}) obviously satisfies this invariant. Now,
let τ = (π, α) be a trace that satisfies the invariant but is not fully expanded,
i.e., π = (r, . . . , g) with g ∈ G and α(g) = ω(g) 6= σ(g). Since σ(g) 6= ω(g) it
follows that g has at least one input n with σ(n) 6= ω(n). If g has no controlling
input, then by Definition 6 it is allowed to select n as an input with σ(n) 6=
ω(n). Otherwise, input n is selected as any controlling input. In both cases we
select x = ω(n) 6= σ(n) as backtracing value using Proposition 8. Trace τ is
now extended by n with backtracing value x to τ ′, i.e., τ → τ ′, which in turn
concludes the inductive proof of Equation (1). Any fully expanded propagation
trace τ = (π, α) with leaf v ∈ V , as generated above, also satisfies the invariant
in Equation (1). Thus, we have α(v) = ω(v) 6= σ(v) with v ∈ ∆(σ, ω).

r

v1

0 1

σ1

σ1(v1) 6= ω(v1)

x1 = ω(v1)

π1

r

v2 v1

0 1

. . .

σ2

v1 7→x1 v2 7→x2

σ2(v1) = ω(v1)

σ2(v2) 6= ω(v2)

x2 = ω(v2)

π2

r

vkv1v2

0 1

σk

σk(v1) = ω(v1)

σk(v2) = ω(v2)

σk(vk) 6= ω(vk)

xk = ω(vk)

πk

r

1

vkv1v2

ω

vk 7→xk

|∆(σ1, ω)| > |∆(σ2, ω)|
|∆(σ2, ω)| > |∆(σk, ω)|

|∆(σk, ω)| > 0

Figure 4: The basic idea of our completeness proof. Using a satisfying as-
signment ω as an oracle, in each move σi → σi+1 we down-propagate target
value x = ω(n) for all nodes n in propagation path πi = (r, . . . , vi), which
yields update xi = ω(vi) = σi+1(vi) and thus reduces the hamming distance
|∆(σi, ω)| > |∆(σi+1, ω)|.
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In essence, given assignment σ and ω as above, our propagation strategy
propagates target value ω(r) from root r towards the primary inputs, ulti-
mately producing a fully expanded propagation trace τ = (π, α). In case of
non-deterministic choices for extending the trace we use ω as an oracle to pick
an input n with σ(n) 6= ω(n), which can be selected according to Definition 6.
The oracle allows us to ensure that for all nodes n ∈ π, α(n) = ω(n), which
yields α(v) = ω(v) 6= σ(v) and consequently v ∈ ∆(σ, ω) for leaf v of τ . Thus,
using Lemma 11, our propagation strategy turns out to be distance reducing,
and therefore, according to Proposition 3, complete. Figure 4 illustrates the
basic idea of our proof, which, in the following, serves as a basis for lifting our
approach from the bit-level to the word-level.

Theorem 12. Under the assumptions of the previous Lemma 11 we also get v ∈
P(σ) for leaf v. Thus, P is distance reducing and, as a consequence, complete.

4 Word-Level

In the following, we only consider bit-vector expressions of fixed bit-width w ∈ N.
We denote a bit-vector expression n of width w as n[w], but will omit the bit-
width if the context allows. We refer to the i-th bit of n[w] as n[i] with 1 ≤ i ≤ w
and, for the sake of simplicity, define bit indices as starting from 1 rather than 0.
We interpret n[1] as the least significant bit (LSB) and n[w] as the most signifi-
cant bit (MSB), and denote bit ranges over n from bit index j down to index i
as n[j : i]. In string representations of bit-vectors, we interpret the bit at the far
left index as the MSB and the bit at the far right index as the LSB. We further
define ctz to be the common function that counts the number of trailing zeroes of
a given bit-vector, i.e., the number of consecutive 0-bits starting from the LSB,
e.g., ctz (0101) = 0 and ctz (111100) = 2. Similarly, clz is the common function
to compute the number of leading zeroes, i.e., the number of consecutive 0-bits
starting from the MSB, e.g., clz (0101) = 1 and clz (111100) = 0.
For the sake of simplicity and without loss of generality we consider a fixed

single-rooted quantifier-free bit-vector formula φ and interpret Boolean expres-
sions as bit-vector expressions of bit-width one. The set of bit-vector operators
is restricted to O = {&,∼,=, <,<<,>>,+, ·,÷,mod, ◦, [ : ], if-then-else} and in-
terpreted according to Table 1. The selection of operators inO is rather arbitrary
but provides a good compromise between effective and efficient word-level rewrit-
ing and compact encodings for bit-blasting approaches. It is complete, though,
in the sense that all operators defined in SMT-LIB [13] (in particular signed
operators) can be modeled in a compact way. Note that our methods are not
restricted to single-rootedness or this particular selection of operators, and can
easily be lifted to any other set of operators or the multi-rooted case.
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Bit-Width
Operator SMT-LIB Arity Output Input

[j : i] extract 1 j − i+ 1 w − − Extraction (1 ≤ i ≤ j ≤ w)
∼ bvnot 1 w w − − Bit-wise negation
& bvand 2 w w w − Bit-wise conjunction
= = 2 1 w w − Equality
< bvult 2 1 w w − Unsigned less than
<< bvshl 2 w w q − Logical shift left (w = 2q)
>> bvshr 2 w w q − Logical shift right (w = 2q)
+ bvadd 2 w w w − Addition
· bvmul 2 w w w − Multiplication
÷ bvudiv 2 w w w − Unsigned division

mod bvurem 2 w w w − Unsigned remainder
◦ concat 2 p+ q p q − Concatenation

if-then-else ite 3 w 1 w w Conditional

Table 1: The set of considered bit-vector operators (w, p, q, i, j ∈ N).

We interpret formula φ as a single-rooted DAG represented as an 8-tuple
(r,N, κ,O, F, V,B,E). The set of nodes N = O ∪ V ∪B contains the single
root node r ∈ N of bit-width one, and is further partitioned into a set of operator
nodes O, a set of primary inputs (or bit-vector variables) V, and a set of bit-vector
constants B ⊆ B∗, which are denoted in either decimal or binary notation if the
context allows. The bit-width of a node is given by κ : N → N, thus κ(r) = 1.
Operator nodes are interpreted as bit-vector operators via F : O → O, which
in turn determines their arity and input and output bit-widths as defined in
Table 1. The edge relation between nodes is given as E = E1 ∪ E2 ∪ E3, with
Ei : O → N i describing the set of edges from unary, binary, and ternary operator
nodes to its input(s), respectively. We again use the notation o→ n for an edge
between an operator node o and one of its inputs n.
We only consider well-formed formulas, where the bit-widths of all operator

nodes and their inputs conform to the conditions imposed via interpretation F
as defined in Table 1. For instance, we denote a bit-vector addition node o with
inputs n and m as o = n+m, where o ∈ O of arity 2 with F (o) = +, and there-
fore κ(o) = κ(n) = κ(m). In the following, if more convenient we will use the
functional notation o = �(n1, . . . , nk) for operator node o ∈ O of arity k with
inputs n1, . . . , nk and F (o) = �, e.g., +(n,m). Note that the semantics of all
operators in O correspond to their SMT-LIB counterparts listed in Table 1, with
three exceptions. Given a logical shift operation n<<m or n>>m, w.l.o.g. and
as implemented in our SMT solver Boolector [91], we restrict bit-width κ(n) to
2κ(m). Further, as implemented by Boolector and other state-of-the-art SMT
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solvers, e.g., Mathsat [42] Yices [53] and Z3 [49], we define an unsigned division
by zero to return the greatest possible value rather than introducing uninter-
preted functions, i.e., x÷ 0 = ∼ 0. Similarly, x mod 0 = x.

A complete assignment σ of a given fixed φ is a complete function σ : N → B∗
with σ(n) ∈ Bκ(n), and a partial assignment is a partial function α : N → B∗ with
α(n) ∈ Bκ(n). Given an operator node o ∈ O with o = �(n1, . . . , nk) and � ∈ O,
a complete assignment σ is consistent on o if σ(o) = f(σ(n1), . . . , σ(nk)) where
f : Bκ(n1) × · · · × Bκ(nk) → Bκ(o) is determined by the semantics of operator � as
defined in the SMT-LIB standard [13] (with the exceptions discussed above).
A complete assignment is (globally) consistent on φ (or just consistent), iff

it is consistent on all bit-vector operator nodes o ∈ O and σ(b) = b for all bit-
vector constants b ∈ B. A satisfying assignment ω is a complete and consistent
assignment that satisfies the root, i.e., ω(r) = 1. In the following, we will again
use the letter C to denote the set of complete and consistent assignments, and the
letter W with W ⊆ C to denote the set of satisfying assignments of formula φ.

Given a bit-vector variable v ∈ V with κ(v) = w and assignments σ, σ′∈ C.
We adopt the notion of obtaining assignment σ′ from assignment σ by assigning
a new value x to variable v with x ∈ Bw and x 6= σ(v), written as σ v 7→x−−−→ σ′,
which we refer to as a move. The set of word-level moves is thus defined as
M = {(v, x) | v ∈ V, x ∈ Bκ(v)}, and accordingly, a word-level propagation strat-
egy P is defined as a function S : C 7→ P(M), which maps a consistent assign-
ment to a set of moves. We lift propagation strategy P from the bit-level to the
word-level by first introducing our new notion of essential inputs, which lifts and
extends the bit-level notion of controlling inputs to the word-level.

Definition 13 (Essential Inputs). Let n ∈ N be an input of a bit-vector operator
node o ∈ O, i.e., o→ n, and let σ be a complete assignment consistent on o.
Further, let t be the target value of o, i.e., σ(o)  t, with t 6= σ(o). We say
that n is an essential input under σ w.r.t. target value t, if for all complete
assignments σ′ consistent on o with σ(n) = σ′(n), we have σ′(o) 6= t.

In other words, an input n to an operator node o is essential w.r.t. some target
value t, if o can not assume t as long as the assignment of n does not change. As
an example, consider the bit-vector operators and their essential inputs under
some consistent assignment σ w.r.t. some target value t as depicted in Figure 5.

Example 14. Consider the bit-vector operators {+, &, <<, ·,÷, mod , ◦} of bit-
width 2 as depicted in Figure 5. For an operator node o, at the outputs we
denote given assignment σ(o) and target value t as σ(o)  t (e.g., 10 01).
At the inputs we show their assignment under σ. Essential inputs (under σ
w.r.t. target value t) are indicated with an underline.

(a) Given o := n + m with t = 10 and σ = {o 7→ 11, n 7→ 00, m 7→ 11 }.
Operator + has no essential inputs, independent from σ and t.
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(b) Given o := n & m with t = 01 and σ = {o 7→ 10, n 7→ 10, m 7→ 11 }.
Input n is essential since t & σ(n) 6= t and thus, it is not possible to find a
value x for m such that σ(n) & x = t. Input m, however, is not essential
since t & σ(m) = t.

(c) Given o := n<<m with t = 10 and σ = {o 7→ 00, n 7→ 00, m 7→ 1}.
Input n is obviously essential, since shifting zero value 00 can never result
in the non-zero target value t = 01. Input m, however, is not essential,
since it is possible to simply select, e.g., x = 01 for n such that t = 10 =
x<<σ(m) = 01<< 1.

(d) Given o := n ·m with t = 10 and σ = {o 7→ 00, n 7→ 00, m 7→ 10}.
Input n is essential since t 6= 00 but σ(n) = 00, and thus, it is not possible
to find a value x for m such that σ(n) · x = t. Input m, however, is
not essential since we could pick, e.g., x = 01 for n to obtain t = 10 =
x · σ(m) = 01 · 10.

(e) Given o := n÷m with t = 10 and σ = {o 7→ 01, n 7→ 01, m 7→ 01}.
Input n is essential since σ(n) < t, and thus, it is not possible to find a
value x for m such that σ(n)÷ x = t. Input m, however, is not essential,
since we could pick, e.g., x = 10 to obtain t = 10 = x · σ(m) = 10 · 01.

(f) Given o := n mod m with t = 10 and σ = {o 7→ 00, n 7→ 01, m 7→ 01}.
Since σ(n) = 01 < 10 = t, it is not possible to find a value x for m such
that σ(n) mod x = t. However, since σ(m) = 01 but t 6= 00, it is also not
possible to find a value x for n such that x mod σ(m) = t. Hence, both
inputs are essential.

(g) Given o := n ◦m with t = 11 and σ = {o 7→ 11, n 7→ 0, m 7→ 1}.
Input n is essential since σ(n) 6= t[2 : 2], and thus, it is not possible to find
a value x for m such that σ(n) ◦ x = t. Input m, however, is not essential
since it already matches the corresponding slice of the target value.
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Figure 5: Bit-vector operator nodes and examples for essential (underlined)
inputs. Given output values indicate the transition from current to target value.
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Note that AIGs can be represented by bit-vectors of bit-width one, which can
be interpreted as Boolean expressions. In this sense, the notion of controlling
inputs can also be applied to word-level Boolean expressions.

Proposition 15. When applied to bit-level (Boolean) expressions, the notion of
essential inputs exactly matches the notion of controlling inputs.

Proof. For applying the notion of essential inputs to the bit-level, consider the
operator set {¬,∧} for o ∈ G with o→ n. Further, target value t 6= σ(o) on the
bit-level implies t = ¬σ(o), which exactly matches the corresponding implicit
definition of the target value of o on the bit-level. Now assume that input n is
essential w.r.t. t. Then, if σ(n) = σ′(n), by Definition 13 we have that σ′(o) 6= t,
and therefore σ′(o) = ¬t = σ(o). The other direction works in the same way.

The definition of a (rooted and expanded) path as a sequence of nodes π =
(n1, . . . , nk) ∈ N∗ is lifted from the bit-level to the word-level in the natural way.
Corresponding restrictions and implications of Section 3 apply. The notions of
path selection and path extension are lifted to the word-level as follows.

Definition 16 (Path Extension). Given a path π = (. . . , o) with o ∈ O and
o→ n, we say that π.n = (. . . , o, n) is an extension of path π with node n.

Definition 17 (Path Selection). Given a complete consistent assignment σ ∈ C,
a path π = (. . . , o) as in Definition 16 above, and σ(o)  t, i.e., t 6= σ(o), then
input n can be selected w.r.t. σ and target value t to extend π to π.n if n is
essential or if o has no essential input (in both cases essential under σ w.r.t. t).

Figure 6 shows examples for all combinations of essential (underlined) and
non-essential inputs for all bit-vector operators in O. For an operator node o,
an output value σ(o)  t indicates the desired transition from current assign-
ment σ(o) to target value t, and an input value shows its assignment under σ.
Underlined blue cases indicate that this input is a single essential input and will
therefore always be selected. Any other case (both inputs are essential or no
input is essential) represents a non-deterministic choice during path selection.

In contrast to value selection on the bit-level, where a backtracing step always
yields the flipped assignment of the selected input as backtracing value, on the
word-level, selecting a backtracing value is not uniquely defined but a source of
non-determinism. We consider three variants of value selection, under the fol-
lowing assumptions. Let t be the target value of an operator node o ∈ O, and let
σ ∈ C be a complete assignment such that σ(o) 6= t. Further, assume that input n
with o→ n is selected w.r.t. target value t and σ as in Definition 17 above.

Definition 18 (Random Value). Any value x with κ(x) = κ(n) is called a
random value for input n.
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Figure 6: Examples for all combinations of essential (underlined) inputs for all
bit-vector operators in O. Underlined blue cases indicate that this input is a
single essential input. No input is essential for operators =, +, and if-then-else.
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Definition 19 (Consistent Value). A random value x is a consistent value for
input n w.r.t. target value t, if there is a complete assignment σ′ consistent on
operator node o with σ′(n) = x and σ′(o) = t.

In other words, a value is consistent for an input, if it allows to produce the
target value after changing values of other inputs if necessary. We compute a
consistent value as backtracing value x for input n as described in Tables 2-3.
However, in some cases, restricting the notion of consistent values even further
may be beneficial. Consider the following motivating example.

Example 20. Consider a formula φ := 274177[65]·v = 18446744073709551617[65].
Computing x = 18446744073709551617[65] ÷ 274177[65] = 67280421310721[65]

immediately concludes with a satisfying assignment for φ.

The chances to select x = 67280421310721[65] if consistent values for the mul-
tiplication operator are chosen as described in Table 2 are arbitrarily small.
Hence, we also consider the notion of inverse values, which utilize the inverse of
a given operator.

Definition 21 (Inverse Value). A consistent value x is an inverse value for
input n w.r.t. target value t and assignment σ, if there exists a complete as-
signment σ′ consistent on operator node o with σ′(n) = x, σ′(o) = t and
σ′(m) = σ(m) for all inputs m with o→ m and m 6= n.

In other words, a value is an inverse value for input n, if it allows to produce the
target value for an operator node without changing the assignment of its other
inputs. Consequently, an inverse value for input n is also consistent. We compute
an inverse value as backtracing value x for input n as described in Tables 4-6.
Note that inverse value computation as initially presented in [93] is too restric-

tive for some operators, which is incomplete since it may inadvertently prune the
search. We therefore require that inverse value computation allows to generate
all possible values for all operators in O, which is the case for the rules for inverse
value computation as described in Tables 4-6.

Definition 22 (Backtracing Step). Let σ ∈ C be a complete consistent assign-
ment. Given an operator node o ∈ O with o → n and a target value t 6= σ(o),
then a backtracing step selects input n of operator node o w.r.t. σ as in Defini-
tion 17 and selects a backtracing value x for n as a consistent (and optionally
inverse) value w.r.t. σ and t if such a value exists, and a random value otherwise.

Note that it is not always possible to find an inverse value for input n, e.g.,
o := n & m with σ = {o 7→ 00, n 7→ 00,m 7→ 00} and t = 01. Further, even for
operators that allow to always produce inverse values, e.g., operator +, doing so
may lead to inadvertently pruning the search space, see Example 23 below.
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4 Word-Level

o := ∼ n Then x = ∼ t.

o := n = m Any random value x is consistent for operator =.
o := m = n

o := n & m Let i be a bit index with 1 ≤ i ≤ κ(n). For all i, if t[i] = 1
o := m & n then x[i] = 1, and else, x[i] is set arbitrarily.

o := n <m Any random value x is a consistent value for n, with the
restriction that if t = 1 then x < ∼0.

o := m < n Any random value x is a consistent value for n, with the
restriction that if t = 1 then x 6= 0.

o := n + m Any x is a consistent value for n.
o := m + n

o := n ·m Any random value x with ctz (t) ≥ ctz(x) and x = 0 if
o := m · n t = 0 is a consistent value for n.

o := n÷m If t = ∼0 or t = 0, any arbitrary value x is consistent, with
the restriction that x < ∼ 0 if t = 0. In any other case,
let y be a random value with y 6= 0 such that y · t does not
overflow. Then x = y · t.

o := m÷ n If t = ∼0, then x ∈ {0, 1} is a consistent value for n. Else,
any random value x such that x · t does not overflow is a
consistent value for n.

o := n mod m If t = ∼0 then x = ∼0, and a random x ≥ t, otherwise.

o := m mod n If t = ∼0 then x = 0, and a random x > t, otherwise.

o := n<<m Let s be a random value with 0 ≤ s ≤ ctz (t), and let w =
κ(n). Then x[i] = (t>>s)[i] for 1 ≤ i ≤ w− s, and all other
bits x[i] set arbitrarily for w − s < i ≤ w.

o := m<<n Any x with 0 ≤ x ≤ ctz (t) is a consistent value for n.

Table 2: Rules for consistent value computation for operators {∼, =, &, <, +,
·, ÷, mod, <<}, where t is the target value of an operator node o ∈ O, σ ∈ C is
a complete assignment such that σ(o) 6= t, and input n with o → n is selected
w.r.t. target value t and assignment σ as in Definition 17.
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o := n>>m Let s be a random value with 0 ≤ s ≤ clz (t), and let w = κ(n).
Then x[i] = (t<<s)[i] for s < i ≤ w, and all other bits x[i] set
arbitrarily for 1 ≤ i ≤ s.

o := m>>n Any x with 0 ≤ x ≤ clz (t) is a consistent value for n.

o := n ◦m Let p = κ(n) and q = κ(m) and w = κ(o) = p + q. Then
x = t[w : q + 1] is a consistent value for n.

o := m ◦ n Let p = κ(n) and q = κ(m) and w = κ(o) = p + q. Then
x = t[q : 1] is consistent value for n.

o := n[j : i] Then x[k] = t[k + i− 1] for 1 ≤ k ≤ j − i+ 1, with all other
bits set arbitrarily.

o := if c then n else m
Any x is a consistent value for n.o := if c then m else n

o := if n then m1 else m2

Table 3: Rules for consistent value computation for operators {>>, ◦, [:],
if-then-else}, where t is the target value of an operator node o ∈ O, σ ∈ C
is a complete assignment such that σ(o) 6= t, and input n with o→ n is selected
w.r.t. target value t and assignment σ as in Definition 17.

o := ∼ n Then x = ∼ t.

o := n = m If t = 1, then x = σ(m). In any other case, any random value
o := m = n x 6= σ(m) is an inverse value for n.

o := n & m Let i be a bit index with 1 ≤ i ≤ κ(n). If there is an i with
o := m & n t[i] = 1 and σ(m)[i] = 0, then there exists no inverse value

for n. Otherwise, for all i, if t[i] = 1 then x[i] = 1, or if t[i] = 0
and σ(m)[i] = 1 then x[i] = 0, and else, x[i] is set arbitrarily.

o := n <m If t = 1 and σ(m) = 0, then there exists no inverse value. Else,
any x with t = x < σ(m) is an inverse value for n.

o := m < n If t = 1 and σ(m) = ∼0, then there exists no inverse value.
Else, any x with t = σ(m) < x is an inverse value for n.

Table 4: Rules for inverse value computation for operators {∼, =, &, <},
where t is the target value of an operator node o ∈ O, σ ∈ C is a complete
assignment such that σ(o) 6= t, and input n with o→ n is selected w.r.t. target
value t and assignment σ as in Definition 17.
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o := n + m Then x = t− σ(m) = t+ (1 +∼σ(m)).
o := m + n

o := n ·m If t = σ(m) = 0, any x is an inverse value, but this contra-
o := m · n dicts assumption t 6= σ(o). If t 6= 0 and σ(m) = 0, or if

σ(m) 6= 0 with ctz (t) < ctz (σ(m)), there exists no inverse
value. Otherwise, ctz (t) ≥ ctz (σ(m)) and σ(m) 6= 0. Let
y = m>> ctz (σ(m)), thus y is odd. We compute y−1 as
its multiplicative inverse modulo 2w, e.g., via the Extended
Euclidean algorithm (similar to word-level rewriting tech-
niques that require solving for a variable, e.g. [60]), and
determine x as (t>> ctz (σ(m))) · y−1 except that all bits in
x[w : w − ctz (σ(m)) + 1] are set arbitrarily, with w = κ(n).

o := n÷m If t = ∼ 0 and σ(m) = 0, then any x is an inverse value,
but this contradicts assumption t 6= σ(o). If t = ∼ 0 and
σ(m) 6∈ {0, 1}, or if t 6= ∼ 0 and σ(m) = 0, or if t · σ(m)
produces an overflow, there exists no inverse value for n.
Else, if t = ∼ 0 and σ(m) = 1, then x = ∼ 0. In any other
case, any x with t = x÷ σ(m) is an inverse value.

o := m÷ n If t = σ(m) = 0, then any x is an inverse value, but this
contradicts assumption t 6= σ(o). If t = 0 and σ(m) = ∼0,
or if m < t, then there exists no inverse value for n. If
t = σ(m) = ∼ 0, then x ∈ {0, 1}, and if t = ∼ 0 and
σ(m) 6= ∼ 0, then x = 0. Else, if t = 0 and σ(m) 6= ∼ 0,
then any random x > σ(m) is an inverse value. In any other
case, any x with t = σ(m)÷ x is an inverse value for n.

o := n mod m If σ(m) ≤ t, then there exists no inverse value. Else, we
select a y 6= 0 such that neither in the multiplication nor
the addition operation of σ(m) · y + t occurs an overflow.
Then x = σ(m) · y + t is an inverse value for n.

o := m mod n If σ(m) < t, or if t 6= 0 and t = σ(m)− 1, or if σ(m)− t ≤ t,
then there exists no inverse value for n. Else, if σ(m) = t,
then x = 0 or any x > t is an inverse value for n. In any
other case, any x = (σ(m) − t) ÷ y with y > 0 such that
(σ(m)− t) mod y = 0 is an inverse value for n.

Table 5: Rules for inverse value computation for operators {+, ·, ÷, bmod},
where t is the target value of an operator node o ∈ O, σ ∈ C is a complete
assignment such that σ(o) 6= t, and input n with o→ n is selected w.r.t. target
value t and assignment σ as in Definition 17.
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o := n<<m If σ(m) = 0, then any x is an inverse value. Else, if ctz (t) ≥
ctz (m), then x = t>>σ(m) with all bits in x[w : w−σ(m)+1]
with w = κ(n) set arbitrarily. In any other case, there exists
no inverse value for n.

o := m<<n If t = σ(m) = 0, then any x is an inverse value, but this
contradicts assumption t 6= σ(o). If ctz (m) ≤ ctz (t), if t = 0,
any x ≥ ctz (t) − ctz (m) is an inverse value for n, and else,
x = ctz (t)−ctz (m) is an inverse value if the remaining shifted
bits in t match with the corresponding bits in σ(m), i.e., if
t[w : x + 1] = σ(m)[w − x : 1] with w = κ(n) = κ(o). In any
other case, there exists no inverse value for n.

o := n>>m If σ(m) = 0, then any x is an inverse value. Else, if clz (t) ≥
clz (m) then x = t<<σ(m) with all bits in x[σ(m) : 1] set
arbitrarily. In any other case, there exists no inverse value
for n.

o := m>>n If t = σ(m) = 0, then any x is an inverse value, but this
contradicts assumption t 6= σ(o). If clz (m) ≥ clz (t), if t = 0,
then any x ≥ clz (t) − clz (m) is an inverse value for n, and
else, x = clz (t) − clz (m) is an inverse value, if the remaining
shifted bits in t match with the corresponding bits in σ(m),
i.e., if t[w − x : 1] = σ(m)[w : x + 1] with w = κ(m) = κ(o).
In any other case, there exists no inverse value for n.

o := n ◦m Then any consistent value x is an inverse value for n.
o := m ◦ n

o := n[j : i] Then any consistent value x is an inverse value for n.

o := if c then n else m
Then x = t.o := if c then m else n

o := if n then m1 else m2 Then x = ∼σ(n)

Table 6: Rules for inverse value computation for operators {<<, >>, ◦, [:],
if-then-else}, where t is the target value of an operator node o ∈ O, σ ∈ C is
a complete assignment such that σ(o) 6= t, and input n with o → n is selected
w.r.t. target value t and assignment σ as in Definition 17.

96



4 Word-Level

v 7→ 10

v 7→ 00

ω
v 7→ 01

=

+ 00

+

v 10

0 1

10 00

10 00

00 10

σ1 α1

a)

in
v

inv

in
v

=

+ 00

+

v 10

0 1

10 00

00 10

10 00

σ2 α2

b)
in

v

inv

in
v

=

+ 00

+

v 10

0 1

10 00

10 11

00 01

σ1 α
′
1

c)

in
v

con

in
v

Figure 7: Example illustrating the necessity of choosing between random and
inverse values when down propagating assignments (backtracing). The output
values indicate the (desired) transition from current to target value. Other val-
ues indicate the transition from current value to the value yielded by down
propagating the target output value. A propagation strategy without further
randomization using only inverse values is incomplete.

Example 23. Consider formula φ := v+ v+ 2[2] = 0[2] with root r := p2 = 0[2],
where p2 := v + p1 and p1 := v + 2[2], and a complete consistent assignment
σ1 = {v 7→ 00, p1 7→ 10, p2 7→ 10, r 7→ 0}, as shown in Figure 7a. Let
t = 1 be the target value of root r, i.e., our goal is to find a value for bit-
vector variable v such that p2 = 00, and thus, formula φ is satisfied. Assume
that as in Figure 7a-b, only inverse values are selected for + operators during
propagation. Down propagating target values along the path indicated by blue
arrows in Figure 7a, the move v 7→ 10 = α1(v) is generated, which consequently
yields assignment σ2 = {v 7→ 10, p1 7→ 00, p2 7→ 10, r 7→ 0} as indicated
in Figure 7b. Selecting the other possible propagation path, the same move
is produced. Thus, σ2 is independent of which of the two paths is selected.
Since σ2(r) 6= t, target value t is again propagated down, which generates move
v 7→ 00 = α2(v), again independently of which path is selected. With this, we
move back to the initial assignment σ1. Consequently, a satisfying assignment,
e.g., ω(v) = 01 or ω′(v) = 11, can not be reached by only selecting inverse
values. However, selecting a consistent but non-inverse value for p1 as, e.g., in
Figure 7c, generates move v 7→ 01 = α′1(v), which yields a satisfying assignment
ω = {v 7→ 01, p1 7→ 11, p2 7→ 00, r 7→ 1}.
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As a consequence, when performing a backtracing step we in general select
some consistent non-inverse value, if no inverse value exists, and otherwise non-
deterministically choose between consistent (but not necessarily inverse) and
inverse values. Since all operators in O are surjective (i.e., they can produce any
target value) for our selected semantics (e.g., ∼ 0 mod 0 = ∼ 0), it is not neces-
sary to select inconsistent random values. For other sets of operators, however,
this might be necessary. For the sake of completeness we therefore included the
selection of random values in the formal definition of backtracing steps.
Note that since on the bit-level the backtracing value for a selected input is

uniquely determined (see Proposition 8), the issue of value selection is specific to
the word-level. Further, when interpreting AIGs as word-level expressions, the
notion of backtracing steps on the bit-level as in Definition 7 exactly matches the
word-level notion as in Definition 22 using Proposition 15. As a side note, the
problem of value selection during word-level backtracing and subsequent word-
level propagation is similar to the problem of making a theory decision (“model
assignment”) and propagating this decision in MCSat [50,76].

The word-level propagation strategy P is defined in exactly the same way as
for the bit-level (see Definition 10) except that the word-level notion of backtrac-
ing based on essential inputs and consistent and inverse value selection (Defini-
tion 22) replaces bit-level backtracing based on controlling inputs (Definition 7),
and the set of valid moves P(σ) contains not only the leafs of all expanded prop-
agation traces but also their updated assignments, i.e., (v, α(v)) for a leaf v.
Further important concepts defined on the bit-level in Section 3 can be extended
naturally to the word-level. These concepts include (expanded) paths and traces,
leafs, and trace extension. We omit formal definitions accordingly.

Proposition 8, which is substantial for the bit-level proof of Lemma 11, does
not directly apply on the word-level due to the more sophisticated selection of
backtracing values. We lift Proposition 8 to the word-level as follows.

Proposition 24. Let σ ∈ C be a complete consistent assignment, and let ω be
a satisfying assignment ω ∈ W. Given operator node o ∈ O with o → n and
target value t = ω(o) 6= σ(o), i.e., σ(o) t, then there exists a backtracing step
w.r.t. assignment σ and target value t, which selects input n and backtracing
value x = ω(n) 6= σ(n).

Proof. First, assume that operator node o has an essential input w.r.t. assign-
ment σ. Then we select an arbitrary essential input n of o. Since target value
t = ω(o) 6= σ(o), we get σ(n) 6= ω(n) by contraposition of Definition 13. Sim-
ilarly, if o has no essential inputs, then we select n as an arbitrary input with
σ(n) 6= ω(n), which has to exist since ω(o) 6= σ(o). In both cases, we can select
x = ω(n) 6= σ(n) as backtracing value, which is consistent for operator node o
w.r.t. assignment σ and target value t since ω is consistent. Picking a random
value as backtracing value, which is the last case in Definition 22, can not occur
under the given assumptions since, as already discussed, ω is consistent on o.
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Using Proposition 24 instead of Proposition 8, the bit-level proof of Lemma 11
can then be lifted to the word-level by replacing every occurrence of gate g with
operator node o, and the notion of “controlling” input with “essential” input.

Theorem 25. Theorem 12 and Lemma 11 also apply on the word-level, and
thus, propagation strategy P is also complete on the word-level.

Note that even though Proposition 24 would allow us to restrict the selection
of consistent and inverse backtracing values to be different from the current
input node value, i.e., x 6= σ(n), we do not enforce this property. Restricting
value selection to a value x 6= σ(n) interferes with path selection, in particular
in the case where an input node is selected for which the current value is the
only consistent or inverse value. We leave the exploration of this optimization
to future work.

5 Experimental Evaluation

We implemented our propagation strategy within our SMT solver Boolector [91]
and consider the following configurations.

(1) Bb The core Boolector engine which implements a bit-blasting ap-
proach. This configuration is identical to the version that entered the
QF_BV track of the SMT competition 2016 and uses (internal) version
bbc of our SAT solver Lingeling [23] as backend solver.

(2) Bsls The SLS engine of Boolector, which implements the SLS for
SMT approach introduced in [58] as described in [93], with random
walks enabled.

(3) Paig The bit-level configuration of our propagation-based approach
which operates on AIG representation of the given input as bit-blasted
by Boolector.

(4) Pw The word-level configuration of our propagation-based approach
which directly operates on the given bit-vector formula, with inverse val-
ues prioritized over consistent values during backtracing with a proba-
bility of 99 to 1.

Note that the choice of rewriting and other simplification techniques applied prior
to the actual decision procedure may considerably influence its performance. In
order to provide the same basis for comparison and avoid skewed results due
to differences in the rewriting and simplification techniques applied by Z3 [49]
versus Boolector, we do not compare our propagation-based approach against
the original implementation of [58] in Z3 but against our implementation of [58]
in Boolector (configuration Bsls). All configurations of Boolector apply the same
set of rewriting and simplification techniques in the same order.
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Bb Bsls Paig Pw

Family Solved Time [s] Solved Time [s] Solved Time [s] Solved Time [s]

asp (376) 48 3526.2 0 3760.0 0 3760.0 0 3760.0
bench_ab (223) 223 0.2 223 0.0 223 0.0 223 0.0

bmc (22) 20 58.5 10 122.2 11 134.3 13 116.3
brummayerbiere (26) 5 228.2 25 13.5 12 184.8 26 17.5

calypto (13) 4 92.4 4 91.1 2 110.2 5 93.3
check2 (1) 1 0.0 1 0.0 1 0.0 1 0.0
crafted (1) 1 0.0 1 0.0 1 0.0 1 0.0

dwp_formulas (103) 103 0.4 103 0.0 103 0.0 103 0.0
fft (19) 4 159.2 0 190.0 0 190.0 1 180.5

float (126) 21 1124.9 0 1260.0 0 1260.0 27 1033.7
gulwani (6) 5 28.3 1 51.0 0 60.0 0 60.0
mcm (155) 14 1477.1 5 1523.1 5 1528.0 12 1440.2
pspace (21) 0 210.0 21 17.3 0 210.0 21 1.6

rubik (3) 1 23.1 0 30.0 0 30.0 0 30.0
RWS (20) 14 84.5 0 200.0 0 200.0 0 200.0

sage (6236) 6236 2602.9 5287 11117.4 4623 17036.3 5099 11615.9
Sage2 (6981) 1564 60634.3 613 64540.2 289 67648.1 526 64762.5
spear (1675) 1395 10587.1 1145 6848.8 1516 3516.0 1668 205.2

stp (1) 0 10.0 0 10.0 0 10.0 0 10.0
stp_samples (149) 149 4.4 120 523.4 129 217.9 104 546.5

tacas07 (3) 3 11.5 2 10.2 2 11.3 2 10.2
uclid (262) 261 741.1 2 2610.1 28 2467.0 262 148.6
VS3 (10) 0 100.0 0 100.0 0 100.0 0 100.0

wienand (4) 0 40.0 0 40.0 0 40.0 0 40.0

total (16436) 10072 81744.5 7560 93058.3 6945 98714.1 8094 84372.0

Table 7: Configurations Bb, Bsls, Paig and Pw with a time limit of 10 seconds
grouped by benchmark families. Configuration Bb is the default bit-blasting
engine of Boolector. Configuration Bsls implements the SLS for SMT approach
presented in [58] in Boolector as described in [93]. Configurations Paig and Pw
implement our bit-level and word-level propagation strategy.
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Since [92] and in particular for the SMT competition 2016, we improved several
core components of Boolector, which affects all the configurations above. The
default configurations of Paig and Pw therefore show major improvements in
comparison to [92]. In comparison to [93], the default configuration of Bsls,
however, seems to perform worse. This is solely due to minor changes within the
SLS engine that affect the random number generator (RNG). We will show that
the difference in the number of solved instances compared to [93] lies within
the expected variance caused by randomization effects. Note that where not
otherwise noted, in the default configuration of all local search configurations
Bsls, Paig and Pw we will use a seed of value 0 for the RNG.
We compiled a set of in total 16436 benchmarks1 and included all bench-

marks with status sat or unknown in the QF_BV category of the SMT-LIB [14]
benchmark library except those proved by Bb to be unsatisfiable within a time
limit of 1200 seconds. We further excluded all benchmarks solved by Boolector
via rewriting only. Note that our benchmark set is the same set we already
used in [93] and [92]. Previously, all benchmarks in the Sage2 family that used
non-SMT-LIBv2 compliant operators had to be explicitly excluded from the set
above. However, since the SMT competition 2016, these benchmarks have been
removed from SMT-LIB.
All experiments were performed on a cluster with 30 nodes of 2.83 GHz Intel

Core 2 Quad machines with 8 GB of memory using Ubuntu 14.04.3 LTS. Each
run is limited to use 7 GB of main memory. In terms of runtime we consider
CPU time only. In case of a time out or memory out, the time limit is used as
runtime. Note that the results in [58] indicate that there still exists a consider-
able gap between the performance of state-of-the-art bit-blasting and word-level
local search. However, the latter significantly outperforms bit-blasting on sev-
eral instances. We therefore evaluated our local search configurations as in [93]
and [92] with regard to an application within a sequential portfolio setting and
apply the same time limits, i.e., a limit of 1 and 10 seconds for the local search
configurations Bsls, Pw and Paig, and a limit of 1200 seconds for the bit-blasting
and sequential portfolio configurations.
Table 7 summarizes the results of configurations Bb, Bsls, Paig and Pw with

a time limit of 10 seconds. As illustrated in Figure 8 and 9 in more detail,
overall, our word-level propagation strategy Pw clearly outperforms our bit-
level propagation strategy Paig and the SLS for SMT approach Bsls. On some
benchmarks in the families sage, Sage2 and stp_samples, however, in comparison
to Bsls (461) and Paig (38) configuration Pw seems to struggle. As an interesting
observation, when bit-blasting the benchmarks in question, for the majority of
benchmarks more than 50% of the bit-vector expressions contain bits that have
been simplified to the Boolean constants {0, 1} on the bit-level. Our bit-level
strategy Paig operates on the bit-blasted AIG layer where all constant bits are
eliminated via rewriting, and therefore always propagates target values that can

1All experimental data of this evaluation can be found at http://fmv.jku.at/fmsd16.
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Figure 8: SLS for SMT configuration Bsls versus our propagation strategy Pw
with a time limit of 10 seconds. Overall, configuration Pw clearly outperforms
configuration Bsls.
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Figure 9: Bit-level propagation strategy Paig versus word-level propagation
strategy Pw with a time limit of 10 seconds. Overall, configuration Pw clearly
outperforms configuration Paig.
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Figure 10: Bit-blasting configuration Bb versus our propagation strategy Pw
with a time limit of 10 seconds. Even though Bb solves almost 2000 instances
more than Pw, configuration Pw outperforms Bb on 2650 benchmarks in terms
of runtime by at least a factor of 10.

be assumed. Our word-level strategy Pw, however, does not know which bits
can be simplified to constant bits and may therefore determine and propagate
target values that can never be assumed. Configuration Bsls, on the other hand,
also does not have any explicit information on constant bits but considers them
implicitly when exploring the neighborhood prior to performing a move since
any neighbor with constant bits not matching their value will not result in score
improvement. We leave the exploration of introducing knowledge on constant
bits into our word-level propagation strategy to future work.

Figure 10 shows the performance of our propagation-based configuration Pw
compared to our bit-blasting configuration Bb with a time limit of 10 seconds.
Even though there exists a considerable gap in the number of solved instances
(within 10 seconds, Bb solves almost 2000 instances more than Pw), on more
than 2650 benchmarks, configuration Pw outperforms configuration Bb by at
least a factor of 10. These results suggest a combination of both configurations
within a sequential portfolio setting [104], where our propagation-based strategy
is run for a certain amount of time prior to invoking the bit-blasting engine. In
practice, however, the number of propagation steps performed is a more reliable
metric than the actual runtime of Pw within a sequential portfolio setting. In
the following, we distinguish two sequential portfolio configurations.

103



Paper B. Propagation Based Local Search for Bit-Precise Reasoning

(1) Bb+Pw-virtual-Xs A virtual sequential portfolio combination of
Pw and Bb, where we assume that Pw is run exactly X seconds prior
to invoking Bb.

(2) Bb+Pw-X The sequential portfolio combination of Pw and Bb as
implemented in Boolector, where configuration Pw is run with a limit of
X propagation steps prior to invoking Bb. Note that this configuration
won the QF_BV division of the main track of the SMT competition
2016 with X=1000=1k.

Figure 11 illustrates the performance of a virtual sequential portfolio combi-
nation Bb+Pw-virtual-1s in comparison to the bit-blasting configuration Bb with
a time limit of 1200 seconds, where we assume that configuration Pw is run for
one second before falling back to the bit-blasting engine. Overall, configuration
Bb+Pw-virtual-1s solves 63 instances more than Bb, and further outperforms
Bb in terms of runtime by at least a factor of 10 on almost 2400 benchmarks.
Figure 12 shows the performance of the sequential portfolio combinations

Bb+Pw-1k, Bb+Pw-10k, Bb+Pw-50k and Bb+Pw-100k in comparison to con-
figuration Bb with a time limit of 1200 seconds, where Pw is run with a limit
of 1 000, 10 000, 50 000 and 100 000 propagation steps before invoking the bit-
blasting engine. With a limit of 1k propagation steps, configuration Bb+Pw-1k
already solves 41 instances more than Bb. It further outperforms Bb in terms
of runtime by at least a factor of 10 on more than 2400 benchmarks. Increas-
ing the propagation step limit for configuration Pw to 10k, 50k and 100k fur-
ther increases performance in term of runtime, with 2601 (Bb+Pw-10k), 2649
(Bb+Pw-50k) and 2657 (Bb+Pw-100k) instances solved by at least a factor of 10
faster than with configuration Bb. In terms of number of solved instances, con-
figuration Bb+Pw-10k shows the best performance with a plus of 52 instances
compared to Bb. Configurations Bb+Pw-50k and Bb+Pw-10k still solve 50 and
45 more instances than Bb, but lose instances compared to Bb+Pw-10k due
to the increasing overhead introduced for those instances not solved within the
given propagation step limit.
In an additional experiment with configurations Bb+Pw-1k and Bb+Pw-10k,

we compiled a set of 21172 unsatisfiable benchmarks containing all QF_BV
benchmarks in SMT-LIB with status unsat and determined the overhead in-
troduced by Pw. With a total of 1237 seconds for configuration Bb+Pw-1k,
the overhead for the unsatisfiable instances is negligible compared to the per-
formance gain of almost 102k seconds on the satisfiable instances. For config-
uration Bb+Pw-10k, the overhead for the unsatisfiable instances is larger by a
factor of 10 (10316 seconds), which is still an order of magnitude less than the
performance gain of more than 116k seconds on the satisfiable instances.
Table 8 summarizes the results of configurations Bb, Bb+Pw-virtual-1s and

Bb+Pw-10k, and gives a more detailed overview by benchmark family with a
time limit of 1200 seconds. As shown in Figure 12, a propagation step limit of
100k (Bb+Pw-100k) almost corresponds to virtually limiting the runtime of Pw
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Figure 11: Bb versus our virtual sequential portfolio configuration Bb+Pw-
virtual-1s with a time limit of 1200 seconds, where Pw is assumed to run with a
time limit of 1 second.
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Figure 12: Bb versus our sequential portfolio configurations Bb+Pw-1k,
Bb+Pw-10k, Bb+Pw-50k and Bb+Pw-100k with a time limit of 1200 seconds,
where Pw is run with a limit of 1k, 10k, 50k and 100k propagation steps.
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Bb Bb+Pw-10k Bb+Pw-virtual-1s

Family Solved Time [s] Solved Time [s] Solved Time [s]

asp (376) 289 150600.3 287 155312.1 289 150889.3
bench_ab (223) 223 0.2 223 0.0 223 0.0

bmc (22) 22 63.6 22 83.8 22 71.6
brummayerbiere (26) 17 1759.8 26 46.7 26 97.9

calypto (13) 5 10423.7 5 10420.9 5 10423.5
check2 (1) 1 0.0 1 0.0 1 0.0
crafted (1) 1 0.0 1 0.0 1 0.0

dwp_formulas (103) 103 0.4 103 0.0 103 0.0
fft (19) 5 16924.2 5 16923.7 5 16928.6

float (126) 94 56417.8 94 56276.3 94 55497.3
gulwani (6) 6 47.6 6 48.3 6 53.6
mcm (155) 51 138276.6 51 138368.8 51 138273.6
pspace (21) 21 1964.5 21 1.6 21 1.6

rubik (3) 3 433.9 3 422.6 3 436.9
RWS (20) 18 3635.8 18 3649.8 18 3653.8

sage (6236) 6236 2602.9 6236 2492.5 6236 3622.2
Sage2 (6981) 5898 1853304.4 5940 1752833.2 5949 1738901.0
spear (1675) 1672 16202.9 1675 282.4 1675 278.3

stp (1) 1 18.9 1 20.9 1 19.9
stp_samples (149) 149 4.4 149 10.7 149 75.4

tacas07 (3) 3 11.5 3 6.2 3 6.0
uclid (262) 262 741.3 262 168.7 262 228.4
VS3 (10) 2 9859.6 2 9859.8 2 9861.6

wienand (4) 0 4800.0 0 4800.0 0 4800.0

total (16436) 15082 2268094.4 15134 2152029.2 15145 2134120.5

Table 8: Configurations Bb, Bb+Pw-10k and Bb+Pw-virtual-1s with a time
limit of 1200 seconds grouped by benchmark families. Configuration Bb+Pw-
virtual-1s is a virtual configuration and combines Bb and Pw in a sequential
portfolio with a time limit of 1 second for Pw. Configuration Bb+Pw-10k im-
plements a combination of Bb and Pw within a sequential portfolio where Pw is
run with a limit of 10k propagation steps prior to invoking Bb.
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to 1 second (Bb+Pw-virtual-1s), in particular when considering the number of
instances solved by at least a factor of 10 faster than Bb. A propagation limit
of 10 000 (Bb+Pw-10k), however, yields the best results in terms of number of
solved instances and the overall runtime.
In order to determine robustness of our propagation-based strategy with re-

spect to randomization effects, and in particular in comparison to the SLS for
SMT approach in [58], we ran an additional batch of 20 runs of each Pw, Paig and
Bsls with different seeds for the RNG and a time limit of 10 seconds. Figure 13
shows the overall results in terms of number of solved instances and runtime
as box-and-whiskers plots with the results of the default configurations (using a
seed value of 0) indicated with a red diamond. Over all 21 runs of Pw with differ-
ent seeds, both the inter-quartile range (IQR) in the number of solved instances
(27 instances), i.e., the distance between the lower quartile (8099 instances) and
the upper quartile (8126 instances), and the standard deviation (17.9 instances)
is less than half of the IQR (60 instances) and the standard deviation (44.9
instances) over all 21 runs of Bsls. In comparison to Paig, the IQR is almost
the same, however, the standard deviation of Paig (62.6 instances) is more than
triple of the standard deviation of Pw. In terms of runtime, for Pw and Bsls the
results are similar, with an IQR of 161.3 seconds and a standard deviation of
149.8 seconds for configuration Pw, and an IQR of 312.5 seconds and a standard
deviation of 297.8 seconds for configuration Bsls. Configuration Paig, however,
performs considerable worse than the two other configurations, with an IQR of
1761.8 seconds and a standard deviation of 406.4 seconds. These results suggest
that compared to Paig, both Pw and Bsls profit from directly working on the
word-level. Our propagation-based strategy Pw, however, is indeed more robust
with respect to randomization effects than the SLS for SMT approach of [58].
The default configuration of Pw prioritizes inverse values over consistent val-

ues during backtracing with a probability of 99:1. Decreasing this ratio, i.e.,
increasing the probability to choose consistent values over inverse values, in-
creases the level of non-determinism of our backtracing algorithm. Figure 14
illustrates the influence of decreasing the level of non-determinism during value
selection on randomization effects in terms of the number of solved instances over
21 runs with different seeds and a time limit of 10 seconds. The default ratio
of 99:1 has a standard deviation of 17.9 instances. As might be expected, when
introducing higher levels of non-determinism by decreasing the ratio of inverse
to consistent values to 50:50 and 0:100 (consistent values only), the standard
deviation increases to 23.5 and 38.9 instances. When decreasing the level of
non-determinism by increasing the ratio to 100:0 (inverse values only), the stan-
dard deviation drops to 14.1 instances. Overall, a higher probability to choose
inverse over consistent values also increases performance. However, as shown in
Section 4, using inverse values only (ratio 100:0) is incomplete.
In terms of path selection, not prioritizing inputs but choosing randomly cor-

responds to a maximum level of non-determinism. Prioritizing controlling inputs
for Boolean operators already decreases non-determinism during path selection.
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Figure 13: Number of solved instances, run time and randomization effects over
21 runs of configurations Pw, Paig and Bsls with different seeds and a time limit
of 10 seconds. Overall, our propagation-based strategy Pw is more robust with
respect to randomization effects than the SLS for SMT configuration Bsls.
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Figure 14: Number of solved instances and randomization effects over 21 runs
of configuration Pw with different seeds and different levels of non-determinism
during value selection and a time limit of 10 seconds. Configuration Pw (de-
fault) prioritizes inverse values over consistent values during backtracing with
a probability of 99:1 (default), configuration Pw (0:100) selects consistent val-
ues only, configuration Pw (50:50) selects consistent and inverse values with the
same probability, and configuration Pw (100:0) selects inverse values only.
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and a time limit of 10 seconds. The default configuration prioritizes essential
inputs when down-propagating assignments, whereas configuration Pw (control-
ling) only prioritizes controlling inputs of Boolean operators. Configuration Pw
(random) does not prioritize inputs but chooses randomly.
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However, utilizing essential inputs for all word-level operators decreases non-
determinism even further. Figure 15 shows the influence of decreasing the level
of non-determinism during path selection in terms of the number of solved in-
stances over 21 runs with different seeds and a time limit of 10 seconds. The
default configuration of Pw prioritizes essential inputs for all word-level opera-
tors, whereas configuration Pw (controlling) only utilizes controlling inputs for
Boolean operators. Configuration Pw (random) does not prioritize inputs but
chooses randomly. As expected, prioritizing essential inputs for all word-level
operators yields the best results. Utilizing only controlling inputs of Boolean
operators already decreases performance, and not prioritizing inputs but choos-
ing randomly decreases performance even further.

6 Conclusion

In this paper, we presented our complete propagation-based local search strat-
egy for the theory of quantifier-free fixed-size bit-vectors, which we previously
presented in [92], in more detail.
We defined a complete set of rules for determining backtracing values when

propagating assignments towards the primary inputs and provided extensive ex-
amples to illustrate the core concepts of our approach. We further provided
a more extensive experimental evaluation, including an analysis of randomiza-
tion effects caused by using different seeds for the random number generator.
Motivated by the experimental results in [92], which showed the potential of a
sequential portfolio combination of our propagation-based strategy and a state-
of-the-art bit-blasting approach, we implemented this combination in our SMT
solver Boolector. Our results confirm a considerable gain in performance.
Our procedure was evaluated on problems in the theory of quantifier-free bit-

vectors in SMT. However, it is not restricted to bit-vector logics. Applying our
strategy to other logics is probably the most intriguing direction for future work.
Further, extending our techniques by introducing strategies for conflict detec-

tion and resolution during backtracing as well as lemma generation in order to
obtain an algorithm that is able to also prove unsatisfiability is another challenge
for future work. A possible direction would be incorporating techniques from the
MCSat for bit-vectors approach presented in [106].
Finally, we would like to thank Andreas Fröhlich for helpful comments, and

Holger Hoos for fruitful discussions on the relation between non-deterministic
completeness and the notion of probabilistically approximately complete (PAC).
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Abstract Lemmas on demand is an abstraction/refinement technique for pro-
cedures deciding Satisfiability Modulo Theories (SMT), which iteratively refines
full candidate models of the formula abstraction until convergence. In this pa-
per, we introduce a dual propagation-based technique for optimizing lemmas on
demand by extracting partial candidate models via don’t care reasoning on full
candidate models. Further, we compare our approach to a justification-based
approach similar to techniques employed in the context of model checking. We
implemented both optimizations in our SMT solver Boolector and provide an
extensive experimental evaluation, which shows that by enhancing lemmas on
demand with don’t care reasoning, the number of lemmas generated, and conse-
quently the solver runtime, is reduced considerably.
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1 Introduction

Procedures for deciding satisfiability of first-order formulas w.r.t. first-order the-
ories, also known as Satisfiability Modulo Theories (SMT), are usually divided
into so-called eager and lazy approaches. Eager SMT approaches eagerly encode
an SMT formula into an equisatisfiable Boolean formula, which then serves as
input for a SAT solver. Lazy approaches, on the other hand, are generally based
on a tight integration of a SAT solver and one or more theory solvers. The SAT
solver typically enumerates Boolean truth assignments satisfying a Boolean ab-
straction of the input formula, whereas the theory solver(s) not only check if
those assignments are consistent w.r.t. the first-order theorie(s), but guide the
SAT solver through its search.
The majority of state-of-the-art SMT solvers employ lazy SMT approaches,

where the lemmas on demand procedure as introduced for the extensional theory
of arrays in [33] is one extreme variant thereof [99]. The core idea of lemmas on
demand is similar to the Counterexample-Guided Abstraction Refinement (CE-
GAR) approach introduced in [43] and goes back to [51], while at the same time,
a related technique was proposed in the context of bounded model checking,
where all-different constraints are lazily encoded over bit vectors (see also [24]).
Recently, in [96] we introduced a generalization of the lemmas on demand deci-
sion procedure in [33] to lazily handle lambda terms. Similar to other lazy SMT
approaches, lemmas on demand as in [33,96] enumerates truth assignments (so-
called candidate models) of the bit vector abstraction of the (preprocessed) input
formula and iteratively refines those assignments with lemmas until convergence.
Each of these candidate models is a full truth assignment of the formula abstrac-
tion, which subsequently needs to be checked for consistency w.r.t. the theory of
bit vectors with arrays. A full candidate model, however, includes parts of the
formula abstraction irrelevant to its satisfiability under the current assignment
and might therefore be over-determined.
In this paper we aim at exploiting a posteriori observability don’t cares, i.e.,

parts of the formula abstraction irrelevant under the current assignment. We
show that don’t care reasoning on full candidate models to extract partial candi-
date models subsequently reduces the cost for consistency checking by focusing
on the relevant parts of the formula, only. Motivated by dual propagation tech-
niques in the context of quantified boolean formulas (QBF) [64,65], we propose
an optimization of the lemmas on demand procedure in [96] and compare our
approach to a technique based on justification heuristics in ATPG [87]. We im-
plemented both techniques in our SMT solver Boolector and analyse the results
in comparison to the version of Boolector that won the QF_AUFBV track of
the SMT competition 2012.
Note that in this paper, our justification-based approach mainly serves as

a basis for comparison to our dual propagation-based approach. In the con-
text of SMT, Barrett and Donham [12] and De Moura and Bjørner [48] applied
justification-based techniques to prune the search space of DPLL(T). In the
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context of model checking, justification-based techniques have been previously
employed to identify a posteriori observability don’t cares. Bingham and Hu [26],
e.g., prune the search space of their simulation-based bounded model checking
engine by means of a justification-based generalization mechanism (skip cubes)
similar to learning and non-chronological backtracking of conventional SAT pro-
cedures. Eén et al. [54] employ a related approach when generalizing proof obli-
gations by ternary simulation for property directed reachability (PDR), whereas
Chockler et al. [41] use a variant of offline dual propagation for SAT. The verifica-
tion tool Reveal [2,3], on the other hand, employs a CEGAR approach for model
checking complex hardware designs and generalizes candidate counter examples
by justification techniques similar to our justification-based method. Their (and
our) justification-based approach, however, is only applicable on structural (non-
clausal) problems. In contrast, our dual propagation-based approach generalizes
full candidate models by exploiting the duality of the Boolean layer of the input
formula and is not restricted to structural formula abstractions.

DPLOD

Optimization

φ Preprocessing π Formula
Abstraction

α (π)

α(π) ∧ ξ

DPB

unsat

σ (α(π) ∧ ξ)

Partial Model
Extraction
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Consistency
Check

σp (α(π) ∧ ξ)

sat

ξ = {l} ∧ ξ

unsatsat

in
co
n-

si
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t

consistent

Figure 1: The workflow of the lemmas on demand decision procedure DPLODopt
in Boolector. The original procedure DPLOD (indicated by the dashed line) works
on full candidate models, whereas the optimized procedure DPLODopt extracts
partial candidate models prior to consistency checking.
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2 Lemmas on Demand at a Glance

The lemmas on demand decision procedure as implemented in Boolector is an
iterative abstraction/refinement approach for the quantifier-free theory of fixed-
sized bit vectors and arrays. Figure 1 gives a high-level view of the procedure and
introduces both the original, unoptimized approach DPLOD and our optimized
approach DPLODopt as follows.
Given a formula φ, DPLOD uses a bit vector skeleton of the preprocessed for-

mula π as formula abstraction α(π). In each iteration, an underlying decision
procedure DPB determines the satisfiability of the refined formula abstraction
Γ ≡ α(π)∧ξ by encoding Γ to SAT and determining its satisfiability by means of
a SAT solver. Note that initially, formula refinement ξ is >. As Γ is an overap-
proximation of φ, DPLOD immediately concludes with unsat if Γ is unsatisfiable.
If Γ is satisfiable, the current (full) candidate model σ (α(π) ∧ξ) is checked for
consistency w.r.t. the preprocessed input formula π. If σ (α(π) ∧ξ) is consistent,
DPLOD immediately concludes with sat. Otherwise, σ (α(π) ∧ξ) is spurious and
a lemma l is added to formula refinement ξ.
As indicated in Figure 1, DPLOD iteratively refines α(π) by consistency check-

ing full candidate models, which usually include parts of the bit vector skeleton
irrelevant to its satisfiability under the current assignment. In the following
section, we will introduce an optimization to extract a partial candidate model
σp (α(π) ∧ξ) from the full candidate model σ (α(π) ∧ξ) in order to guide the
consistency check towards the relevant parts of α(π) only.

3 Partial Model Extraction

In terms of runtime, abstraction refinement usually is the most costly part of
the lemmas on demand procedure DPLOD, where cost generally correlates with
the number of lemmas generated. During refinement, procedure DPB (and con-
sequently the call to the underlying SAT solver) constitutes the majority of the
overall runtime per iteration, which adds up when a great number of refinement
iterations is needed. Hence, optimizing DPLOD in terms of runtime directly
translates to reducing the number of lemmas generated.
In contrast to other lazy SMT approaches [99], formula abstraction in DPLOD

does not produce a pure Boolean skeleton, but a bit vector skeleton, where each
function application f(a0, . . . , an) in the preprocessed formula π is mapped to
a fresh bit vector variable. Consequently, consistency checking in DPLOD is
performed on all function applications in the bit vector skeleton (for details
see [96]). A high level view of the consistency checking algorithm consistent in
DPLOD is given in Figure 2 and proceeds as follows. Given the refined formula
abstraction Γ and the full candidate model σ, search_initial_applies collects
all function applications in Γ that need to be checked for consistency (line 2)
and iteratively checks each APPLY f(a0, . . . , an) w.r.t. the current assignment σ
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1 procedure consistent (Γ, σ)
2 S := search_initial_applies (Γ)
3 while S 6= ∅
4 f(a0, . . . , an) := pop (S)
5 consistent := check_consistency (f(a0, . . . , an), σ)
6 if not consistent
7 return ⊥
8 S′ := search_applies_for_consistency_check (f(a0, . . . , an))
9 push (S, s′ ∈ S′)

10 return >

Figure 2: Procedure consistent in pseudo-code.

(lines 4-5). If check_consistency encounters an inconsistency, consistent immedi-
ately returns with ⊥. Else, search_applies_for_consistency_check instantiates
function f with arguments a0, . . . , an, which yields term t, and subsequently col-
lects all function applications in formula abstraction α(t) for consistency check-
ing (lines 8-9). If all applies in S have been checked without inconsistencies,
procedure consistent concludes that current candidate model σ is consistent
and returns >.
Consistency checking all function applications in formula abstraction Γ corre-

sponds to checking the full candidate model σ for consistency, with the order in
which applies are checked as the only way to positively influence the number of
refinement iterations (by coincidentally finding lemmas that shortcut the search,
early on). Checking the full candidate model, however, is often not required, as
only a small subset of the full candidate model is responsible for actually satisfy-
ing the formula abstraction. As a consequence, parts of the formula abstraction
irrelevant to its satisfiability under the current assignment are checked, which
subsequently produces lemmas that do not necessarily prune the search space
and therefore mainly cost runtime.

Example 1. As a running example, consider the formula

ψ1 ≡ i 6= k ∧ (f(i) = e ∨ f(k) = v) ∧ v = ite(i = j, e, g(j))

as given in Figure 3. Its initial formula abstraction Γψ1 ≡ α(ψ1) and a (possible)
initial full candidate model σ (Γψ1) (indicated in red) is given in Figure 4. In
the following, we assume that all variables in ψ1 are bit vector variables of size
2 and Γψ1 is a bit vector skeleton. For the sake of simplicity, we further assume
that functions f and g represent uninterpreted functions, i.e., we concentrate on
consistency checking of the full versus a partial candidate model (via procedure
search_initial_applies) and do not bother with details of the internals of the
actual consistency check (for details, see [96]). Procedure search_initial_applies
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Figure 3: DAG representation of formula ψ1 (running example).
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indicated in red (running example).
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initially collects all function applications in Γψ1 (apply1, apply2, apply3) to be
checked for consistency. During consistency checking, however, no further applies
are identified as required to being checked (procedure search_applies_for_con-
sistency_check) as both f and g do not make subsequent calls to other functions.
Note that given σ (Γψ1), instead of checking all applies in ψ1, either checking
apply1 or apply2 would be sufficient.

In the following, we consider two techniques for identifying irrelevant parts
of the formula abstraction by extracting partial candidate models, which subse-
quently reduces the number of refinement iterations, and therefore, the overall
runtime of the lemmas on demand procedure.

3.1 Justification-Based Partial Model Extraction

In the context of ATPG [87], sets of don’t care conditions are usually divided
into observability don’t cares (ODC) and controllability don’t cares (CDC). The
former denotes lines that do not influence the primary outputs (independent
from the current assignment to the primary inputs), and the latter identifies line
values that can not be justified and are therefore illegal under any assignment to
the primary inputs. Given a concrete assignment to the primary inputs, however,
we can determine what we call a posteriori observability don’t cares, i.e., lines
that do not influence the output of a gate under its current assignment. In the
context of model checking, such a posteriori ODC have already been exploited
by Bingham and Hu [26], Eén et al. [54], and Andraus et al. [2, 3].

In this section, we introduce a technique similar to [2, 3] and extract partial
candidate models by identifying parts of the formula abstraction Γ that are irrele-
vant to its satisfiability under the current assignment σ. As indicated above, this
directly translates to collecting and checking function applications in relevant
parts of Γ only. In the following, we assume that Γ is represented as a directed
acyclic graph (DAG) with exactly one root, where all Boolean operations are
expressed by means of NOT and (two-input) AND gates. In place of procedure
search_initial_applies, we introduce search_initial_appliesjust (Figure 5), which
collects function applications while traversing all relevant paths in Γ as follows.

Given Γ and a full candidate model σ, starting from the root, search_initial_ap-
pliesjust iteratively traverses Γ towards its primary inputs (bit vector variables
and function applications) in depth first search (DFS) order. That is, initially,
root(Γ) is pushed onto stack X (line 2) and for each node x ∈ X we determine
the paths to be skipped as follows. If a node x is an AND node and its output
is assigned to ⊥, we follow (one of) its controlling input(s), i.e., one of its in-
puts with controlling value (⊥ for an AND) [87], and skip the other (lines 7-14).
Similarly, if x is an IF-THEN-ELSE (ITE) node and its condition is assigned
to > (resp. ⊥), we follow both its condition and its then (resp. else) branch
(lines 15-20). In any other case where x is not an APPLY node, we follow all
inputs of node x (line 22). However, if x is an APPLY node, we collect x (line 6)
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1 procedure search_initial_appliesjust (Γ, σ)
2 S := ∅, X := {root(Γ)}
3 while X 6= ∅
4 x := pop (X)
5 if is_apply (x)
6 push (S, x)
7 else if is_and (x) and σ (x) = ⊥
8 l := left_input (x), r := right_input (x)
9 if is_controlling (l) and is_controlling (r)

10 push (X, choose (l, r))
11 else if is_controlling (l)
12 push (X, l)
13 else
14 push (X, r)
14 else if is_ite (x)
15 push (X, condition (x))
16 if σ (condition (x)) = >
17 push (X, then (x))
18 else
19 push (X, else (x))
20 else
21 push (X, i ∈ inputs (x))
22 return S

Figure 5: Procedure search_initial_appliesjust in pseudo-code.

and cut off the traversal, as function applications are treated as fresh bit vector
variables in the formula abstraction.
Note that in the case that both inputs of an AND node are controlling, we

can skip either one of them (lines 9-10). Hence, we choose to follow the input
with minimum cost in terms of consistency checking, where the cost of a node x
is defined as the minimum number of (unique) applies along a path from x to
the primary inputs in the preprocessed formula π. Similar as controllability
measures in ATPG [87], we recursively define a cost function cost(x) as follows.

cost(x) =


0 if is_var(x)

min(cost(i) | i ∈ inputs(x)) if is_and(x)

sum(cost(i) | i ∈ inputs(x)) + 1 if is_apply(x)

sum(cost(i) | i ∈ inputs(x)) otherwise

Given formula π, a bit vector variable is a primary input, hence its cost is
defined as 0. Function applications, on the other hand, are not primary inputs
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3 Partial Model Extraction

but define the cost of a path from input x to the primary inputs. Hence, the cost
of an APPLY is defined as the sum of the costs of its inputs increased by one. In
case of an AND node, we want to choose the input with minimum cost if both
inputs are controlling, hence cost is defined as the minimum cost of its inputs.
In any other case, all input paths have to be followed and cost(x) is defined as
the sum of the costs of all inputs of x.

Example 2. Consider formula ψ1, formula abstraction Γψ1 , and a full candidate
model σ (Γψ1) as given in Example 1. Starting from the root (and1), procedure
search_initial_appliesjust traverses Γψ1 in DFS order while identifying (and skip-
ping) all paths irrelevant w.r.t. assignment σ (Γψ1). Note that in Figure 3 and 4,
inverted nodes are indicated by black dots. In the following, however, we will in-
terpret an inverted node as two distinct nodes (with resp. distinct assignments),
i.e., ¬and3 with σ (¬and3) = > in Figure 4, for example, is treated as a NOT
(assigned to >) in front of an AND (assigned to ⊥). Starting with root and1,
which is assigned to >, neither of its inputs may be skipped and we first travel
down towards eq1, whose inputs are both bit vector variables. Hence, we imme-
diately continue with and2 (also assigned to >) and follow its input eq2, where
we encounter an ite with its condition assigned to >. We skip the else branch,
no APPLY is collected, and we continue down the input path leading to and3,
which is assigned to ⊥. Both inputs of and3 are controlling (i.e., assigned to ⊥),
hence we choose one of them heuristically. The minimum cost for both paths,
however, is 0 (as the body of function f does not contain any further applies),
hence we may choose either. We decide on the path to apply1 and conclude
with S = {apply1}, which corresponds to the partial model to be subsequently
checked for consistency.

3.2 Dual Propagation-Based Partial Model Extraction

Exploiting the duality of QBF by propagating a dual set of values through a
QBF φ and its negation ¬φ, also referred to as dual propagation, has successfully
been employed in [64] to significantly prune, and therefore speed up the search in
circuit-based QBF solvers. The core idea of dual propagation, however, is neither
restricted to circuit-based representations [65] nor to QBF and is based on the
fact that assignments satisfying an input formula φ (the primal channel), falsify
its negation ¬φ (the dual channel) and vice versa. Given a Boolean formula
ψ2 ≡ (a ∧ b) ∨ (c ∧ d), for example, assignment {σ (a) = >, σ (b) = >, σ (c) =
>, σ (d) = >} satisfies ψ2, but falsifies its negation ¬ψ2 ≡ (¬a∨¬b)∧ (¬c∨¬d).
The duality of formula ψ2, however, can be further exploited. Assume, for

example, that given ψ2 and σ (ψ2) as above, we fix the values of all input variables
assigned in σ (ψ2) by making assumptions {a=>, b=>, c=>, d=>} to a SAT
solver maintaining its negation ¬ψ2. All assumptions inconsistent with ¬ψ2,
also called failed assumptions [55], identify all input assignments sufficient to
falsify ¬ψ2, hence sufficient to satisfy ψ2. This set of failed assumptions, for
example {a=>, b=>}, therefore represents a partial model satisfying ψ2.
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1 procedure search_initial_appliesdp (Γ, σ)
2 S := ∅, A := ∅
3 assume (dual_solver, ¬Γ)
4 X := collect_primary_inputs (Γ)
5 for x in X
6 a := x = σ (x), A := A ∪ a
7 assume (dual_solver, a)
8 res := DPB (dual_solver)
9 assert res = UNSAT

10 for a in A
11 (x, σ (x)) := a
12 if is_failed (a) and is_apply (x)
13 push (S, x)
14 return S

Figure 6: Procedure search_initial_appliesdp in pseudo-code. Solver instance
dual_solver simulates the dual channel and is maintained globally.

Note that our approach does not require a structural SAT solver—structural
don’t care reasoning is simulated via the dual solver, which maintains ¬ψ2 in
CNF. Consequently, given a CNF representation of ψ2 (where structural informa-
tion of ψ2 is essentially lost), we extract a partial model (disregarding structural
don’t cares w.r.t. assignment σ) that satisfies ψ2 but not necessarily its encoding
to CNF. Consider, for example, the Tseitin encoding CNF(ψ2) ≡ (¬o ∨ x ∨ y) ∧
(¬x∨o)∧(¬y∨o)∧(¬x∨a)∧(¬x∨b)∧(¬a∨¬b∨x)∧(¬y∨c)∧(¬y∨d)∧(¬c∨¬d∨y).
Our previous partial model {a=>, b=>} satisfies ψ2 (and therefore identifies
those parts of ψ2 relevant to its satisfiability) but does not satisfy all clauses in
CNF(ψ2). This is in contrast to other partial model extraction techniques based
on iterative removal of unnecessary assignments on the CNF level (e.g. [52]),
which do not enable structural don’t care reasoning and therefore need to satisfy
all clauses in CNF(ψ2).

In this section, we lift the approach sketched above to the word level by means
of a dual SMT solver and introduce a technique to extract partial candidate mod-
els via dual propagation-based don’t care reasoning. Given a formula abstraction
Γ ≡ α(π)∧ ξ, we use a single dual solver instance to maintain ¬Γ over all refine-
ment iterations in combination with the primal (or main) solver. However, since
in each iteration i a new lemma li is added to ξ ≡ l1 ∧ ... ∧ li−1, we set up the
dual solver to maintain ¬Γ ≡ ¬(α(π) ∧ l1 ∧ ... ∧ li−1 ∧ li) as assumption rather
than assertion. As illustrated in Figure 6, we introduce search_initial_appliesdp
in place of procedure search_initial_applies as follows.
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Given Γ and a full candidate model σ, procedure search_initial_appliesdp
initializes the dual solver by assuming ¬Γ (line 3). The value of all primary
inputs in ¬Γ is then fixed by making assumptions of the form x = σ (x), where
x is either a bit vector variable or an abstracted function application, and σ (x)
is its assignment in the current full candidate model σ (lines 4-7). Candidate
model σ represents a satisfying assignment for Γ, hence decision procedure DPB
must conclude that assuming σ, ¬Γ is unsatisfiable (lines 8-9). The resulting
set of failed assumptions identifies all relevant parts of Γ w.r.t. assignment σ,
and all function applications in the set of failed assumptions are subsequently
collected for consistency checking (lines 10-13).

Example 3. Again, consider formula ψ1, its initial formula abstraction Γψ1 ≡
α(ψ1), and a (possible) full candidate model σ (ψ1) as given in Example 1. Pro-
cedure search_initial_appliesdp initializes the dual solver by assuming ¬Γψ1 ≡
¬(i 6= k ∧ (α(apply1) = e ∨ α(apply2) = v) ∧ v = ite(i= j, e, α(apply_3))), and
subsequently collects all bit vector variables i, j, k, e, v and abstracted function
applications α(apply_1), α(apply2), α(apply3) in Γψ1 onto stack X. All pri-
mary inputs x ∈ X are then fixed by making assumptions {i= 00, j = 00, k=
01, e= 00, v= 00, α(apply1) = 00, α(apply2) = 00, α(apply3) = 00} to the dual
SMT solver instance, which concludes that under the current set of assump-
tions, ¬Γψ1 is unsatisfiable. Assumption α(apply1) = 00 is identified as failed
assumption and we conclude with S = {apply1} to be subsequently checked for
consistency.

Note that in a sense, our dual propagation-based approach as discussed above
simulates dual propagation as introduced in the context of QBF [64, 65] rather
than literally lifting it to bit vectors with arrays. Dual propagation as in [64,65]
is done eagerly by means of one single solver instance maintaining a primal and
a dual channel without additional overhead. Primary inputs are shared between
both channels, which enables symmetric propagation between the primal and
dual channel and allows to detect partial models early—even before a full as-
signment has been generated. In our approach, however, propagation is not
interleaved, but consecutive—the primal solver generates a full assignment be-
fore the dual solver enables partial model extraction based on the primal full
assignment. Further, primary inputs are not physically shared as the dual solver
discretely maintains ¬φ (while mapping primary inputs back to the primal solver
and vice versa). Hence we have to simulate shared inputs via fixing input values
by means of assumptions to the dual solver, which simply acts as “slave” for
partial model extraction to the primal solver. In order to adopt a more eager
approach to enable early partial model extraction while reducing the dual solver
overhead, interleaved execution between the primal and dual solver similar to
“SAT modulo SAT” [17] would be required. Integrating such an interleaved de-
cision process into an existing SMT solver has high potential, however, is rather
involved to implement and left to future work.
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4 Experimental Evaluation

We implemented justification-based and dual propagation-based partial model
extraction in our SMT solver Boolector and provide a comparison of the follow-
ing four configurations:

(1) Boolectorsc The version that won the QF_AUFBV track of the
SMT competition 2012.

(2) Boolectorba Our current base version of Boolector, a slightly op-
timized version of [96], with partial model extraction
disabled.

(3) Boolectorju Our base version of Boolector with justification-based
partial model extraction enabled.

(4) Boolectordp Our base version of Boolector with dual propagation-
based partial model extraction enabled.

We compiled two benchmarks sets for our experimental evaluation: (1) SMT’12
(149 instances), which consists of all non-extensional benchmarks used for the
SMT competition 2012 and (2) Selected (173 instances), which includes all non-
extensional benchmarks from the QF_AUFBV category of SMT-LIB [14] for
which Boolectorsc required at least 10 seconds (CPU time) for solving (incl. time-
outs and memouts). Note that we had to exclude extensional benchmarks as
Boolectorba and its optimized versions Boolectorju and Boolectordp do not yet
support extensionality on arrays. Further note that 58 instances of the bench-
mark set SMT’12 are included in Selected. All experiments were performed on
2.83GHz Intel Core 2 Quad machines with 8GB of memory using Ubuntu 12.04.
The memory and time limits for each solver instance were set to 7GB and 1200
seconds, respectively.

4.1 Results Overview

The overall results of all four solver configurations on both benchmark sets
SMT’12 and Selected are shown in Table 1, which summarizes the number
of solved instances (Solved), timeouts (TO), memouts (MO), total CPU time
(Time), and the overhead produced by the dual solver in terms of CPU time
(DS). Note that the overhead introduced by our justification-based approach
is negligible. Further note that in case of a timeout or memout, a penalty of
1200 seconds was added to the total CPU time. On the SMT’12 benchmark set,
in terms of solved instances, Boolectorba, Boolectorju, and Boolectordp perform
slightly better than Boolectorsc. In terms of runtime, however, only Boolectorju
shows a significant improvement (of about 20%), while Boolectordp appears to
even perform worse than Boolectorba, which is mainly due to the runtime over-
head introduced by the dual solver. If we disregard this overhead, the overall
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Solver Solved TO MO Time [s] DS [s]
(sat/unsat)

SM
T
’1
2 Boolectorsc 140 (83/57) 9 0 15882 -

Boolectorba 141 (83/58) 8 0 19312 -
Boolectorju 142 (84/58) 7 0 15709 -
Boolectordp 142 (84/58) 7 0 20992 5045

Se
le
ct
ed

Boolectorsc 116 (72/44) 50 7 85863 -
Boolectorba 121 (76/45) 45 7 76104 -
Boolectorju 130 (85/45) 36 7 63202 -
Boolectordp 130 (85/45) 36 7 66991 4705

Table 1: Overall results on sets SMT’12 and Selected.

runtime of Boolectordp is competitive with the runtime of Boolectorju. It is
conceivable that an eager implementation of dual propagation would perform
equally well, i.e., at least as fast as Boolectordp without the overhead.

Interestingly, Boolectorsc clearly outperforms all other three solver configu-
rations on the benchmark family “platania strcmp” (9 instances). Boolectorsc
solved these benchmarks in about 31 seconds, whereas the other solvers re-
quired 4416 seconds (Boolectorba), 2308 seconds (Boolectorju), and 4527 sec-
onds (Boolectordp, incl. 2277 seconds dual solver overhead), respectively. The
base version Boolectorba, and consequently both Boolectorju and Boolectordp,
obviously struggle on these benchmarks, which needs further investigation.

Note that benchmark set SMT’12 is not necessarily representative for lemmas
on demand in Boolector, as 79 (53%) out of a total of 149 instances are imme-
diately solved by Boolectorsc without a single refinement iteration. Benchmark
set Selected, on the other hand, has been compiled based on the runtime per-
formance of the SMT competition 2012 winner Boolectorsc (incl. timeouts and
memouts) and represents a set considered to be “harder” for Boolector. As indi-
cated in Table 1, on set Selected both Boolectorju and Boolectordp clearly out-
perform their base version Boolectorba as well as the competition configuration
Boolectorsc. More precisely, both our justification-based and dual propagation-
based optimizations considerably reduce the overall runtime while solving 14 (9)
additional instances compared to Boolectorsc (Boolectorba), where 13 (9) out of
14 (9) are satisfiable instances. Again, Boolectordp is slowed down by the dual
solver overhead, but still manages to solve as many instances as Boolectorju. Dis-
regarding the dual solver overhead, Boolectordp even outperforms Boolectorju in
terms of runtime. Note that the dual solver overhead in general correlates with
the number of lemmas generated. This is due to the fact that in each refinement
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Table 2: Results for commonly solved instances on sets SMT’12 (139 bench-
marks, 82 sat, 57 unsat) and Selected (113 benchmarks, 70 sat, 43 unsat). Com-
monly solved satisfiable instances for determining array model size were 81 (out
of 82) for SMT’12 and 67 (out of 70) for Selected. Array model size is measured
in terms of number of index/value pairs.
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iteration a partial candidate model is extracted from the full candidate model,
which requires an additional call to the dual solver. On set Selected, for 10 out
of 130 instances, the dual solver overhead constitutes about 50-70% of the total
runtime per instance, whereas for 83 instances it does not exceed 10%.

4.2 Results Commonly Solved Instances

Table 2 summarizes all instances in each benchmark set that could be solved
by all four solver configurations and gives an overview of the runtime required
for solving (Time), the runtime required by the underlying SAT solver (Sat),
the dual solver overhead (DS), the number of lemmas generated (LOD), and
the size of the array models for satisfiable instances (Array Model Size). For all
four solver configurations, we identified 139 common instances (82 sat, 57 un-
sat) on benchmark set SMT’12 and 113 common instances (70 sat, 43 unsat) on
benchmark set Selected. Array model size is measured in terms of the number
of index/value pairs identified by each solver with model generation enabled.
However, unlike Boolectorba (and consequently Boolectorju and Boolectordp),
Boolectorsc requires additional overhead for model generation, which has a neg-
ative impact on the overall number of solved instances. As a consequence,
Boolectorsc effectively “lost” 1 (resp. 3) satisfiable instance(s) on set SMT’12
(resp. Selected). We therefore compiled all columns except column Array Model
Size with model generation disabled.
On the 139 common instances in the SMT’12 benchmark set, Boolectorsc is

still the fastest solver, albeit only due to the “platania strcmp” benchmarks men-
tioned above—on those nine instances, Boolectorba, Boolectorju, and Boolectordp
spent 50%, 35% and 45% of the overall runtime, respectively. A similar picture
emerges when comparing the number of refinement iterations required for these
nine instances, which constitutes 59%, 47%, and 60% of the total number of
lemmas generated by Boolectorba, Boolectorju, and Boolectordp, respectively.
In comparison to the base version Boolectorba, however, Boolectordp shows the
most notable improvement (about 26%) in terms of runtime required by the
underlying SAT solver on the 139 common instances in SMT’12. Disregard-
ing the dual solver overhead, Boolectordp even outperforms Boolectorju in terms
of overall runtime. Interestingly, in terms of the number of lemmas generated,
Boolectordp requires slightly more lemmas than the base version, which is in stark
contrast to Boolectorju. However, in case of Boolectordp, this can be contributed
to a relative small number of instances. On 14 instances, Boolectordp generates
1.5 to 2.6 times more lemmas than Boolectorba, whereas on all other instances,
Boolectorba requires considerably more refinement iterations than Boolectordp.
This might indicate that in some cases, Boolectorba coincidentally generates
lemmas that shortcut the search early on. In terms of array model size, both
optimized configurations Boolectorju and Boolectordp clearly show a reduction in
the number of array index/value pairs compared to the base version Boolectorba.
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Figure 7: Runtime comparison of Boolectordp vs. Boolectorsc (7a), Boolectordp
vs. Boolectorba (7b), and Boolectordp vs. Boolectorju (7c) on benchmark set
Selected with 1200 seconds timeout, dual solver overhead included.
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Figure 8: Runtime comparison of Boolectordp vs. Boolectorsc (8a), Boolectordp
vs. Boolectorba (8b), and Boolectordp vs. Boolectorju (8c) on benchmark set
Selected with 1200 seconds timeout, dual solver overhead not included.
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Figure 9: Comparison of the number of lemmas generated by Boolectordp
vs. Boolectorsc (9a), Boolectordp vs. Boolectorba (9b), and Boolectordp
vs. Boolectorju (9c) on benchmark set Selected.
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5 Conclusion

Note that the considerable difference in array model size between Boolectorsc
and Boolectorba is due to an optimization of procedure search_applies_for_con-
sistency_check (see Section 3) introduced subsequent to [96]. In essence, given
a function application f(a), this optimization aims at consistency checking AP-
PLY nodes reachable while traversing in DFS order from f(a) to the primary
inputs, only. In contrast, prior to that optimization it was possible that function
applications irrelevant to consistency checking f(a) were pulled in. The effect
of this optimization is even more notable on the Selected benchmark set, where
Boolectorba clearly outperforms Boolectorsc in every aspect.
On the 113 common instances in set Selected, Boolectordp clearly outperforms

Boolectorju and Boolectorba not only in terms of runtime required by the un-
derlying SAT solver, but in the number of lemmas generated. Disregarding the
dual solver overhead, Boolectordp shows even more improvement in terms of
overall runtime than Boolectorju. Note that without the optimization of pro-
cedure search_applies_for_consistency_check mentioned above, the difference
in terms of overall runtime between Boolectorba and both optimized versions
Boolectorju and Boolectordp would be even greater, i.e., comparable to the dif-
ference between both optimized versions and Boolectorsc.

4.3 Results Dual Propagation-Based Optimization

A more detailed overview of the instance-based results of our dual propagation-
based approach Boolectordp on benchmark set Selected is given in Figure 7-9.
Figure 7 compares the overall runtime of Boolectordp (incl. the overhead intro-
duced by the dual solver) with the runtime of Boolectorsc (7a), Boolectorba (7b),
and Boolectorju (7c). Even though the dual solver overhead constitutes 31% of
the total runtime of Boolectordp, it still outperforms Boolectorsc and Boolectorba
on a majority of the instances and is even competitive with Boolectorju. Dis-
regarding the overhead of the dual solver (Figure 8), Boolectordp even outper-
forms Boolectorju on a majority of the instances (Figure 8c). In terms of the
number of lemmas generated (Figure 9), in comparison to all three solver config-
urations Boolectorsc, Boolectorba, and Boolectorju, our dual propagation-based
solver Boolectordp clearly shows the most notable improvement.

5 Conclusion

In this paper we introduced a dual propagation-based optimization of the lemmas
on demand procedure for bit vectors with arrays as implemented in Boolector.
We compared our approach with a justification-based approach similar to [2,
3]. We showed that don’t care reasoning on full candidate models improves
the performance of lemmas on demand considerably, Our current simulation of
dual propagation is competitive with our justification-based optimization and
clearly outperforms the winner of the SMT competition 2012, even though the
dual solver introduces a considerable amount of overhead to the overall runtime.
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Adopting a more eager dual propagation approach promises to render the dual
solver overhead negligible, while further improving the overall performance by
enabling partial model extraction even before a full candidate model has been
generated. However, this would require an interleaved execution between the
primal and the dual solver, which is rather involved to implement and subject
of future work. Further, our current version of dual propagation-based partial
model extraction heavily relies on incremental SAT solving under assumptions,
which can benefit from dedicated data structures [83]. The integration of such
SAT solver level optimization techniques is also left to future work.

Binaries of Boolector and all log files of our experimental evaluation can be found at http:

//fmv.jku.at/dpjust.
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Abstract Delta debugging tools automatically minimize failure-inducing input
and enable efficient localization of erroneous code. In particular when debugging
complex verification backends such as SMT solvers, delta debuggers provide an
effective debugging approach where other debugging techniques are infeasible due
to the input formula size. In this paper, we present ddSMT, a delta debugger for
the SMT-LIB v2 format, which supports all SMT-LIB v2 logics and in particular
handles macros and scopes defined by the commands push and pop. We introduce
its architecture and describe its workflow in detail.
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1 Introduction

Delta debugging algorithms [4,32,35,36,86] based on the algorithms introduced
in [70,107] typically minimize failure-inducing input by omitting parts irrelevant
to the original erroneous behaviour. The resulting simplified failure-inducing
input represents a minimal configuration in the sense that all of its possible sub-
sets are necessary to cause the test to fail. Sat Modulo Theories (SMT) solvers
serve as a backend for various applications in the field of e.g. deductive software
verification, model checking and automated test generation. These applications
heavily rely on the correctness of the underlying SMT solver – a highly complex
tool, where debugging faulty behaviour becomes increasingly difficult with re-
spect to the input formula size and structure. Rather than manually tracing error
paths in order to find the actual error location, delta debugging provides means
to automatically minimize input for failing SMT solvers and enables solver de-
velopers to localize failure-inducing code in a time efficient manner. Further, as
shown in [32], delta debugging in combination with fuzz testing is a particularly
effective approach to uncover bugs in SMT solvers.
In 2009, DeltaSMT, a delta debugger for quantifier-free logics of the previ-

ous SMT-LIB version [14] developed by our group has been presented in [32].
It is tailored to the SMT-LIB v1 language, hence incompatible with SMT-LIB
v2 [16], which is a major upgrade of its predecessor. Further, DeltaSMT does
not employ the original delta debugging algorithm proposed in [70], but exploits
the hierarchical structure of the input formula similar to the hierarchical delta
debugging approach described in [86]. Representing the input formula as a di-
rected acyclic graph (DAG), DeltaSMT tries to simplify nodes in a breadth first
search (BFS) manner. Nodes are substituted one-by-one, depending on their
sort, with either constant 0, constant 1, or one of their children. Unfortunately,
this substitution approach is also one of the limitations of DeltaSMT, as in the
worst case, too many node-by-node substitution attempts (no matter if success-
ful or unsuccessful) have a negative impact on the overall runtime. Further, we
encountered various cases, where DeltaSMT was struggling or even unable to
simplify certain input files.
More recently and independently, an update of DeltaSMT for SMT-LIB v2 by

Pablo Federico Dobal and Pascal Fontaine has been released1. This version does
not provide full SMT-LIB v2 support but syntactically extends the original tool
for SMT-LIB v2 compliance, but without support for important new SMT-LIB
v2 features such as quantifiers or push and pop commands. Note that in the
following, we will refer to this update of DeltaSMT as DeltaSMT2.
In this paper we present ddSMT, a delta debugger for the SMT-LIB v2 format.

It supports all SMT-LIB v2 logics. It is not based on DeltaSMT, but tries to
overcome its limitations with a different algorithmic approach, which we will
introduce in detail in the following.

1http://www.verit-solver.org/veriT-toolsDownload.php
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2 The Delta Debugger ddSMT

The delta debugger ddSMT is a tool for minimizing failure-inducing input in
SMT-LIB v2 format based on the exit code of a given command (typically a call
to an SMT solver) when executed on that input. It is implemented in Python 3
and not only supports all SMT-LIB v2 logics, but in particular handles macros
(command define-fun), named annotations (attribute :named), and scopes de-
fined by the commands push and pop. The tool is intended to be easy to maintain
and extend and further provides a dedicated, modular and standalone SMT-LIB
v2 parser, which particularly should be useful for prototyping other (Python)
tools working on the SMT-LIB v2 language.

2.1 Architecture

One of the challenges introduced in v2 of the SMT-LIB language is the addition
of the commands push and pop, which enables scoping of assertions, and sort and
function declarations. Hence, SMT-LIB v2 distinguishes between local scoping
of sorted variables and variable bindings (as defined by forall, exists and let
terms) and global scoping as defined by the commands push and pop.
Note that in the following, if distinction is needed, we refer to locally de-

fined scopes as term-level scopes, and globally defined scopes as command-level
scopes. Further note that ddSMT does not distinguish between actual functions
and variables (or uninterpreted constants in first-order terminology) explicitly.
Hence, in the following, if we do not make an explicit distinction, function may
refer to either of them.

Internally the tool represents the given SMT-LIB v2 input as a tree of scopes.
Each scope maintains a nesting level, a set of nested scopes, and a set of func-
tions. Command-level scopes additionally maintain a set of commands and a
set of sorts. Note that this structure enables a visibility handling of sorts and
functions similar to related techniques in compiler construction, where a sorts
(resp. functions) cache provides access to currently visible sorts (resp. functions)
in constant time.

Example 1. To illustrate the basic internal structure of ddSMT as described
above, consider the input file given in Figure 1. As shown in Figure 2, it defines
two command-level scopes (the root scope at level 0 and the scope defined by
given push and pop commands at level 1), and three term-level scopes defined
by given forall, exists and let terms, respectively.
All sorts and functions defined at theory level are treated as being defined at

level 0. Further, named annotations (attribute :named) are internally handled
as if additionally a corresponding function definition had been given (in this par-
ticular case: (define-fun z () Bool (not x))). Commands are maintained
by the scope they appear in, with a push command as the last command before a
new scope is opened, and a pop command as the last command before the current
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1 (set-logic UFNIA)
2 (declare-sort sort1 0)
3 (declare-fun x () sort1)
4 (declare-fun y () sort1)
5 (assert (= x y ))
6 (push 1)
7 (define-sort sort2 () Bool)
8 (declare-fun x () sort2)
9 (declare-fun y () sort2)

10 (assert (and (as x Bool) (as y Bool)))
11 (assert (! (not (as x Bool)) :named z))
12 (assert z)
13 (pop 1)
14 (assert (forall ((z Int)) (exists ((zz Int)) (= z zz))))
15 (check-sat)
16 (get-value ((let ((x 1) (y 1)) (= x y))))
17 (exit)

Figure 1: A simple example in SMT-LIB v2 format.

Scope

Level: 0
Type: command-level
Sorts: Bool, Int, sort1
Funs: =, and, not, x, y
Commands: 1, 2, 3, 4, 5, 6, 14,

15, 16, 17

Scope

Level: 1
Type: command-level
Sorts: sort2
Funs: x, y, z
Commands: 7, 8, 9, 10, 11, 12, 13

Scope

Level: 1
Type: term-level (forall)
Funs: z

Scope

Level: 2
Type: term-level (exists)
Funs: zz

Scope

Level: 1
Type: term-level (let)
Funs: x, y

Figure 2: The basic internal structure of ddSMT given the Example in Figure 1.
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scope is closed. Note that for better readability, we refer to the resp. commands
in Figure 2 by the line number they appear in Figure 1.
In our example, the root scope maintains the predefined sorts Bool and Int, as

well as the user-defined sort sort1. It further declares the predefined functions
=, and and not, and the user-defined functions x and y (both of sort sort1 ). The
command-level scope at level 1 maintains the user-defined sort sort2, and further
declares functions x and y (both of sort sort2 ) and the named annotation z (of
sort Bool). The term-level scope defined by forall at level 1 declares variable z of
sort Int, whereas its nested term-level scope defined by exists at level 2 declares
variable zz of sort Int. Finally, the term-level scope defined by let at level 1
declares variables x and y of sort Int.

2.2 General Workflow

The SMT-LIB v2 input is simplified by eliminating command-level scopes and
commands, and substituting terms with simplified expressions. Note that elimi-
nating scopes resp. commands refers to substituting nodes by None (the Python
null object). In contrast to DeltaSMT, ddSMT does not employ a hierarchical
delta debugging approach on a BFS and node-by-node substitution base, but
tries to exploit the strength of the original delta debugging algorithm (a divide-
and-conquer strategy) as follows. As illustrated in Figure 3, ddSMT works in
rounds where each round is divided into several substitution phases. In each
phase, nodes are first filtered and collected by a specific characteristic (e.g. nodes
with a bit-vector sort), and then substituted using a modified version of the
original delta debugging algorithm as described in Figure 8. The individual sub-
stitution phases are described as follows.

Command-Level Scope Substitution Starting with the nested scopes of
the root scope, command-level scopes are eliminated level-wise, in BFS manner,
until a fixpoint is reached.

Command Substitution After the command-level scope substitution phase,
any command in any of the remaining command-level scopes irrelevant to the
original failure-induced behaviour except the set-logic and exit commands, which
are mandatory for starting and terminating SMT-LIB v2 scripts, is eliminated
(while preserving the order of remaining commands) until a fixpoint is reached.
Note that in the initial round, in order to prevent lots of likely unsuccessful

test runs when eliminating e.g. declare-fun commands previous to term substi-
tution, ddSMT considers assert commands only. Further note that ddSMT does
not ensure that the resulting simplified output is legal in the sense that e.g. vari-
ables must be declared previous to being used – the elimination of commands is
solely tied to the exit code of the given command. This usually does not pose
a problem though, as this kind of syntactically invalid input should be treated
accordingly by a tool working on the SMT-LIB v2 language. In case the above

141



Paper D. ddSMT: A Delta Debugger for the SMT-LIB v2 Format

Command-Level
Scope Substitution

Command
Substitution

Term Substitution

Constant 0

Bit Vector

Fresh Variables

(bvor (_ bv0 1) term ) (bvand (_ bv1 1) term )

Integer

Constant 0 Fresh Variables

Real

Constant 0 Fresh Variables

let

Boolean

Constant false (or false term )

Constant true (and true term )

Fresh Variables

store

ite (left child) ite (right child)

Figure 3: The general workflow and delta debugging phases of ddSMT.
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behaviour poses a problem, e.g. when debugging parser related faulty behaviour,
this can be easily handled by appropriate wrapper scripts (e.g. to check on spe-
cific solver output).

Term Substitution Internally, ddSMT represents SMT-LIB v2 terms as
DAGs with exactly one root. The SMT-LIB v2 format defines three commands
with terms as arguments: assert, define-fun and get-value. Commands of each of
these kinds are handled separately, with define-fun commands being processed
prior to assert and get-value commands in order to prevent redundant substi-
tution work due to the fact that functions defined via define-fun are usually
referenced in assert and get-value commands multiple times. For each of these
sets of commands, term substitution replaces terms w.r.t. their resp. sort (and
other characteristics) in several steps as indicated in Figure 3 until a fixpoint is
reached. Note that individual steps (e.g. substitution of bit-vector terms with
constant 0) are defined by the characteristics of both the terms to be substituted
and the substitution itself. Further note that steps depending on the SMT-LIB
v2 logic in use are skipped if inapplicable (e.g. the substitution of Real terms with
constant 0 or fresh variables if given logic is not a Reals logic). The individual
steps are described as follows.
Initially, and depending on the SMT-LIB v2 logic in use, first bit-vector, then

Int, then Real terms are substituted with constant 0 and fresh variables, re-
spectively. Additionally, if given formula is defined over the theory of Fixed_
Size_Bit_Vectors, terms of the form (bvor (_ bv0 1) term ) and (bvand (_
bv1 1) term ) are replaced by their resp. child term. Next, let terms are re-
placed by their child term. After that, Boolean terms are substituted by constant
false, constant true, and fresh variables, respectively. Subsequently, terms of the
form (or false term ) and (and true term ) are replaced by their resp. child
term. If the logic in use is an array logic, store terms are replaced by their
child array terms. Finally, ite terms are substituted with their left and right
child, respectively. Note that in those steps of the term substitution phase,
where terms are replaced with a simpler expression rather than one of their child
terms (e.g. substituting Boolean terms with constant false), constant terms are
skipped. Further note that each step of the term substitution phase (e.g. substi-
tuting bit-vector terms with constant 0) is performed until a fixpoint is reached.
If any of the above substitution phases succeeded, i.e. if in any of the above

phases, scopes, commands or terms have been eliminated or replaced successfully,
ddSMT tries to iteratively simplify the current configuration even further until
a fixpoint is reached.

Example 2. Continuing Example 1, consider the input file given in Figure 1
and an executable failing on this input by not providing support for get-value
commands as simulated by the Shell script given in Figure 4. The input file is
simplified by ddSMT in two rounds as follows.
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1 #!/bin/sh
2 if [ ` grep -c "\<get-value\>" $1` -ne 0 ]; then exit 1; fi
3 exit 0

Figure 4: A simple Shell script simulating an executable failing on the input
given in Figure 1.

1 (set-logic UFNIA)
2 (declare-sort sort1 0)
3 (declare-fun x () sort1)
4 (declare-fun y () sort1)
5 (assert (= x y))
6 (assert (forall ((z Int)) (exists ((zz Int)) (= z zz))))
7 (check-sat)
8 (get-value ((let ((x 1) (y 1)) (= x y))))
9 (exit)

(a) The simplified input after command-level scope substitution.

1 (set-logic UFNIA)
2 (declare-sort sort1 0)
3 (declare-fun x () sort1)
4 (declare-fun y () sort1)
5 (check-sat)
6 (get-value ((let ((x 1) (y 1)) (= x y))))
7 (exit)

(b) The simplified input after subsequent command substitution.

Figure 5: The input of Figure 1 during the first substitution round in Example 2.
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In round one, first all redundant command-level scopes are eliminated. In
this case, the scope defined by the push and pop commands in line 6 and 13 is
redundant. The resulting simplified input is depicted in Figure 5a.
Next, all commands irrelevant to the failure-induced behaviour are successfully

eliminated. As mentioned earlier, in the first round command substitution only
considers assert commands. Hence, commands 5 and 6 (but not command 7,
which is a check-sat command) are eliminated. The resulting simplified input is
depicted in Figure 5b.
After command substitution, ddSMT subsequently performs term substitution

on argument terms of define-fun, assert and get-value commands, in the order
specified. As the current simplified input (as depicted in Figure 5b) only contains
a single get-value command, term substitution for define-fun and assert com-
mands is skipped and the argument term of the get-value command at line 6 is
the only one to be processed as follows. The original input in Figure 1 is defined
over the theory of Ints (but not over the theory of Fixed_Size_Bit_Vectors or
Reals), hence all bit-vector and Reals related steps are skipped. The let expres-
sion in line 6 contains two non-constant Int terms, x and y, which are first (and
successfully) replaced by constant 0. The resulting simplified input is depicted in
Figure 6a. As no more non-constant Int terms remain, subsequent substitution
with fresh variables is skipped.
Next, the let term is successfully replaced by its child term (due to the fact

that all occurrences of its variable bindings have been substituted by constant
0, previously). The resulting simplified input is depicted in Figure 6b.
Finally, the remaining non-constant Boolean term (= 0 0) is successfully re-

placed by constant false. As depicted in Figure 6c, in the current simplified input
the only remaining term (in the argument term of the get-value command at line
6) is a Boolean constant. Hence, all further term substitution steps operating
on Boolean and ite terms are skipped and the first round concludes with the
simplified input depicted in Figure 6c.
In round two, the only successful substitution phase is command substitution,

where commands 2, 3, and 4 are eliminated. The final result is depicted in
Figure 7.

2.3 substitute: The Delta Debugging Core Algorithm

The core of the actual delta debugging in ddSMT is the substitution algorithm
described in Figure 8. Command-level scopes and commands are substituted
with None, whereas terms, depending on their sort, are replaced by constant
0, false, true, fresh variables, or one of their children, respectively. Each sub-
stitution phase utilizes substitute as follows. Given a substitution function
subst_fun and a set of nodes filtered by some specific filter criteria (e.g. nodes
with a bit-vector sort) as superset, this set is gradually split into nsubsts sub-
sets, where the granularity, i.e. the number of items, of each subset initially
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1 (set-logic UFNIA)
2 (declare-sort sort1 0)
3 (declare-fun x () sort1)
4 (declare-fun y () sort1)
5 (check-sat)
6 (get-value ((let ((x 1) (y 1)) (= 0 0))))
7 (exit)

(a) The result of substituting non-constant Int terms with constant 0.

1 (set-logic UFNIA)
2 (declare-sort sort1 0)
3 (declare-fun x () sort1)
4 (declare-fun y () sort1)
5 (check-sat)
6 (get-value ((= 0 0)))
7 (exit)

(b) The result of substituting the let term with its child term.

1 (set-logic UFNIA)
2 (declare-sort sort1 0)
3 (declare-fun x () sort1)
4 (declare-fun y () sort1)
5 (check-sat)
6 (get-value (false))
7 (exit)

(c) The result of substituting the remaining Boolean term with constant false.

Figure 6: Continuing from Figure 5, all three simplified inputs are the result of
individual steps of term substitution in the first round.

1 (set-logic UFNIA)
2 (check-sat)
3 (get-value (false))
4 (exit)

Figure 7: The final result of simplifying the input of Figure 1 in Example 2
after the second substitution round. In round two, commands 2, 3, and 4 are
eliminated during command substitution.
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1 def substitute (subst_fun, superset):
2 granularity = len (superset)
3 while granularity > 0:
4 nsubsets = len (superset / granularity)
5 subsets = split (superset, nsubsets)
6 for subset in subsets:
7 nsubsts = 0
8 for item in subset:
9 if not item.is_substituted ():

10 item.substitute_with (subst_fun (item))
11 nsubsts + = 1
12 if nsubsts == 0:
13 continue
14 dump (tmpfile)
15 if test ():
16 dump (outfile)
17 subsets.delete (subset)
18 else: # reset substitutions of current subset
19 restore_previous_state ()
20 superset = subsets.flatten ()
21 granularity = granularity / 2

Figure 8: The core substitution algorithm in ddSMT in Python-style
pseudo code.

starts at len(superset). Note that this basically means that in a first attempt,
all nodes of superset will be substituted. For each subset of these subsets, all
items are substituted by the application of the substitution function subst_fun
to the resp. item before issuing the original command (usually a call to an SMT
solver) on the current configuration. If this (so called) test run succeeds, i.e.
if the exit code of the current run matches the exit code of the original config-
uration, the current simplified input is stored for immediate reuse in outfile.
Otherwise, all substitutions of the current subset are reset and we continue with
the next subset.

Note that previously substituted nodes will be skipped. This is due to the
fact that superset initially contains either the original node (if it is yet to be
substituted) or its most current substitution.
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TS Files Red. [%] Time [s]
avg min max avg min max

D
el
ta
S
M
T

1 2 0 0 0 257 14 500
2 95 94.0 0 99.9 49 0.1 1738
3 5 66.6 0 93.8 12 3 34
4 53 99.6 98.8 99.9 8 0.6 20
5 - - - - - - -

TS Files Runs Mem. [MB]
avg min max avg min max

1 2 4051 655 7446 113 108 117
2 95 599 5 7296 111 33 153
3 5 608 262 1297 107 76 126
4 53 463 4 852 128 52 142
5 - - - - - - -

TS Files Red. [%] Time [s]
avg min max avg min max

d
d
S
M
T

1 2 90.0 83.9 96.0 44 9 79
2 95 94.7 68.2 99.9 92 0.1 1594
3 5 80.4 66.8 87.2 23 14 35
4 53 99.8 99.3 99.9 57 1 246
5 5 97.4 95.7 98.3 12 5 16

TS Files Runs Mem. [MB]
avg min max avg min max

1 2 1412 782 2041 13 10 16
2 95 1499 2 3790 15 10 24
3 5 1533 1171 1764 11 10 12
4 53 431 13 1240 28 15 42
5 5 247 215 371 39 10 59

Table 1: Comparison between DeltaSMT (for SMT-LIB v1) and ddSMT on
test sets (TS ) 1 to 5. Test set 1 to 4 are randomly generated bit-vector formulas
originally given in SMT-LIB v1, test set 5 contains non-quantifier-free test cases
for CVC4. Red. denotes the overall reduction in percent of the original file size,
Time denotes the overall runtime in seconds, and Mem. denotes the maximum
resident set size in MB.
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3 Experimental Evaluation

Our delta debugger ddSMT has recently been released2 under version 3 of the
General Public License (GPLv3)3 and is currently still a work in progress. Its
parser is tested on the complete SMT-LIB v2 benchmark set (available at [14])
and the delta debugger itself has been tested on a wide range of crafted in-
stances and SMT-LIB v2 benchmarks using simple shell scripts in place of ac-
tual solver calls in order to achieve a wider distribution over the SMT-LIB v2
logics. Additionally, ddSMT has further been applied to actual failure inducing
test cases encountered during the development of our solver Boolector4, as well
as the open source SMT solver CVC45, a joint effort between the NYU and the
University of Iowa.

As of May 23rd 2013, DeltaSMT2, which we understand to be still work in
progress, does not produce legal intermediate output for bit-vector logics and is
thus not able to simplify any of the test cases available for Boolector. Further,
DeltaSMT2 does not support non-quantifier-free logics such as AUFLIA or AU-
FLIRA and is hence not applicable to any of the test cases available for CVC4.
Unfortunately, it was therefore not possible to evaluate the overall performance
of ddSMT in comparison to DeltaSMT2. Instead, we translated quantifier-free
SMT-LIB v1 input to SMT-LIB v2 and run DeltaSMT-0.2 and ddSMT-0.96-
beta on various sets of test cases (TS ) as indicated in Table 1. Test sets 1 to 4
are randomly generated bit-vector formulas originally given in SMT-LIB v1 and
serve as test cases for Boolector, whereas test set 5 contains non-quantifier-free
SMT-LIB v2 test cases for CVC4. Input reduction (Red.) is given in percent
of the file size of the original input file, Time denotes the wall clock runtime
in seconds, and Mem. indicates the maximum resident set size per run in MB.
All experiments were performed on a 3.4 GHz Intel Core i7-2600 machine with
16GB RAM, running a 64 Bit Arch Linux OS.

Overall and even though the bit-vector test cases where originally given in
SMT-LIB v1 (i.e. they do not employ SMT-LIB v2 features such as e.g. push and
pop commands, which could be fully exploited by ddSMT), our first results look
promising. Even for test cases, where DeltaSMT failed to simplify given input
at all, ddSMT successfully achieved reductions by at least 81.1% of the original
input file size. Note that except for the test cases denoted in Table 1, we currently
still miss real test cases in SMT-LIB v2 logics other than QF_BV, QF_AX
and QF_AUFBV. We therefore would like to encourage the SMT community
to actually use ddSMT and thus further its development, and appreciate any
comments, suggestions or bug reports.

2http://fmv.jku.at/ddsmt
3http://www.gnu.org/licenses
4http://fmv.jku.at/boolector
5http://cvc4.cs.nyu.edu
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4 Conclusion

In this paper, we introduced our delta debugger ddSMT, a tool for minimizing
failure-inducing input in SMT-LIB v2 format. It supports all SMT-LIB v2 logics
and in particular handles macros, named annotations, and scopes defined by the
commands push and pop. Especially in combination with fuzz testing, ddSMT
provides an effective approach to find and localize bugs in tools working on the
SMT-LIB v2 language.
Recently, model-based delta-debugging (and fuzzing) in the context of testing

and debugging verification backends was reported to be more effective than file
based delta-debugging [5], in particular in combination with option resp. con-
figuration fuzzing. Even though the delta-debugger ddSMT presented in this
paper does not work on the API level of an SMT solver directly, we believe that
the “programmatic nature” of the SMT-LIB v2 format using commands allows
ddSMT to be equally effective.
In future work we will compare the effectiveness of API level delta-debugging

with the approach presented in this paper. We further plan to evaluate ddSMT
in combination with fuzzing SMT-LIB v2 input with command-level scopes.
We want to thank Morgan Deters for providing actual test cases for the SMT

solver CVC4.
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