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Abstract. Satisfiability Modulo Theories (SMT) is essential for many
applications in computer-aided verification. A recent SMT solving ap-
proach based on stochastic local search for the theory of quantifier-free
fixed-size bit-vectors proved to be quite effective on hard satisfiable in-
stances, particularly in the context of symbolic execution. However, it
still relies on brute-force randomization and restarts to achieve complete-
ness. In this paper we simplify, extend, and formalize the propagation-
based variant of this approach. We introduce a notion of essential inputs
to lift the well-known concept of controlling inputs from the bit-level
to the word-level, which allows to prune search. Guided by a formal
completeness proof for our propagation-based variant we obtain a clean,
simple and more precise algorithm, which yields a substantial gain in
performance, as shown in our experimental evaluation.

1 Introduction

In many applications of hardware and software verification, such as (constrained
random) test case generation [1, 2, 3] or white box fuzz testing [4], the vast
majority of problems is satisfiable. Hence, for this kind of problems local search
procedures for deciding satisfiability are useful even though they do not allow
to determine unsatisfiability. They were further shown to be orthogonal to other
approaches [5][6] and proved to be particularly beneficial in a portfolio setting [6].

Applications as above require bit-precise reasoning as provided by Satisfi-
ability Modulo Theories (SMT) solvers for the theory of fixed-size bit-vectors.
Current state-of-the-art SMT solvers [7, 8, 9, 10, 11] employ the so-called bit-
blasting approach (e.g., [12]), where a given formula is eagerly translated to
propositional logic (SAT) while heavily relying on rewriting techniques [13, 14,
15, 16, 17, 18, 19, 20, 21] to simplify the input during preprocessing.

Since the SAT Challenge 2012 [22], a new generation of (stochastic) local
search (SLS) solvers with very simple architecture [23] achieved remarkable re-
sults not only in the random but also in the combinatorial tracks of recent SAT
competitions [22, 24, 25]. In an attempt to reproduce these successful applica-
tions of SLS in SAT, in [5], Fröhlich et al. lifted SLS to SMT and proposed a
procedure to solve bit-vector formulas on the theory level (word-level) without
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bit-blasting. In contrast to previous attempts of utilizing SLS techniques in SMT
by integrating a bit-level SLS solver in the SMT solver MathSAT [9], the SLS
approach for SMT in [5] showed promising initial results. However, it does not
fully exploit the word-level structure but rather simulates bit-level local search by
focusing on single bit flips. As a consequence, in [6] we proposed a propagation-
based extension of [5], which introduced an additional strategy to the original
approach to propagate assignments from the outputs to the inputs. This sig-
nificantly improves performance. We further showed that these techniques are
beneficial in a sequential portfolio setting [26] in combination with bit-blasting.

Down propagation of assignments along a single path as in [6] utilizes inverse
value computation. This process, however, can get stuck, in which case [6] falls
back to either brute force randomization or SLS moves to achieve completeness,
as does [5]. Further, inverse value computation as presented in [6] is, as we show
in this paper, too restrictive for some operators. Actually, focusing on inverse
values only is already too restrictive and may inadvertently prune the search.

In this paper, we simplify and extend the approach presented in [6]. Guided
by a formal completeness proof, we present a precise and complete variant of the
procedure proposed in [6]. In contrast to [6], our variant only uses propagation
and neither relies on restarts nor SLS techniques to achieve completeness. We
extend the concept of controlling inputs, used in [6] to determine propagation
paths for bit-level operators, to the word-level by introducing the notion of es-
sential inputs. This allows to further prune the search. To overcome the problem
of too restrictive inverse value computation, we lift the ATPG [27] concept of
“backtracing”, which goes back to the PODEM algorithm [28], to the word-
level and provide a formalization for both the bit-level and the word-level. Our
experiments show that our techniques yield a substantial gain in performance.

Note that in contrast to backtracing in ATPG, our algorithm works with
complete assignments. Existing algorithms for word-level ATPG [29, 30] are
based on branch-bound, use neither backtracing nor complete assignments, are
further focused on HW models, and in general lack formal treatment. Other
related work on structural bit-level solving from the AI community, e.g., [31, 32,
33], has not found actual applications yet, as far we know.
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Fig. 1: Basic idea of our propagation-based (local search) strategy.
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2 Overview

The propagation-based local search strategy presented in this paper follows the
basic idea of the approach presented in [6] as illustrated in Figure 1. It is applied
to both Boolean formulas (bit-level) and quantifier-free fixed-size bit-vector for-
mulas (word-level) and (in contrast to [6]) neither relies on restarts nor requires
to fall back on SLS moves (as introduced in [5]) in order to achieve completeness
but employs down propagation of assignments only.

Assume that formula φ is a directed acyclic graph (DAG) with root r, and σ1
is a complete but non-satisfying initial assignment, i.e., σ1(r) = 0. Our goal is to
reach a satisfying assignment ω by changing the value of some primary inputs
such that ω(r) = 1. Therefore, we first force root r to assume its target value
ω(r) = 1 (denoted as 0  1 in Figure 1), and then propagate this information
along a path towards the primary inputs. This process is also known as “back-
tracing” [28]. Recursively propagating the target value ω(r) = 1 from the root
to a primary input (e.g., v1 in Figure 1) yields a new assignment xi 6= σi(vi) for
a primary input vi. We then move from assignment σi to assignment σi+1 by
updating σi on vi to σi+1(vi) = xi without changing the value of other primary
inputs but recomputing consistent values for inner nodes. Figure 2 describes
this strategy more precisely in pseudo code. On the bit-level, as in [6], during
path propagation selection of controlling inputs is prioritized w.r.t. the current
assignment σ, a well-known concept from ATPG. On the word-level, in contrast
to [6], we introduce the new notion of essential inputs, which lifts the bit-level
concept of controlling inputs to the word-level while trying to maximally reduce
non-deterministic choices without sacrificing completeness.

1 function sat (r, σ) // returns Boolean value B = {0, 1}
2 while σ(r) 6= 1 // while not satisfied
3 g = r, t = 1 // initialize path as root path
4 while ¬leaf(g) // while current node is an operator
5 n = child(σ, t, g) // select backtracing node
6 x = value(σ, t, g, n) // select backtracing value
7 g = n, t = x // backtracing step (propagation)
8 if ¬constant(g) // check if leaf is variable v = g
9 σ = update(σ, g, t) // apply move to variable v = g

10 return 1 // return with 1 (true) if satisfied

Fig. 2: The core sat procedure in pseudo-code.

As expected for local search, our propagation strategy is not able to determine
unsatisfiability. When determining satisfiability, however, our strategy is com-
plete in the sense that if there is a solution, then there exists a non-deterministic
choice of moves according to the strategy that leads to a solution.

In the following, we first introduce and formalize our propagation-based ap-
proach on the bit-level and prove its completeness. We then lift it to the word-
level, again prove its completeness, and show in our experimental evaluation that
our techniques yield substantial performance improvements.
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3 Bit-Level

In order to simplify the exposition we consider a fixed Boolean formula φ and
restrict the set of Boolean operators to {∧,¬}. We can interpret φ as a single-
rooted And-Inverter-Graph (AIG) [34], where an AIG is a DAG represented
as a 5-tuple (r,N,G, V,E). The set of nodes N = G ∪ V contains the single
root node r ∈ N , and is further partitioned into a set of gates G and a set of
primary inputs (or variables) V . We require that V 6= ∅ and assume that the
Boolean constants B = {0, 1}, i.e., true (1) and false (0), do not occur in N .
This assumption is without loss of generality since every occurrence of true and
false as input to a gate g ∈ G can be eliminated through rewriting. The set of
gates G = A∪I consists of a set of and -gates A and a set of inverter -gates I. We
write g = n∧m if g ∈ A, and g = ¬n if g ∈ I, and refer to the children of a node
g ∈ G as its (gate) inputs (e.g., n or m). Let E = EA ∪EI be the edge relation
between nodes, with EA : A → N2 and EI : I → N describing edges from and -
resp. inverter -gates to its input(s). We write E(g) = (n,m) for g = n ∧m and
E(g) = n for g = ¬n and further introduce the notation g → n for an edge
between a gate g and one of its inputs n.

We define a complete assignment σ of the given fixed φ as a complete func-
tion σ : N → B, and a partial assignment α of φ as a partial function α : N → B.
We say that a complete assignment σ is consistent on a gate g ∈ I with
g = ¬n iff σ(g) = ¬σ(n), and consistent on a gate g ∈ A with g = n ∧m iff
σ(g) = σ(n) ∧ σ(m). A complete assignment σ is globally consistent on φ (or
just consistent) iff it is consistent on all gates g ∈ G. An assignment σ is satis-
fying if it is consistent (thus complete) and satisfies the root, i.e., σ(r) = 1. We
use the letter ω to denote a satisfying assignment. A formula φ is satisfiable if it
has a satisfying assignment. Let C be the set of consistent assignments, and let
W with W ⊆ C be the set of satisfying assignments of formula φ.

Given two consistent assignments σ and σ′, we say that σ′ is obtained
from σ by flipping the (assignment of a) variable v ∈ V , written as σ

v−→ σ′,
iff σ(v) = ¬σ′(v) and σ(u) = σ′(u) for all u ∈ V \{v}. We also refer to flipping a
variable as a move. Note that σ′(g) for gates g ∈ G is defined implicitly due to
consistency of σ′ after fixing the values for the primary inputs V .

Given as a set of variables V that can be flipped non-deterministically, let
S : C → P(M) be a (local search) strategy that maps a consistent assignment to
a set of possible moves M = V . The move v ∈ V is valid under strategy S for
a consistent assignment σ ∈ C if v ∈ S(σ). Similarly, a sequence of moves µ =
(v1, . . . , vk) ∈ V ∗ of length k = |µ| with v1, . . . , vk ∈ V is valid under strategy S
iff there exists a sequence of consistent assignments (σ1, . . . , σk+1) ∈ C∗ such that

σi
vi−→ σi+1 and vi ∈ S(σi) for 1 ≤ i ≤ k. In this case σk+1 can be reached from

σ1 under S (with k moves), also written σ1 →∗ σk+1.

Definition 1. If formula φ is satisfiable, then a strategy S is called complete iff
for all consistent assignments σ ∈ C there exists a satisfying assignment ω ∈ W
such that ω can be reached from σ under S, i.e., σ →∗ ω.
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Given a satisfiable assignment ω ∈ W and a consistent assignment σ ∈ C,
let ∆(σ, ω) = {v ∈ V | σ(v) 6= ω(v)}. Thus |∆(σ, ω)| is the Hamming Distance
between σ and ω on V . We say that a strategy S is (non-deterministically)

distance reducing, if for all σ ∈ C\W and ω ∈ W there exists a move σ
v−→ σ′

valid under S which reduces the Hamming Distance, i.e., move v is in ∆(σ, ω)
thus |∆(σ, ω)| − |∆(σ′, ω)| = 1. Obviously, any distance reducing strategy can
reach a satisfying assignment (though not necessarily ω) within at most |∆(σ, ω)|
moves. This first observation is the key argument in the completeness proofs for
our propagation based strategies later on (both on the bit-level and word-level).

Proposition 2. A distance reducing strategy is also complete.

The ultimate goal of this paper is to define a strategy that maximally re-
duces non-deterministic choices without sacrificing completeness. In the algo-
rithm shown in Figure 2, selecting the backtracing node (line 5) and its value
(line 6) constitute the only sources of non-determinism. This non-determinism
can be reduced by using the notion of controlling inputs from ATPG [27], which
was already considered in [6], but only for Boolean expressions.

Definition 3 (Controlling Input). Let n ∈ N be an input of a gate g ∈ G,
i.e., g → n, and let σ be a complete assignment consistent on g. We say that
input n is controlling under σ, if for all complete assignments σ′ consistent on g
with σ(n) = σ′(n) we have σ(g) = σ′(g).

In other words, gate input n is controlling, if the assignment of g, i.e., its
output value, remains unchanged as long as the assignment of n does not change.
Given an assignment σ consistent on a gate g ∈ G, we denote a target value t
for g as σ(g) t. On the bit-level, t is implicitly given through σ as t = ¬σ(g),
i.e., t can not be reached as long as the controlling inputs of g remain unchanged.
On the word-level, t may be any value t 6= σ(g).

Example 4. Figure 3 shows all possible assignments σ consistent on a gate g ∈ G.
At the outputs we denote current assignment σ(g) and target value t as σ(g) t
with t = ¬σ(g), e.g., 0  1. At the inputs we show their assignment under σ.
All controlling inputs are indicated with an underline. Note that for σ(g) = 1,
and -gate g = n ∧m has no controlling inputs.
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Fig. 3: An inverter and an and -gate and their controlling (underlined) inputs.
Given output values indicate the transition from current to target value.
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A sequence of nodes π = (n1, . . . , nk) ∈ N+ is a path of length k = |π| iff
ni → ni+1 for 0 < i < k, also written as n1 → . . .→ nk. A path π is rooted if
n1 = r, and (fully) expanded if nk ∈ V . We call nk ∈ V the leaf of π in this case.
As a restriction on φ, we require all paths to be acyclic, i.e., for all n ∈ N there
is no path n→+ n, and all nodes n ∈ N to be reachable from the root, i.e., there
exists a path π = (r, . . . , n). Note that as a consequence of representing φ as a
DAG, any path in φ is acyclic. Given a path π = (. . . , g) with g ∈ G and g → n,
we say that π.n = (. . . , g, n) is an extension of path π with node n.

Definition 5 (Path Selection). Let σ ∈ C be a (complete) consistent assign-
ment, and let π = (. . . , g) be a path as above. Then input n can be selected
w.r.t. σ to extend π to π.n if n is controlling or if g has no controlling input.

Path selection based on the notion of controlling inputs as introduced above
exploits observability don’t cares as defined in the context of ATPG [27]. Simi-
larly, we adopt the ATPG idea of backtracing [28, 27], as follows.

Definition 6 (Backtracing Step). Let σ ∈ C be a (complete) consistent as-
signment. Given a gate g ∈ G with g → n, a backtracing step w.r.t. σ selects
input n of g w.r.t. σ as in Definition 5, and determines a backtracing value x
for n as follows. If g = ¬n, then x = σ(g). Else, if g = n∧m, then x = ¬σ(g).

As an important observation it turns out that performing a (bit-level) back-
tracing step always flips the value of the selected input under σ. For a selected
input the backtracing value is therefore always unique. This can be checked easily
by considering all possible scenarios shown in Figure 3.

Proposition 7. A backtracing step always yields as backtracing value x = ¬σ(n).

Example 8. Consider g = n ∧m and the assignment σ = {g 7→ 0, n 7→ 0,m 7→ 1}
consistent on g as depicted in Figure 3. Assume that t = ¬σ(g) = 1 is the target
value of g, i.e., σ(g) t with 0 1. We select n as the single controlling input
of g (underlined), which yields backtracing value x = ¬σ(n) = 1 for n.

A trace τ = (π, α) is a rooted path π = (n1, . . . , nk) labelled with a partial
assignment α, where α is defined exactly on {n1, . . . , nk}. A trace (π, α) is (fully)
expanded, if π is a fully expanded path, i.e., node nk ∈ V is the leaf of π and τ .

Let σ ∈ C\W be a consistent but non-satisfying assignment. Then the notion
of extension is lifted from paths to traces as follows. A trace τ ′ = (π′, α′) extends
τ = (π, α) by a propagation step (or backtracing step) w.r.t. σ, denoted τ → τ ′, if
π′ = π.n is an extension of π = (. . . , g) with g ∈ G, α′(m) = α(m) for all nodes m
in π, and x = α′(n) is the (unique) backtracing value of this backtracing step on g
w.r.t. σ and target value t = ¬σ(g) = α(g). The root trace ρ = ((r), {r 7→ 1}) is
a trace that maps r to its target value ω(r) = 1. A propagation trace τ w.r.t. σ is
a (partial) trace that starts from the root trace ρ and is extended by propagation
steps w.r.t. σ, i.e., ρ →∗ τ . Note that α is redundant on the bit-level, given π
and σ. We use the same notation on the word-level though, where α captures
updates to σ along π, which (in contrast to the bit-level) are not uniquely defined.
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Definition 9 (Propagation Strategy). Given a non-satisfying but consistent
assignment σ ∈ C\W, the set of valid moves P(σ) for σ under propagation
strategy P contains exactly the leafs of all expanded propagation traces w.r.t σ.

In the following, we present and prove the main Lemma of this paper, which
then immediately gives completeness of P in Theorem 11. It is further reused
for proving completeness of the extension of P to the word-level in Theorem 26.

Lemma 10 (Propagation Lemma). Given a non-satisfying but consistent
assignment σ ∈ C\W, then for any satisfying assignment ω ∈ W, used as oracle,
there exists an expanded propagation trace τ w.r.t. σ with leaf v ∈ ∆(σ, ω).

Proof. The idea is to inductively extend the root trace ρ to traces τ = (π, α)
through propagation steps, i.e., ρ→∗ τ , which all satisfy the (key) invariant

α(n) = ω(n) 6= σ(n) for all nodes n in π. (1)

The root trace ρ = ((r), {r 7→ ω(r)}) obviously satisfies this invariant. Now, let
τ = (π, α) be a trace that satisfies the invariant but is not fully expanded, i.e.,
π = (r, . . . , g) with g ∈ G and α(g) = ω(g) 6= σ(g). Since σ(g) 6= ω(g) it follows
that g has at least one input n with σ(n) 6= ω(n). If g has no controlling input,
then by Definition 5 it is allowed to select n as an input with σ(n) 6= ω(n).
Otherwise, input n is selected as any controlling input. In both cases we select
x = ω(n) 6= σ(n) as backtracing value using Proposition 7. Trace τ is now
extended by n with backtracing value x to τ ′, i.e., τ → τ ′, which in turn concludes
the inductive proof of Eqn. (1). Any fully expanded propagation trace τ = (π, α)
with leaf v ∈ V , as generated above, also satisfies the invariant in Eqn. (1). Thus,
we have α(v) = ω(v) 6= σ(v) with v ∈ ∆(σ, ω). ut

In essence, given σ and ω as above, our propagation strategy propagates
target value ω(r) from root r towards the primary inputs, ultimately producing
a fully expanded propagation trace τ . In case of non-deterministic choices for
extending the trace we use ω as an oracle to pick an input n with σ(n) 6= ω(n),
which can be selected according to Definition 5. The oracle allows us to ensure
that v ∈ ∆(σ, ω) for leaf v of τ . Thus, using Lemma 10, our propagation strategy
turns out to be distance reducing, and therefore, according to Proposition 2,
complete. This important contribution of this paper serves in the following as a
basis for lifting our approach from the bit-level to the word-level.

Theorem 11. Under the assumptions of the previous Lemma 10 we also get
v ∈ P(σ). Thus P is distance reducing and, as a consequence, complete.

Our notion of completeness follows the traditional notion of non-deterministic
computation of Turing machines. For the purpose of this paper, it is equiva-
lent to the more established property of probabilistically approximately complete
(PAC) [35], commonly used in the AI community to discuss completeness prop-
erties of local search algorithms. This holds as long as probabilistic choices are
treated as non-deterministic choices, which actually also is the case in [35].
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Output Arity Input
bit-width bit-width

Operator SMT-LIB 1st 2nd 3rd

[j : i] extract j − i+ 1 1 w − − extraction (1 ≤ i ≤ j ≤ w)
∼ bvnot w 1 w − − bit-wise negation
& bvand w 2 w w − bit-wise conjunction
= = 1 2 w w − equality
< bvult 1 2 w w − unsigned less than
<< bvshl w 2 w q − logical shift left (w = 2q)
>> bvshr w 2 w q − logical shift right (w = 2q)
+ bvadd w 2 w w − addition
· bvmul w 2 w w − multiplication
÷ bvudiv w 2 w w − unsigned division

mod bvurem w 2 w w − unsigned remainder
◦ concat w 2 p q − concatenation (w = p+ q)

if-then-else ite w 3 1 w w conditional

Table 1: Considered bit-vector operators – bit-widths and indices w, p, q, i, j ∈ N.

4 Word-Level

We only consider bit-vector expressions of fixed bit-width w ∈ N, and denote
a bit-vector expression n of width w as n[w]. We will not explicitly state the
bit-width of an expression if the context allows. We refer to the i-th bit of n[w]

as n[i] for 1 ≤ i ≤ w, and further interpret n[1] as the least significant bit (LSB)
and n[w] as the most significant bit (MSB). Similarly, we denote bit ranges over n
from bit index j down to index i as n[j : i]. Note that for the sake of simplicity,
bit indices start from 1 rather than 0. Further, in string representations of bit-
vectors we interpret the bit at the far left index as the MSB.

To simplify the exposition and w.l.o.g. we consider a fixed single-rooted
quantifier-free bit-vector formula φ with Boolean expressions interpreted as bit-
vector expressions of bit-width one. The set of bit-vector operators is restricted
to O = {&,∼,=, <,<<,>>,+, ·,÷,mod, ◦, [ : ], if-then-else} and interpreted ac-
cording to Table 1. The selection of operators in O is rather arbitrary but pro-
vides a good compromise between effective and efficient word-level rewriting
and compact encodings for bit-blasting approaches. It is complete, though, in
the sense that all operators defined in SMT-LIB [36] (in particular signed opera-
tors) can be modeled in a compact way. Note that our methods are not restricted
to single-rootedness or this particular selection of operators, and can easily be
lifted to the full set of operators in SMT-LIB as well as the multi-rooted case.

We interpret formula φ as a single-rooted DAG represented as an 8-tuple
(r,N, κ,O, F, V,B,E). The set of nodes N = O ∪ V ∪B contains the single root
node r ∈ N of bit-width one, and is further partitioned into a set of operator

8



nodesO, a set of primary inputs (or bit-vector variables) V, and a set of bit-vector
constants B ⊆ B∗, which are denoted in either decimal or binary notation if the
context allows. The bit-width of a node is given by κ : N → N, thus κ(r) = 1.
Operator nodes are interpreted as bit-vector operators via F : O → O, which
in turn determines their arity and input and output bit-widths as defined in
Table 1. The edge relation between nodes is given as E = E1 ∪ E2 ∪ E3, with
Ei : O → N i describing the set of edges from unary, binary, and ternary operator
nodes to its input(s), respectively. We again use the notation o→ n for an edge
between an operator node o and one of its inputs n.

We only consider well-formed formulas, where the bit-widths of all operator
nodes and their inputs conform to the conditions imposed via interpretation F
as defined in Table 1. For instance, we denote a bit-vector addition node o
with inputs n and m as o = n+m, where o ∈ O of arity 2 with F (o) = +,
and therefore κ(o) = κ(n) = κ(m). In the following, if more convenient we will
use the functional notation o = �(n1, . . . , nk) for operator node o ∈ O of arity k
with inputs n1, . . . , nk and F (o) = �, e.g., +(n,m). Note that the semantics of all
operators in O correspond to their SMT-LIB counterparts listed in Table 1, with
three exceptions. Given a logical shift operation n<<m or n>>m, w.l.o.g. and
as implemented in our SMT solver Boolector [7], we restrict bit-width κ(n)
to 2κ(m). Further, as implemented by Boolector and other state-of-the-art SMT
solvers, e.g., Mathsat [9] Yices [10] and Z3 [11], we define an unsigned division by
zero to return the greatest possible value rather than introducing uninterpreted
functions, i.e., x÷ 0 = ∼ 0. Similarly, x mod 0 = x.

A complete function σ : N → B∗ with σ(n) ∈ Bκ(n) of a given fixed φ is called
a complete assignment of φ, and a partial function α : N → B∗ with α(n) ∈ Bκ(n)
a partial assignment. Given an operator node o ∈ O with o = �(n1, . . . , nk) and
� ∈ O, a complete assignment σ is consistent on o if σ(o) = f(σ(n1), . . . , σ(nk)),
where f : Bκ(n1)×· · ·×Bκ(nk) → Bκ(o) is determined by the standard semantics of
bit-vector operator � as defined in SMT-LIB [36] (with the exceptions discussed
above). A complete assignment is (globally) consistent on φ (or just consistent),
iff it is consistent on all bit-vector operator nodes o ∈ O and σ(b) = b for all bit-
vector constants b ∈ B. A satisfying assignment ω is a complete and consistent
assignment that satisfies the root, i.e., ω(r) = 1. In the following, we will again
use the letter C to denote the set of complete and consistent assignments, and the
letter W with W ⊆ C to denote the set of satisfying assignments of formula φ.

Given a bit-vector variable v ∈ V with κ(v) = w, we adopt the notion of
obtaining an assignment σ′ from an assignment σ by assigning a new value x to v
with x ∈ Bw where x 6= σ(v), written as σ

v 7→x−−−→ σ′, which we refer to as a move.
Thus, the set of word-level moves is defined as M = {(v, x) | v ∈ V, x ∈ Bκ(v)},
and accordingly, a word-level strategy is defined as a function S : C 7→ P(M)
mapping a consistent assignment to a set of moves.

Our propagation strategy P is lifted from the bit-level to the word-level
starting with our new notion of essential inputs for word-level operators, which
lifts and extends the corresponding notion of controlling inputs.
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Definition 12 (Essential Inputs). Let n ∈ N be an input of a bit-vector
operator node o ∈ O, i.e., o→ n, and let σ be a complete assignment consistent
on o. Further, let t be the target value of o, i.e., σ(o)  t, with t 6= σ(o). We
say that n is an essential input under σ w.r.t. target value t, if for all complete
assignments σ′ consistent on o with σ(n) = σ′(n) we have σ′(o) 6= t.

In other words, an operator node input n is essential w.r.t. target value t,
if o can not assume t as long as the assignment of n does not change. As an
example, consider the bit-vector operators and their essential inputs under some
consistent assignment σ w.r.t. some target value t as in Figure 4.

Example 13. Consider the bit-vector operators &, <<, ·, ÷, mod, and ◦ of bit-
width 2 in Figure 4. For an operator node o, at the outputs we denote given
assignment σ(o) and target value t as σ(o)  t, e.g., 10  01. At the in-
puts we show their assignment under σ. Essential inputs are indicated with
an underline. Consider, e.g., operator node o := n & m with t = 01 and σ =
{o 7→ 10, n 7→ 10, m 7→ 11 }. Since t & σ(n) 6= t, it is not possible to find a
value x for m such that σ(n) & x = t. Hence, input n is essential w.r.t. target
value t. Input m, however, is obviously not essential since t & σ(m) = t.

&

10 01

10 11

<<

00 10

00 1

·

00 10

00 10

÷

01 10

01 01

mod

00 10

01 01

◦

01 11

0 1

Fig. 4: Bit-vector operator nodes and examples for essential (underlined) inputs.
Given output values indicate the transition from current to target value.

Note that AIGs can be represented by bit-vectors of bit-width one, which
can be interpreted as Boolean expressions. In this sense, as in [6], the notion of
controlling inputs can also be applied to word-level Boolean expressions.

Proposition 14. When applied to bit-level or Boolean expressions, the notion
of essential inputs exactly matches the notion of controlling inputs.

Proof. For applying the notion of essential inputs to the bit-level, consider the
operator set {¬,∧} for o ∈ G with o→ n. Further, target value t 6= σ(o) on the
bit-level implies t = ¬σ(o), which exactly matches the corresponding implicit
definition of the target value of o on the bit-level. Now assume that input n is
essential w.r.t. t. Then, if σ(n) = σ′(n), by Definition 12 we have that σ′(o) 6= t,
and therefore σ′(o) = ¬t = σ(o). The other direction works in the same way. ut

The definition of a (rooted and expanded) path as a sequence of nodes
π = (n1, . . . , nk) ∈ N∗ is lifted from the bit-level to the word-level in the natural
way. Corresponding restrictions and implications of Section 3 apply. The notions
of path selection and path extension are lifted to the word-level as follows.
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Definition 15 (Path Extension). Given a path π = (. . . , o) with o ∈ O and
o→ n, we say that π.n = (. . . , o, n) is an extension of path π with node n.

Definition 16 (Path Selection). Given a (complete) consistent assignment
σ ∈ C, a path π = (. . . , o) as in Definition 15 above, and σ(o) t, i.e., t 6= σ(o),
then input n can be selected w.r.t. σ and t to extend π to π.n if n is essential
or if o has no essential input (in both cases essential under σ w.r.t. t).

In contrast to the bit-level, where a backtracing step always flips the assigned
value of a selected input (and the output), on the word-level we also have to
select a backtracing value. We consider three variants of value selection under
the following assumptions. Let t be the target value of an operator node o ∈ O,
and let σ be a complete assignment such that σ(o) 6= t. Further, assume that
input n with o→ n is selected w.r.t. t and σ as in Definition 16 above.

Definition 17 (Random Value).
Any value x with κ(x) = κ(n) is called a random value for n.

Definition 18 (Consistent Value).
A random value x is a consistent value for n w.r.t. t, if there is a complete
assignment σ′ consistent on o with σ′(n) = x and σ′(o) = t.

In other words, a value is consistent for an input, if it allows to produce the
target value after changing values of other inputs if necessary.

Example 19 (Consistent Value Computation). Consider operator node o := n·m,
and assume that input n is selected w.r.t. t and σ as in Definition 16. Let ctz
be defined as the function counting the number of trailing zeroes of a given
bit-vector, i.e., the number of consecutive 0-bits starting from the LSB, e.g.,
ctz (0101) = 0, ctz (111100) = 2. Then any random value x with ctz(t) ≥ ctz(x)
is a consistent value for n, except that t = 0 if x = 0.

Restricting the notion of consistent values even further, however, may be
beneficial in some cases. Consider the following motivating example from [6].

Example 20 (from [6]). Let φ := 274177[65] · v = 18446744073709551617[65].
Computing x = 18446744073709551617[65] ÷ 274177[65] = 67280421310721[65]
immediately concludes with a satisfying assignment for φ.

The chances to select x = 67280421310721 if consistent values for the multi-
plication operator are chosen as in Example 19 are arbitrarily small. Hence, as
in [6], we use the notion of inverse values which utilize the inverse of a given
operator.

Definition 21 (Inverse Value). A consistent value x is an inverse value for n
w.r.t. t and σ, if there exists a complete assignment σ′ consistent on o with
σ′(n) = x, σ′(o) = t and σ′(m) = σ(m) for all m with o→ m and m 6= n.

11



In other words, we define an inverse value as a consistent value for an in-
put n such that operator node o assumes target value t without changing the
assignment of its other inputs.

Example 22 (Inverse Value Computation). Consider operator node o := n ·m of
bit-width w. Assume that input n is selected w.r.t. t and σ as in Definition 16.
If t = σ(m) = 0, any x is an inverse value. However, this contradicts assumption
σ(o) 6= t. If t 6= 0 and σ(m) = 0, or if σ(m) 6= 0 with ctz (t) < ctz (σ(m)),
there exists no inverse value. Otherwise, ctz (t) ≥ ctz (σ(m)) and σ(m) 6= 0.
Let y = m>> ctz (σ(m)), thus y is odd. We compute y−1 as its multiplicative
inverse modulo 2w via the Extended Euclidean algorithm (similar to word-level
rewriting techniques that require solving for a variable, e.g. [14]) and determine
x as (t>> ctz (σ(m))) · y−1 except that all bits in x[w : w − ctz (σ(m)) + 1] are
set arbitrarily, with w = κ(n).

In contrast to [6], we require inverse value computation for all operators
in O to generate all possible inverse values. This holds for the rule for inverse
computation for multiplication discussed in the example above, while it does not
hold for the corresponding rule in [6]. The same applies for operators <<, >>,
÷, and mod.

Definition 23 (Backtracing Step). Let σ ∈ C be a (complete) consistent
assignment. Given an operator node o ∈ O with o → n and a target value
t 6= σ(o), then a backtracing step selects input n of o w.r.t. σ as in Definition 16
and selects a backtracing value x for n as a consistent (and optionally inverse)
value w.r.t. σ and t, if such a value exists, and a random value otherwise.

Note that it is not always possible to find an inverse value for n, e.g.,
o := n & m with σ = {o 7→ 00, n 7→ 00,m 7→ 00} and t = 01. Further, even for
operators that allow to always produce inverse values, e.g., operator +, doing so
may lead to inadvertently pruning the search space, see Example 24 below.

Example 24. Given r := p2 = 0[2] with p2 := v+p1 and p1 := v+2[2] and a com-
plete consistent assignment σ1 = {v 7→ 00, p1 7→ 10, p2 7→ 10, r 7→ 0}, as shown
in Figure 5. Let t = 1 be the target value of root node r, i.e., we want to find a
value for bit-vector variable v such that p2 = 00. Assume that only inverse values
are selected for + operators during propagation. Propagating along the path in-
dicated by blue arrows in Figure 5 the move v 7→ 10 = α1(v) is generated, which
yields assignment σ2 = {v 7→ 10, p1 7→ 00, p2 7→ 10, r 7→ 0}. Selecting the other
possible propagation path, the same move is produced. Thus, σ2 is independent
of which of the two paths is selected. Since σ2(r) 6= t, target value t is again
propagated down, which generates move v 7→ 00 = α2(v), again independently
of which path is selected. With this, we move back to the initial assignment σ1.
Consequently, a satisfying assignment, e.g., ω(v) = 01 or ω′(v) = 11, can not
be reached by only selecting inverse values. However, selecting a consistent but
non-inverse value for p1 generates move v 7→ 01 = α′1(v), which yields ω.
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Fig. 5: Example illustrating the necessity of choosing between random and inverse
values. The output values indicate the (desired) transition from current to target
value. Other values indicate the transition from current value to the value yielded
by down propagating the target output value. Thus a propagation based strategy
without further randomization using only inverse values as in [6] is incomplete.

As a consequence, when performing a backtracing step we in general select
some consistent non-inverse value, if no inverse value exists, and otherwise non-
deterministically choose between consistent (but not necessarily inverse) and
inverse values. Since all operators in O are surjective (i.e., they can produce any
target value) for our selected semantics (e.g., ∼ 0 mod 0 = ∼ 0), it is not neces-
sary to select inconsistent random values. For other sets of operators, however,
this might be necessary. For the sake of completeness we therefore included the
selection of random values in the formal definition of backtracing steps.

Note that on the bit-level, the backtracing value for a selected input is
uniquely determined (see Proposition 7). Thus, the issue of value selection is
specific to the word-level. Further, when interpreting AIGs as word-level expres-
sions, the notion of backtracing steps on the bit-level as in Definition 6 exactly
matches the word-level notion as in Definition 23 using Proposition 14.

The word-level propagation strategy P is defined in exactly the same way as
for the bit-level (see Definition 9) except that the word-level notion of back-
tracing based on essential inputs and consistent value selection (Definition 23)
replaces bit-level backtracing based on controlling inputs (Definition 6), and the
set of valid moves P(σ) contains not only the leafs of all expanded propagation
traces but also their updated assignments, i.e., (v, α(v)) for a leaf v. Further im-
portant concepts defined on the bit-level in Section 3 can be extended naturally
to the word-level. These concepts include (expanded) paths and traces, leafs,
and trace extension. We omit formal definitions accordingly.
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The completeness proof on the word-level is almost identical to the bit-level
proof, except that the bit-level Proposition 7, which is substantial for the bit-
level proof of Lemma 10, requires more attention due to the more sophisticated
selection of backtracing values on the word-level.

Proposition 25. Let σ ∈ C be a (complete) consistent assignment, and let ω
be a satisfying assignment ω ∈ W. Given operator node o ∈ O and target value
t = ω(o) 6= σ(o), i.e., σ(o)  t. Then there exists a backtracing step w.r.t. σ
and t, which selects input n with o→ n and backtracing value x = ω(n) 6= σ(n).

Proof. First, assume o has an essential input w.r.t. σ. Then we select an arbitrary
essential input n of o. Since target value t = ω(o) 6= σ(o), we get σ(n) 6= ω(n)
by contraposition of Definition 12. Similarly, if o has no essential inputs, then
we select n as an arbitrary input with σ(n) 6= ω(n), which has to exist since
ω(o) 6= σ(o). In both cases, we can select x = ω(n) 6= σ(n) as backtracing value,
which is consistent for o w.r.t. σ and t since ω is consistent. Picking a random
value as backtracing value, which is the last case in Definition 23, can not occur
under the given assumptions since, as already discussed, ω is consistent on o. ut

With Proposition 25, the proof of the key Lemma 10 for completeness on the
bit-level can be lifted to the word-level by replacing each occurrence of gate g
with operator node o and the notion of “controlling” with “essential” input, and
further using Proposition 25 instead of Proposition 7, as discussed above.

Theorem 26. Theorem 11 and Lemma 10 also apply to the word-level setting,
and thus, propagation strategy P is also complete for the word-level.

As a side note, the problem of value selection during word-level backtracing
and subsequent word-level propagation is similar to the problem of making a
theory decision and propagating this decision in MCSat [37, 38].

5 Experimental Evaluation

We implemented our approach within our SMT solver Boolector and consider
two configurations Paig and Pw to be evaluated against [6] on the same set of
benchmarks1 (16436 total). Configuration Paig works on AIGs obtained after
bit-blasting by Boolector. Configuration Pw works directly on the bit-vector
formula, with inverse values prioritized over consistent values during backtrac-
ing with a propability of 99 to 1. As base case, we use the best configurations
Bb, Bprop and Bb+Bprop of the version of Boolector used in [6], where Bb is
its bit-blasting engine and Bprop implements the propagation-based approach
of [6]. As in [6], Bb+Bprop serves as a “virtual” sequential portfolio, i.e.,
Bprop is run for a certain time limit as a preprocessing step prior to invok-
ing Bb. The best portfolio setting in [6] used random walks for recovery and is

1 All experimental data of this evaluation can be found at http://fmv.jku.at/cav16.
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Bprop Paig Pw Bb Bb+Bprop Bb+Pw
time limit 10 sec 10 sec 10 sec 1200 sec 1200 sec 1200 sec

# solved 7539 (56) 6789 (14) 8012 (67) 14806 14862 14873
total time 90462 99442 86061 2611840 2575700 2562108

time limit 1 sec 1 sec 1 sec 1200 sec 1200 sec 1200 sec

# solved 7268 (38) 6016 (2) 7632 (60) 14806 14844 14866
total time 9544 11151 9106 2611840 2534471 2513348

Table 2: Numbers in parentheses indicate the number of instances solved by a
configuration within the given time limit, but not solved by Bb in 1200 seconds.

called Bb+Bprop+frw in [6]. We only compare against this best version, but
call it Bb+Bprop. Corresponding to Bb+Bprop, we introduce a “virtual” se-
quential portfolio configuration Bb+Pw, which combines Bb and Pw as above.

The benchmark set of [6] was compiled from all benchmarks with status
sat or unknown in the QF BV category of the SMT-LIB2 benchmark library,
where all benchmarks proved by Bb to be unsatisfiable within a time limit of
1200 seconds where excluded. Further excluded where all benchmarks solved by
Boolector via rewriting only as well as all benchmarks from the Sage2 family
that were not SMT-LIB v2 compliant due to the use of non-compliant operators.

All experiments were performed on a cluster with 30 nodes of 2.83 GHz Intel
Core 2 Quad machines with 8GB of memory using Ubuntu 14.04.3 LTS. Each
run is limited to use 7 GB of main memory. In terms of run time we consider
CPU time only and apply the same time limits as in [6], i.e., a limit of 1 and
10 seconds for the propagation-based approaches and a limit of 1200 seconds for
the bit-blasting configuration and its combinations. In case of a time out or a
memory out, the time limit is used as run time.

Table 2 summarizes the results, where the numbers given in parentheses
indicate the number of uniquely solved instances solved by a configuration within
the given time limit but not solved by Bb within 1200 seconds.

For propagation-based configurations, the two considered time limits are 1
and 10 seconds for both scenarios, i.e., within and without a sequential portfolio
setting. With a time limit of 10 seconds, our word-level configuration Pw out-
performs Bprop by 473 instances. Considering only instances solved within 1
second, Pw solves 364 more instances than Bprop.

Combining Bb with Pw into Bb+Pw with a time limit of 10 seconds for
the propagation-based configuration Pw improves the overall performance by
67 instances and outperforms Bb+Bprop by 11 instances. Restricting the time
limit for Pw to 1 second, Bb+Pw still improves performance by 60 instances,
with an even larger gap of 22 instances compared to Bb+Bprop.

In contrast to Bprop, Pw utilizes our new word-level notion of essential
inputs for path selection. Restricting Pw to select paths as in [6], i.e., based
on controlling inputs of bit-level operators only, solves 118 instances less. This

2 http://www.smt-lib.org
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shows that the notion of essential inputs indeed allows to prune the search space.
Restricting Pw to select inverse values only solves 41 instances less. Selecting
consistent values only, on the other hand, performs even worse, with 1456 less
solved instances. Prioritizing inverse values shows the best results.

Configuration Pw does not rely on restarts. Introducing restarts as employed
in [5] and [6] does not improve performance and even solves 19 instances less.
In case of multi-rooted DAGs, Pw randomly selects a yet unsatisfied root for
path propagation, instead of selecting roots based on the heuristics suggested
in [5] (and also employed in [6]). Introducing this heuristic in Pw, substantially
decreases performance with 323 less solved instances. These observations are
consistent with results obtained in SAT competitions by SAT solvers based on
the WalkSAT [39, 40] architecture, such as [23]. In terms of Paig, neither restarts
nor the root selection heuristic mentioned above have an impact on the number
of solved instances or the run time of Paig.

We experimented using different seeds for the random number generator
of Pw, where the number of solved instances with a time limit of 10 (1) seconds
ranged from 8012 (7596) to 8054 (7649). With a time limit of 10 (1) seconds
for Pw the number of solved instances of configuration Bb+Pw ranges from
14869 (14864) to 14874 (14869). Due to space constraints, a statistical analysis
on randomization effects is left to future work.

Overall, our new propagation-based technique Pw significantly outperforms
all other propagation-based configurations. Further, combined with a bit-blasting
engine it considerably improves performance in terms of the number of solved
instances, run time, and particularly w.r.t. instances solved within 1 second that
Bb was not able to solve even within 1200 seconds. The number of these uniquely
solved instances increased by a factor of 1.6 compared to previous work.

6 Conclusion

We extended and formalized a propagation-based local search procedure for
SMT, instantiated for bit-vector logics. Guided by a completeness proof, we
avoid brute-force randomization as in earlier work. This not only simplifies the
whole approach dramatically, but also improves performance. We further formal-
ized the notion of controlling inputs and backtracing from ATPG and extended
it to the word-level, by introducing the new concept of essential inputs.

Our procedure was evaluated on bit-level as well as word-level problems, but
can be applied to other than bit-vector logics as well, which is probably the most
interesting future work. Extending our techniques by introducing strategies for
conflict detection and resolution during backtracing as well as lemma generation
in order to obtain an algorithm that is able to prove unsatisfiability and not just
satisfiability is another intriguing direction for future work.

Finally we would like to thank Andreas Fröhlich for helpful comments, and
Holger Hoos for fruitful discussions on the relation between non-deterministic
completeness and the notion of probabilistically approximately complete (PAC).
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