
Boolector at the SMT Competition 2015
Aina Niemetz, Mathias Preiner, and Armin Biere

Institute for Formal Models and Verification
Johannes Kepler University, Linz, Austria

Abstract—This paper serves as solver description for our SMT
solver Boolector, entering the SMT Competition 2015 in three
different configurations. We only list important differences to
the earlier version of Boolector that participated in the SMT
Competition 2014 [2]. For further information we refer to [3] or
source code.

OVERVIEW

This year’s version of Boolector incorporates several im-
provements and additions compared to the version that entered
the SMT competition in 2014.

In the previous year, we had to rely on an older version
of Boolector in case of array extensionality, which last year’s
version of Boolector did not support. For this year’s version we
added support for array extensionality to Boolector’s lemmas
on demand for lambdas engine. We further improved the
lemmas on demand engine and added optimizations for lemma
generation, which improve the overall performance of the
solver. Finally, we use an internal version of our SAT solver
Lingeling, which is close to the version submitted to the SAT
race 2015, as back-end solver.

In the following, we discuss the most notable improvements
compared to the competition version of 2014.

IMPROVEMENTS

We added support for push/pop commands to the SMT2
parser, which enables Boolector to enter the QF BV division
of the application track this year.

We further added support for extensional arrays and im-
plemented two optimizations, which improve the lemma gen-
eration of the lemmas on demand engine for lambdas. The
first optimization tries to extract array patterns that can be
succinctly represented by means of lambda terms, which is
expected to improve Boolector’s performance particularly on
instances from symbolic execution. The second optimization
improves lemma generation by reducing the number of SAT
calls to the underlying SAT solver. In previous versions of
Boolector, every lemma generated entailed one SAT solver
call. With this optimization we now generate all lemmas for
the current candidate model prior to the next SAT solver call,
which considerably improves the runtime of Boolector.

Boolector now officially supports uninterpreted functions
with bit vector sorts, which enables Boolector to enter the
QF UFBV and QF AUFBV divisions this year.

CONFIGURATIONS

This year, we submit three configurations of Boolector
which are defined as follows.

Boolector (QF BV)
Since the current version of Boolector handles define-fun

commands lazily (as described in [4]), we enabled full beta
reduction to eagerly eliminate macros. We further enabled
unconstrained optimization for this configuration.

Boolector (QF AUFBV)
This configuration of Boolector will enter the QF ABV,

QF UFBV, and QF AUFBV divisions of the main track.
For this configuration we enabled unconstrained optimization
and disabled slice elimination and lazy bit blasting (lazy
synthesize). The two optimizations to our lemmas on demand
engine will affect this configuration, which is expected to
perform much better compared to last year’s version in terms
of runtime and number of solved instances.

Boolector (QF BV incremental)
This configuration is the incremental version of the QF BV

configuration with skeleton preprocessing disabled.

COPYRIGHT

Boolector has been originally developed by Robert Brum-
mayer and Armin Biere at the FMV institute. Since 2009 it
was maintained and extended by Armin Biere. Since 2012 it
is maintained and extended by Armin Biere, Aina Niemetz,
and Mathias Preiner.

LICENSE

For the competition version of Boolector we use the same
license scheme as introduced in 2013 for our SAT solver
Lingeling [1]. It allows the use of the software for academic,
research and evaluation purposes. It further prohibits the use
of the software in other competitions or similar events without
explicit written permission. Please refer to the actual license,
which comes with the source code, for more details.

REFERENCES

[1] A. Biere. Lingeling, Plingeling and Treengeling entering the SAT
Competition 2013. In A. Belov, M. Heule, and M. Järvisalo, editors,
Proc. of SAT Competition 2013, volume B-2013-1 of Department of
Computer Science Series of Publications B, University of Helsinki, pages
51–52, 2013.

[2] Aina Niemetz, Mathias Preiner, and Armin Biere. Boolector at the SMT
competition 2014. Technical report, FMV Reports Series, Institute for
Formal Models and Verification, Johannes Kepler University, Altenberg-
erstr. 69, 4040 Linz, Austria, 2014.

[3] Aina Niemetz, Mathias Preiner, and Armin Biere. Boolector 2.0. JSAT,
9:53–58, 2015.

[4] Mathias Preiner, Aina Niemetz, and Armin Biere. Lemmas on De-
mand for Lambdas. In Malay K. Ganai and Alper Sen, editors,
DIFTS@FMCAD, volume 1130 of CEUR Workshop Proceedings. CEUR-
WS.org, 2013.

Technical Report 15/1, June 2015, FMV Reports Series
Institute for Formal Models and Verification, Johannes Kepler University

Altenbergerstr. 69, 4040 Linz, Austria

https://doi.org/10.35011/fmvtr.2015-1

This paper may be used under the Creative Commons Attribution 4.0 licence.


