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Abstract

Delta debugging tools automatically minimize failure-inducing input and enable effi-
cient localization of erroneous code. In particular when debugging complex verification
backends such as SMT solvers, delta debuggers provide an effective debugging approach
where other debugging techniques are infeasible due to the input formula size. In this
paper, we present ddSMT, a delta debugger for the SMT-LIB v2 format, which supports all
SMT-LIB v2 logics and in particular handles macros and scopes defined by the commands
push and pop. We introduce its architecture and describe its workflow in detail.

1 Introduction

Delta debugging algorithms [I} Bl [6l, [7, 9] based on the algorithms introduced in [8, [10] typically
minimize failure-inducing input by omitting parts irrelevant to the original erroneous behaviour.
The resulting simplified failure-inducing input represents a minimal configuration in the sense
that all of its possible subsets are necessary to cause the test to fail. Sat Modulo Theories
(SMT) solvers serve as a backend for various applications in the field of e.g. deductive software
verification, model checking and automated test generation. These applications heavily rely on
the correctness of the underlying SMT solver — a highly complex tool, where debugging faulty
behaviour becomes increasingly difficult with respect to the input formula size and structure.
Rather than manually tracing error paths in order to find the actual error location, delta
debugging provides means to automatically minimize input for failing SMT solvers and enables
solver developers to localize failure-inducing code in a time efficient manner. Further, as shown
in [5], delta debugging in combination with fuzz testing is a particularly effective approach to
uncover bugs in SMT solvers.

In 2009, deltaSMT, a delta debugger for quantifier-free logics of the previous SMT-LIB [3]
version! developed by our group has been presented in [5]. It is tailored to the SMT-LIB vl
language, hence incompatible with SMT-LIB v2 [4], which is a major upgrade of its prede-
cessor. Further, deltaSMT does not employ the original delta debugging algorithm proposed in
[8], but exploits the hierarchical structure of the input formula similar to the hierarchical delta
debugging approach described in [9]. Representing the input formula as a directed acyclic graph
(DAG), deltaSMT tries to simplify nodes in a breadth first search (BFS) manner. Nodes are sub-
stituted one-by-one, depending on their sort, with either constant 0, constant 1, or one of their
children. Unfortunately, this substitution approach is also one of the limitations of deltaSMT,
as in the worst case, too many node-by-node substitution attempts (no matter if successful or
unsuccessful) have a negative impact on the overall runtime. Further, we encountered various
cases, where deltaSMT was struggling or even unable to simplify certain input files.

*This work was partially funded by the Austrian Science Fund (FWF) under NFN Grant S11408-N23 (RiSE).
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1 (set-logic UFNIA)

2 (declare-sort sortil O0)

3 (declare-fun x () sortil)

4 (declare-fun y () sortl)

5 (assert (= x y ))

6 (push 1)

7 (define-sort sort2 () Bool)

8 (declare-fun x () sort2)

9 (declare-fun y () sort2)

10 (assert (and (as x Bool) (as y Bool)))
11 (assert (! (not (as x Bool)) :named z))
12 (assert z)

13 (pop 1)

14 (assert (forall ((z Int)) (exists ((zz Int)) (= z zz))))
15 (check-sat)

16 (get-value ((let ((x 1) (y 1)) (= x y))))
17  (exit)

Figure 1: A simple example in SMT-LIB v2 format.

More recently and independently, an update of deltaSMT for SMT-LIB v2 by Pablo Federico
Dobal and Pascal Fontaine has been released?. This version does not provide full SMT-LIB v2
support but syntactically extends the original tool for SMT-LIB v2 compliance, but without
support for important new SMT-LIB v2 features such as quantifiers or push and pop commands.
Note that in the following, we will refer to this update of deltaSMT as deltaSMT2.

In this paper we present ddSMT, a delta debugger for the SMT-LIB v2 format. It supports
all SMT-LIB v2 logics. It is not based on deltaSMT, but tries to overcome its limitations with a
different algorithmic approach, which we will introduce in detail in the following.

2 The Delta Debugger ddSMT

The delta debugger ddSMT is a tool for minimizing failure-inducing input in SMT-LIB v2 format
based on the exit code of a given command (typically a call to an SMT solver) when executed on
that input. It is implemented in Python 3 and not only supports all SMT-LIB v2 logics, but in
particular handles macros (command define-fun), named annotations (attribute :named), and
scopes defined by the commands push and pop. The tool is intended to be easy to maintain and
extend and further provides a dedicated, modular and standalone SMT-LIB v2 parser, which
particularly should be useful for prototyping other (Python) tools working on the SMT-LIB v2
language.

2.1 Architecture

One of the challenges introduced in v2 of the SMT-LIB language is the addition of the commands
push and pop, which enables scoping of assertions, and sort and function declarations. Hence,
SMT-LIB v2 distinguishes between local scoping of sorted variables and variable bindings (as
defined by forall, exists and let terms) and global scoping as defined by the commands push
and pop. Note that in the following, if distinction is needed, we refer to locally defined scopes
as term-level scopes, and globally defined scopes as command-level scopes. Further note that
ddSMT does not distinguish between actual functions and variables (or uninterpreted constants

%http://www.verit-solver.org/veriT-toolsDownload.php
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Scope
Level: 0
Type: command-level
Sorts: Bool, Int, sortl
Funs: =, and, not, x, y

commands: 1,2,3,4,5,6, 14, 15, 16, 17

/

Scope
Level: 1 Scope Scope
Type: command-level Level: 1 Level: 1
Sorts: sort2 Type:  term-level (forall) Type: term-level (let)
Funs: X, Y, Z Funs: 1z Funs:  x,y

commands: 7, 8,9, 10, 11, 12, 13

Scope
Level: 2
Type: term-level (ewists)
Funs: 2z

Figure 2: The basic internal structure of ddSMT given the Example in Figure

in first order terminology) explicitly. Hence, in the following, if we do not make an explicit
distinction, function may refer to either of them.

Internally the tool represents the given SMT-LIB v2 input as a tree of scopes. Each scope
maintains a nesting level, a set of nested scopes, and a set of functions. Command-level scopes
additionally maintain a set of commands and a set of sorts. Note that this structure enables a
visibility handling of sorts and functions similar to related techniques in compiler construction,
where a sorts (resp. functions) cache provides access to currently visible sorts (resp. functions)
in constant time.

Ezample 1. To illustrate the basic internal structure of ddSMT as described above, consider the
input file given in Fig. [I] As shown in Fig. 2} it defines two command-level scopes (the root
scope at level 0 and the scope defined by given push and pop commands at level 1), and three
term-level scopes defined by given forall, exists and let terms, respectively.

All sorts and functions defined at theory level are treated as being defined at level 0. Further,
named annotations (attribute :named) are internally handled as if additionally a correspond-
ing function definition had been given (in this particular case: (define-fun z () Bool (not
x))). Commands are maintained by the scope they appear in, with a push command as the
last command before a new scope is opened, and a pop command as the last command before
the current scope is closed. Note that for better readability, we refer to the resp. commands in
Fig. 2] by the line number they appear in Fig.

In our example, the root scope maintains the predefined sorts Bool and Int, as well as
the user-defined sort sortl. It further declares the predefined functions =, and and not, and
the user-defined functions z and y (both of sort sortl). The command-level scope at level
1 maintains the user-defined sort sort2, and further declares functions z and y (both of sort
sort2) and the named annotation z (of sort Bool). The term-level scope defined by forall at
level 1 declares variable z of sort Int, whereas its nested term-level scope defined by exists at
level 2 declares variable zz of sort Int. Finally, the term-level scope defined by let at level 1
declares variables = and y of sort Int.
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Figure 3: The general workflow and delta debugging phases of ddSMT .



ddSMT: A Delta Debugger for the SMT-LIB v2 Format A.Niemetz and A.Biere

2.2 General Workflow

The SMT-LIB v2 input is simplified by eliminating command-level scopes and commands, and
substituting terms with simplified expressions. Note that eliminating scopes resp. commands
refers to substituting nodes by None (the Python null object). In contrast to deltaSMT, ddSMT
does not employ a hierarchical delta debugging approach on a BFS and node-by-node sub-
stitution base, but tries to exploit the strength of the original delta debugging algorithm (a
divide-and-conquer strategy) as follows.

As illustrated in Fig. [3] ddSMT works in rounds, where each round is divided into several
substitution phases. In each phase, nodes are first filtered and collected by a specific charac-
teristic (e.g. nodes with a bit vector sort), and then substituted using a modified version of the
original delta debugging algorithm as described in Fig. [§] The individual substitution phases
are described as follows.

Command-level scope substitution Starting with the nested scopes of the root scope,
command-level scopes are eliminated level-wise, in BFS manner, until a fixpoint is reached.

Command substitution After the command-level scope substitution phase, any command
in any of the remaining command-level scopes irrelevant to the original failure-induced be-
haviour except the set-logic and exit commands, which are mandatory for starting and termi-
nating SMT-LIB v2 scripts, is eliminated (while preserving the order of remaining commands)
until a fixpoint is reached. Note that in the initial round, in order to prevent lots of likely un-
successful test runs when eliminating e.g. declare-fun commands previous to term substitution,
ddSMT considers assert commands only.

Further note that ddSMT does not ensure that the resulting simplified output is legal in the
sense that e.g. variables must be declared previous to being used — the elimination of commands
is solely tied to the exit code of the given command. This usually does not pose a problem
though, as this kind of syntactically invalid input should be treated accordingly by a tool
working on the SMT-LIB v2 language. In case the above behaviour poses a problem, e.g. when
debugging parser related faulty behaviour, this can be easily handled by appropriate wrapper
scripts (e.g. to check on specific solver output).

Term substitution Internally, ddSMT represents SMT-LIB v2 terms as DAGs with exactly
one root. The SMT-LIB v2 format defines three commands with terms as arguments: assert,
define-fun and get-value. Commands of each of these kinds are handled separately, with define-
fun commands being processed prior to assert and get-value commands in order to prevent
redundant substitution work due to the fact that functions defined via define-fun are usually
referenced in assert and get-value commands multiple times. For each of these sets of com-
mands, term substitution replaces terms w.r.t. their resp. sort (and other characteristics) in
several steps as indicated in Fig. [3| until a fixpoint is reached. Note that individual steps
(e.g. substitution of bit vector terms with constant 0) are defined by the characteristics of both
the terms to be substituted and the substitution itself. Further note that steps depending on
the SMT-LIB v2 logic in use are skipped if inapplicable (e.g. the substitution of Real terms
with constant 0 or fresh variables if given logic is not a Reals logic). The individual steps are
described as follows.

Initially, and depending on the SMT-LIB v2 logic in use, first bit vector, then Int, then
Real terms are substituted with constant 0 and fresh variables, respectively. Additionally, if
given formula is defined over the theory of Fized_Size_Bit_Vectors, terms of the form (bvor (_
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bv0 1) term) and (bvand (_ bvl 1) term) are replaced by their resp. child term. Next, let
terms are replaced by their child term. After that, Boolean terms are substituted by constant
false, constant true, and fresh variables, respectively. Subsequently, terms of the form (or
false term) and (and true term) are replaced by their resp. child term. If the logic in use
is an array logic, store terms are replaced by their child array terms. Finally, ite terms are
substituted with their left and right child, respectively.

Note that in those steps of the term substitution phase, where terms are replaced with a
simpler expression rather than one of their child terms (e.g. substituting Boolean terms with
constant false), constant terms are skipped. Further note that each step of the term substitution
phase (e.g. substituting bit vector terms with constant 0) is performed until a fixpoint is reached.

If any of the above substitution phases succeeded, i.e. if in any of the above phases, scopes,
commands or terms have been eliminated or replaced successfully, ddSMT tries to iteratively
simplify the current configuration even further until a fixpoint is reached.

Ezample 2. Continuing Ex. [T} consider the input file given in Fig. [[] and an executable failing
on this input by not providing support for get-value commands as simulated by the Shell script
given in Fig. 4l The input file is simplified by ddSMT in two rounds as follows.

In round one, first all redundant command-level scopes are eliminated. In this case, the scope
defined by the push and pop commands in line 6 and 13 is redundant. The resulting simplified
input is depicted in Fig. [fa] Next, all commands irrelevant to the failure-induced behaviour
are successfully eliminated. As mentioned earlier, in the first round command substitution only
considers assert commands. Hence, commands 5 and 6 (but not command 7, which is a check-sat
command) are eliminated. The resulting simplified input is depicted in Fig. After command
substitution, ddSMT subsequently performs term substitution on argument terms of define-fun,
assert and get-value commands, in the order specified. As the current simplified input (as
depicted in Fig. only contains a single get-value command, term substitution for define-fun
and assert commands is skipped and the argument term of the get-value command at line 6 is
the only one to be processed as follows. The original input in Fig. [1|is defined over the theory of
Ints (but not over the theory of Fized_Size_Bit_Vectors or Reals), hence all bit vector and Reals
related steps are skipped. The let expression in line 6 contains two non-constant Int terms, x
and y, which are first (and successfully) replaced by constant 0. The resulting simplified input
is depicted in Fig. [fal As no more non-constant Int terms remain, subsequent substitution
with fresh variables is skipped. Next, the let term is successfully replaced by its child term
(due to the fact that all occurrences of its variable bindings have been substituted by constant
0, previously). The resulting simplified input is depicted in Fig. Finally, the remaining
non-constant Boolean term (= 0 0) is successfully replaced by constant false. As depicted
in Fig. in the current simplified input the only remaining term (in the argument term of
the get-value command at line 6) is a Boolean constant. Hence, all further term substitution
steps operating on Boolean and ite terms are skipped and the first round concludes with the
simplified input depicted in Fig.

In round two, the only successful substitution phase is command substitution, where com-
mands 2, 3, and 4 are eliminated. The final result is depicted in Fig.

2.3 substitute: The Delta Debugging Core Algorithm

The core of the actual delta debugging in ddSMT is the substitution algorithm described in Fig.[§
Command-level scopes and commands are substituted with None, whereas terms, depending

6
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1 #!/bin/sh
2 if [ ‘grep -c "\<get-value\>" $1°‘ -ne 0 ]; then exit 1 fi
3 exit 0

Figure 4: A simple Shell script simulating an executable failing on the input given in Fig.
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(set-logic UFNIA)

(declare-sort sortil 0)

(declare-fun x () sortl)

(declare-fun y () sortl)

(assert (= x y))

(assert (forall ((z Int)) (exists ((zz Int)) (= z zz))))
(check-sat)

(get-value ((let ((x 1) (y 1)) (= x y))))

(exit)

(a) The simplified input after command-level scope substitution.

(set-logic UFNIA)

(declare-sort sortl 0)

(declare-fun x () sortl)

(declare-fun y () sortl)

(check-sat)

(get-value ((let ((x 1) (y 1)) (= x y))))
(exit)

(b) The simplified input after subsequent command substitution.

Figure 5: The input of Fig. [1| during the first substitution round in Ex.

(set-logic UFNIA)
(declare-sort sortl 0)
(declare-fun x () sortl)
(declare-fun y () sortl)
(check-sat)
(get-value ((let ((x 1) (y 1)) (= 0 0))))
(exit)

(a) The result of substituting non-constant Int¢ terms with constant 0.
(set-logic UFNIA) 1 (set-logic UFNIA)
(declare-sort sortl 0) 2 (declare-sort sortil 0)
(declare-fun x () sortl) 3 (declare-fun x () sortl)
(declare-fun y () sorti) 4 (declare-fun y () sortl)
(check-sat) 5 (check-sat)
(get-value ((= 0 0))) 6 (get-value (false))
(exit) 7 (exit)
(b) The result of substituting the let term (¢) The result of substituting the remaining
with its child term. Boolean term with constant false.

Figure 6: Continuing from Fig. |5 all three simplified inputs are the result of individual steps
of term substitution in the first round.
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(set-logic UFNIA)
(check-sat)
(get-value (false))
(exit)

W N =

Figure 7: The final result of simplifying the input of Fig. in Ex.[2|after the second substitution
round. In round two, commands 2, 3, and 4 are eliminated during command substitution.

1 def substitute (subst_fun, superset):

2 granularity = len(superset)

3 while granularity > O:

4 nsubsets = len(superset) / granularity
5 subsets = split(superset, nsubsets)

6 for subset in subsets:

7 nsubsts = 0

8 for item in subset:

9 if not item.is_substituted():
10 item.substitute_with(subst_fun(item))
11 nsubsts += 1

12 if nsubsts ==

13 continue

14

15 dump (tmpfile)

16

17 if test():

18 dump (outfile)

19 subsets.delete (subset)

20 else:

21 # reset substitutions of current subset
22 restore_previous_state ()

23 superset = subsets.flatten ()

24 granularity = granularity / 2

Figure 8: The core substitution algorithm in ddSMT in Python-style pseudo code.

on their sort, are replaced by constant 0, false, true, fresh variables, or one of their children,
respectively. Each substitution phase utilizes substitute as follows. Given a substitution
function subst_fun and a set of nodes filtered by some specific filter criteria (e.g. nodes with
a bit vector sort) as superset, this set is gradually split into nsubsts subsets, where the
granularity, i.e. the number of items, of each subset initially starts at len(superset). Note
that this basically means that in a first attempt, all nodes of superset will be substituted. For
each subset of these subsets, all items are substituted by the application of the substitution
function subst_fun to the resp. item before issuing the original command (usually a call to
an SMT solver) on the current configuration. If this (so called) test run succeeds, i.e. if the
exit code of the current run matches the exit code of the original configuration, the current
simplified input is stored for immediate reuse in outfile. Otherwise, all substitutions of the
current subset are reset and we continue with the next subset.

Note that previously substituted nodes will be skipped. This is due to the fact that superset
initially contains either the original node (if it is yet to be substituted) or its most current
substitution.
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s NG Red. [%] Time [s] Runs Mem. [MB]
< <Y avg min max | avg min max avg min max | avg min max
1 2 0 0 0 | 257 14 500 | 4051 655 7446 | 113 108 117
= 2 95 | 94.0 0 999 49 0.1 1738 599 5 7296 | 111 33 153
5, 3 5 | 66.6 0 938 12 3 34 608 262 1297 | 107 76 126
% 4 53 | 99.6 98.8 99.9 8 0.6 20 463 4 852 | 128 52 142
° 5 - - - - - - - - - - - - -
1 2| 90.0 839 96.0 44 9 79 | 1412 782 2041 13 10 16
- 2 95 | 94.7 682 99.9 92 0.1 1594 | 1499 2 3790 15 10 24
= 3 5| 804 668 872 23 14 35 | 1533 1171 1764 11 10 12
2 4 53 | 99.8 99.3 999 57 1 246 431 13 1240 28 15 42
© 5 5| 974 957 983 12 5 16 247 215 371 39 10 59

Table 1: Comparison between deltaSMT (for SMT-LIB v1) and ddSMT on test sets (7'S) 1 to
5. Test set 1 to 4 are randomly generated bit vector formulas originally given in SMT-LIB v1,
test set 5 contains non-quantifier-free test cases for CVC4. Red. denotes the overall reduction in
percent of the original file size, Time denotes the overall runtime in seconds, and Mem. denotes
the maximum resident set size in MB.

3 Experimental Evaluation

Our delta debugger ddSMT has recently been released® under version 3 of the General Public
License (GPLv3)* and is currently still a work in progress. Its parser is tested on the complete
SMT-LIB v2 benchmark set (available at [3]) and the delta debugger itself has been tested on
a wide range of crafted instances and SMT-LIB v2 benchmarks using simple shell scripts in
place of actual solver calls in order to achieve a wider distribution over the SMT-LIB v2 logics.
Additionally, ddSMT has further been applied to actual failure inducing test cases encountered
during the development of our solver Boolector®, as well as the open source SMT solver CVC4S,
a joint effort between the NYU and the University of Iowa.

As of May 23" 2013, deltaSMT2, which we understand to be still work in progress, does not
produce legal intermediate output for bit vector logics and is thus not able to simplify any of the
test cases available for Boolector. Further, deltaSMT2 does not support non-quantifier-free logics
such as AUFLIA or AUFLIRA and is hence not applicable to any of the test cases available
for CVC4. Unfortunately, it was therefore not possible to evaluate the overall performance of
ddSMT in comparison to deltaSMT2 . Instead, we translated quantifier-free SMT-LIB v1 input
to SMT-LIB v2 and run deltaSMT-0.2 and ddSMT-0.96-beta on various sets of test cases (T5)
as indicated in Table[l] Test sets 1 to 4 are randomly generated bit vector formulas originally
given in SMT-LIB vl and serve as test cases for Boolector, whereas test set 5 contains non-
quantifier-free SMT-LIB v2 test cases for CVC4. Input reduction (Red.) is given in percent of
the file size of the original input file, Time denotes the wall clock runtime in seconds, and Mem.
indicates the maximum resident set size per run in MB. All experiments were performed on a
3.4 GHz Intel Core i7-2600 machine with 16GB RAM, running a 64 Bit Arch Linux OS.

Overall and even though the bit vector test cases where originally given in SMT-LIB v1
(i.e. they do not employ SMT-LIB v2 features such as e.g. push and pop commands, which
could be fully exploited by ddSMT), our first results look promising. Even for test cases, where
deltaSMT failed to simplify given input at all, ddSMT successfully achieved reductions by at least
81.1% of the original input file size. Note that except for the test cases denoted in Table

Shttp://fmv. jku.at/ddsmt
4http://www.gnu.org/licenses
Shttp://fmv.jku.at/boolector
Shttp://cvcd.cs.nyu.edu
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we currently still miss real test cases in SMT-LIB v2 logics other than QF_BV, QF_AX and
QF_AUFBYV. We therefore would like to encourage the SMT community to actually use ddSMT
and thus further its development, and appreciate any comments, suggestions or bug reports.

4 Conclusion

In this paper, we introduced our delta debugger ddSMT, a tool for minimizing failure-inducing
input in SMT-LIB v2 format. It supports all SMT-LIB v2 logics and in particular handles
macros, named annotations, and scopes defined by the commands push and pop. Especially in
combination with fuzz testing, ddSMT provides an effective approach to find and localize bugs
in tools working on the SMT-LIB v2 language.

Recently, model-based delta-debugging (and fuzzing) in the context of testing and debugging
verification backends was reported to be more effective than file based delta-debugging [2], in
particular in combination with option resp. configuration fuzzing. Even though the delta-
debugger ddSMT presented in this paper does not work on the API level of an SMT solver
directly, we believe that the “programmatic nature” of the SMT-LIB v2 format using commands
allows ddSMT to be equally effective.

In future work we will compare the effectiveness of API level delta-debugging with the
approach presented in this paper. We further plan to evaluate ddSMT in combination with
fuzzing SMT-LIB v2 input with command-level scopes.

We want to thank Morgan Deters for providing actual test cases for the SMT solver CVCA4.
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