
Resolution-Based Certificate Extraction for QBF
(Tool Presentation)?

Aina Niemetz, Mathias Preiner,
Florian Lonsing, Martina Seidl, and Armin Biere

Institute for Formal Models and Verification
Johannes Kepler University, Linz, Austria

http://fmv.jku.at/

Abstract. A certificate of (un)satisfiability for a quantified Boolean for-
mula (QBF) represents concrete assignments to the variables, which act
as witnesses for its truth value. Certificates are highly requested for prac-
tical applications of QBF like formal verification and model checking. We
present an integrated set of tools realizing resolution-based certificate
extraction for QBF in prenex conjunctive normal form. Starting from
resolution proofs produced by the solver DepQBF, we describe the work-
flow consisting of proof checking, certificate extraction, and certificate
checking. We implemented the steps of that workflow in stand-alone tools
and carried out comprehensive experiments. Our results demonstrate the
practical applicability of resolution-based certificate extraction.

1 Introduction

Over the last 10 years, several approaches and tools supporting the generation
of certificates for quantified Boolean formulae (QBF) have been presented. An
overview of the status quo of 2009 is given in [6]. Initially, the main goal was
to use certificates for validating the results of QBF solvers instead of relying on
majority votes (only). Therefore, independent verifiers to check the output of
a QBF solver have been developed. Such solver outputs are either clause/cube
resolution proofs, or functions representing variable assignments. In case of so-
called Skolem/Herbrand functions as output, we gain further information on
the solution of a solved problem, e.g., the path to a bad state in case of model
checking. Their extraction, however, is not directly applicable if the successful
variant of DPLL style procedures for QBF is employed. In any case, most of
these tools and solvers are not maintained anymore.

More recently, the circuit solver CirQit [4] has been extended to produce
Q-refutations for true and false QBFs based on its dual propagation mecha-
nism. Due to the circuit representation of a formula, solving the negated formula
does not involve any expensive transformations. Furthermore, (partial) solution

? This work was partially funded by the Vienna Science and Technology Fund
(WWTF) under grant ICT10-018 and by the Austrian Science Fund (FWF) un-
der NFN Grant S11408-N23 (RiSE).

http://fmv.jku.at/

Input File
QDIMACS

QBF
Solving

Trace
QRP

Proof Extraction,
Checking

Certificate
Extraction

Proof
QRP

Certificate
AIGER

Skolemization /
Herbrandization

CNF
DIMACS

SAT
Solving

DepQBF QRPcheck

QRPcert CertCheck

PicoSAT

Fig. 1: Certification workflow.

strategies can be extracted. However, CirQit cannot exploit its full strength on
formulae in prenex conjunctive normal form (PCNF).

Based on the resolution generation tools discussed above, recently the pro-
totype ResQu [2], which implements an approach to extract Skolem/Herbrand
functions from resolution proofs, was presented. Given a resolution proof for true
or false QBF, such functions can be extracted in linear time.

In this paper, we present a complete framework for generating QBF cer-
tificates from resolution proofs obtained by the state-of-the-art solver DepQBF
[5]. We further performed a profound empirical study on the applicability of
resolution-based extraction of QBF certificates and discuss strengths and limi-
tations of this approach in detail.

2 The Certification Framework at a Glance

We provide a complete framework to certify and validate the results of state-of-
the-art QBF solver DepQBF [5], a dependency-aware search-based QBF solver for
QBFs in PCNF. The certification workflow is shown in Figure 1. The framework
consists of a chain of loosely coupled stand-alone tools on top of DepQBF, which
support both proof extraction and checking (QRPcheck) as well as certificate
extraction and validation (QRPcert, CertCheck, and PicoSAT). The components
of our framework are described as follows.

Trace Extraction. We instrumented DepQBF to output traces in our novel, text-
based QRP format.1 A trace represents the set of all resolution sequences involved
in generating learnt constraints in a search-based QBF solver. Our approach of
tracing is similar to [7], except that each single resolution step has exactly two
antecedents. This way, exponential worst-case behaviour during reconstruction
of resolvents from unordered lists of antecedents is avoided [3]. Alternatively, the
QIR format [1] used in [4] allows multiple antecedents but predefines the ordering
in which resolvents should be reconstructed. As far as resolution is concerned,
QRP proofs can be checked in deterministic log space, a desirable property of
proof formats suggested in [3]. Syntactically, QRP is a lightweight format as it
does not distinguish between (resolution steps over) clauses and cubes explicitly.

1 See also Sec. A in the appendix

Proof Extraction and Checking. QRPcheck is a proof checker for resolution-based
traces and proofs of (un)satisfiability in QRP format. Starting with the empty
constraint, QRPcheck extracts the proof from a given trace on-the-fly while
checking each proof step incrementally. This way, all parts of the trace irrelevant
for deriving the empty constraint are omitted. In case of a proof of satisfiability,
QRPcheck further provides the possibility to check that each initial (input) cube,
which was generated during constraint learning, can be extended to satisfy the
matrix. For this propositional check we are using the SAT solver PicoSAT.2 In
order to handle very large traces and proofs we map the input file to memory
using virtual memory mechanisms (“mmap”).

Certificate Extraction. QRPcert is a tool for extracting Skolem/Herbrand function-
based QBF certificates from resolution proofs in QRP format. It implements the
algorithm presented in [2], but traverses the resolution proof in the reverse topo-
logical order starting from the empty constraint. Hence, all irrelevant parts of
the proof are omitted similarly to proof extraction by QRPcheck. The extracted
certificates are represented as AIGs3, which are simplified by common basic sim-
plification techniques, including structural hashing and constant propagation.

SAT-Based Certificate Checking. The tool CertCheck transforms the given in-
put formula into an AIG and merges the result with the certificate by substi-
tuting each existentially (universally) quantified input variable with its Skolem
(Herbrand) function. The resulting AIG is first translated into CNF via Tseitin
transformation and then checked for being tautological (unsatisfiable). We val-
idate the correctness of the certificate by checking the resulting CNF with the
SAT solver PicoSAT.

3 Experiments

We applied our framework on the benchmark sets of the QBF competitions 2008
and 2010 consisting of 3326 and 568 formulas, respectively4. We considered only
those 1229 and 362 formulas solved by DepQBF within 900 seconds. Instead of
advanced dependency schemes, we used the orderings of quantifier prefixes in
DepQBF. All experiments5 were performed on 2.83 GHz Intel Core 2 Quad ma-
chines with 8 GB of memory running Ubuntu 9.04. Time and memory limits for
the whole certification workflow were set to 1800 seconds and 7 GB, respectively.

Out of 362 solved instances of the QBFEVAL’10 benchmark set, our frame-
work was able to check 348 proofs and extract 337 certificates, of which 275 were
validated successfully. DepQBF required almost 5000 seconds for solving and
tracing the 275 instances that were validated by PicoSAT, whereas the certifica-
tion of those instances needed about 5600 seconds. On 14 instances, QRPcheck

2 http://www.fmv.jku.at/picosat
3 ASCII AIGER format: http://fmv.jku.at/aiger/FORMAT.aiger
4 Available at http://www.qbflib.org/index_eval.php
5 Log files and binaries are available from http://fmv.jku.at/cdepqbf/.

http://www.fmv.jku.at/picosat
http://fmv.jku.at/aiger/FORMAT.aiger
http://www.qbflib.org/index_eval.php
http://fmv.jku.at/cdepqbf/

ran out of memory, as the file size of the traces produced by DepQBF were 16
GB on average with a maximum of 27 GB. QRPcert ran out of memory on 11
proofs with an average file size of 3.6 GB and a maximum of 5.9 GB.

The largest number of instances (62) were lost during the validation process.
PicoSAT timed out on 17 instances and ran out of memory on 45 instances. From
62 instances that were not validated by PicoSAT, 51 instances are part of the
’mqm’ family, which consists of a total of 128 formulae with 70 instances being
unsatisfiable and 58 satisfiable. PicoSAT was able to validate all 70 unsatisfiable
instances, but did not succeed in validating even one satisfiable instance. This is
due to the fact that proofs of satisfiability tend to grow much larger than proofs
of unsatisfiability mostly because of the size of the initial cubes. For example,
the proofs of the 51 instances that were not validated by PicoSAT have 40000
intial cubes on average, where each cube has an average size of 970 literals.

We evaluated the runtime of each component of the framework w.r.t. the 275
certified instances. First, we compared the time required by DepQBF for solving
and tracing to the aggregated time needed by QRPcheck, QRPcert, CertCheck,
and PicoSAT for certification. Figure 2a shows that the whole certification pro-
cess requires marginally more time than DepQBF on average. It also shows that
only a few instances are responsible for the certification process being slower in
total runtime than DepQBF. In fact, three instances require more than 59% of
the total certification runtime, in contrast to 34% of total solving time.

We further compared the runtime of each component of the framework, which
is depicted in Figure 2b. More than 77% of the certification time is required for
validating the certificates with PicoSAT, where three instances require over 58%
of the total certification time. Extracting and checking proofs with QRPcheck
requires about 20% of the total certification time, which typically involves heavy
I/O operations in case proof extraction is enabled. Considering all checked in-
stances, disabling proof extraction saves about 54% of the runtime of QRPcheck.
The extraction of certificates and the CNF conversion takes a small fraction of
the total certification time, which is approximately 2% and 1%, respectively.

Table 16 summarizes the results. Certification heavily depends on whether
an instance is satisfiable or unsatisfiable, especially for certificate validation. On
average over 91% of the solved unsatisfiable instances were certified in about 61%
of the solving time. For 74% of the solved satisfiable instances, the certification
took over four times the solving time.

Certificate validation requires most of the time. Particularly vaildating sat-
isfiable instances is time-consuming. Given the QBFEVAL’10 set, traces of sat-
isfiable instances are on average 2-3 times larger than traces of unsatisfiable
instances and further contain in the worst case 13 million steps with 1.4 billion
literals and 18 million steps with 1.3 billion literals, respectively. The difference
between proofs of satisfiability and unsatisfiability is even larger by a factor of
eight on average.

An interesting property of the generated AIG certificates is the number of
and-gates involved, where certificates of satisfiability are on average (and in the

6 See also Tables 2 and 3 in the appendix for detailed statistics.

 0.5

 1

 5

 10

 25

 50

 100

 250

 500

 1000

 140 160 180 200 220 240 260

 0.5

 1

 5

 10

 25

 50

 100

 250

 500

 1000

T
im

e
 (

s
e
c
o
n
d
s
)

QBFEVAL 2010 benchmarks: certified formulae, sorted by runtime

QBF Solving

Certification

(a) Solving vs. certification

 0.5

 1

 5

 10

 25

 50

 100

 250

 500

 1000

 140 160 180 200 220 240 260

 0.5

 1

 5

 10

 25

 50

 100

 250

 500

 1000

T
im

e
 (

s
e
c
o
n
d
s
)

QBFEVAL 2010 benchmarks: certified formulae, sorted by runtime

DepQBF

QRPcheck

QRPcert

CertCheck

PicoSAT

(b) Tool comparison

Fig. 2: Runtime comparison, all instances with solving time ≥0.2s considered.

median) over 100 times larger than certificates of unsatisfiability. The maximum
number of and-gates generated for AIG certificates of satisfiability and unsatis-
fiability are 147 million resp. 10 million and-gates. Compared to certificates of
unsatisfiability, CNFs generated for validating certificates of satisfiability are on
average up to 70 times larger and contain in the worst-case over 10 times more
clauses with a maximum of 440 million clauses.7 On certain instances, the file
size of traces were enourmous with almost 52 GB and 27 GB in the worst-case
in the QBFEVAL’08 and QBFEVAL’10 benchmark sets, respectively.

Finally, we investigated the 14 instances (4 sat., 10 unsat.) of the QBFE-
VAL’10 benchmark set that were not checked by QRPcheck due to given memory
constraints. The corresponding traces had an average file size of 16 GB (with 27
GB as a maximum) and 17 million steps with 3.3 billion literals on average. For
these 14 instances, we lifted the previous memory limit of 7 GB and rerun the
experiments on a machine with 96 GB and a time limit of 3600 seconds. As a
consequence, we were able to certify 12 out of 14 instances. On two instances,
PicoSAT timed out while validating CNFs with 3 and 30 million clauses, respec-
tively. Certification of the other 12 instances took less than 4600 seconds in total,
whereas DepQBF required over 7700 seconds for solving and tracing altogether.

The average (median) time for the whole workflow on all 14 instances was
1412 (1014) seconds. File sizes of the extracted proofs were ranging from 85%
to 0.0001% w.r.t. the trace size with a maximum of 14.6 GB and a minimum of
13 kB. The average (median) number of steps was 18 (10) million in the traces,
and 4 (0.1) million in the extracted proofs. The ratio of proof size over trace size
in the number of steps for each of the 14 instances was 0.23 on average. As an
extreme case, the certified satisfiable instance blocks enc 2 b3 ser--opt-9 -

shuffled.qdimacs resulted in a trace of more than 50 million steps and 18 GB
file size for which a proof of only 38 (!) steps and 47 kB file size was extracted.
The average (median) memory usage for the whole workflow was 19 (18) GB
with a maximum of 28 GB.

7 See also Tables 4 and 5 in the appendix for detailed statistics.

Table 1: Runtime comparison, runtime considers validated instances only.
Instances Total Time [s]

sv ch ex va DepQBF QRPcheck QRPcert PicoSAT

2008
sat 494 476 464 397 3502.9 911.6 95.3 13874.1

unsat 735 690 685 673 9863.7 2938.1 831.8 2639.8
total 1229 1166 1149 1070 13366.6 3849.7 927.1 16513.9

2010
sat 157 153 143 86 701.8 80.1 30.9 3247.0

unsat 205 195 194 189 4241.9 1011.5 86.8 1090.0
total 362 348 337 275 4943.7 1091.7 117.6 4337.0

4 Discussion

In this paper, we presented the first framework for complete and robust certi-
fication of QBF using the state-of-the-art QBF solver DepQBF. We presented
tools for proof extraction, proof checking, certificate extraction and certificate
validation. We further performed an extensive evaluation on recent benchmark
sets, which shows that our framework is able to extract certificates for over 90%
of solved instances. Further, we were able to validate over 80% of extracted
certificates, which all were proved correct.

In future work, we consider to extend DepQBF to maintain proofs internally
in order to extract certificates directly from the solver. We also plan to extend
QRPcert to support advanced dependency schemes as applied in DepQBF. Fur-
ther, we want to improve the process of certificate validation as it is considered
to be a bottleneck in the current framework. We believe that this technology
will finally actually enable the application of QBF solving in practice, both in
already proposed as well as new applications.

References

1. QIR Proof Format (Version 1.0). Website. http://users.soe.ucsc.edu/~avg/

ProofChecker/qir-proof-grammar.txt.
2. V. Balabanov and J. R. Jiang. Resolution Proofs and Skolem Functions in QBF

Evaluation and Applications. In CAV’11, volume 6806 of LNCS. Springer, 2011.
3. A. Van Gelder. Verifying Propositional Unsatisfiability: Pitfalls to Avoid. In

J. Marques-Silva and K. A. Sakallah, editors, Proc. of SAT’07, volume 4501 of
LNCS, pages 328–333. Springer, 2007.

4. A. Goultiaeva, A. Van Gelder, and F. Bacchus. A Uniform Approach for Generating
Proofs and Strategies for Both True and False QBF Formulas. In IJCAI’11, pages
546–553. IJCAI/AAAI, 2011.

5. F. Lonsing and A. Biere. Integrating Dependency Schemes in Search-Based QBF
Solvers. In SAT, LNCS, pages 158–171. Springer, 2010.

6. M. Narizzano, C. Peschiera, L. Pulina, and A. Tacchella. Evaluating and Certifying
QBFs: A Comparison of State-of-the-Art Tools. AI Commun., 22(4):191–210, 2009.

7. Y. Yu and S. Malik. Validating the Result of a Quantified Boolean Formula (QBF)
Solver: Theory and Practice. In ASP-DAC, pages 1047–1051. ACM Press, 2005.

http://users.soe.ucsc.edu/~avg/ProofChecker/qir-proof-grammar.txt
http://users.soe.ucsc.edu/~avg/ProofChecker/qir-proof-grammar.txt

Appendix

A QRP Format

trace = preamble { quant_set } { step } result EOF.

preamble = { comment } header.

comment = "#" text EOL.

header = "p qrp" pnum pnum EOL.

quant set = quantifier { var } "0".

quantifier = "a" | "e".

var = pnum.

step = idx literals antecedents.

idx = pnum.

literals = { lit } "0".

lit = ["-"] var.

antecedents = [idx [idx]] "0".

result = "r " sat EOL.

sat = "sat" | "unsat".

text = ? a sequence of non-special ASCII chars ?.

pnum = ? a 32-bit signed integer > 0 ?.

EOL = ? end-of-line marker ?.

EOF = ? end-of-file marker ?.

Fig. 3: The QRP format in Extended Backus-Naur Form (EBNF).

B QRPcheck

1 function check (Step s)

2 {

3 if (is_visited (s) or is_initial (s))

4 return OK

5
6 c ← resolve_and_reduce (s)

7
8 if (c = INVALID)

9 return ERROR

10
11 if (check_constraint (s, c) = ERROR)

12 return ERROR

13
14 if (check (get_first_antecedent (s)) = ERROR)

15 return ERROR

16 else if (is_resolution_step (s))

17 return check (get_second_antecedent (s))

18
19 return OK

20 }

Fig. 4: Top-level view of the proof checking algorithm in QRPcheck.

Table 2: QBFEVAL’10 family overview of certification workflow.

Family
Instances Time Solv. [s] Time Cert. [s]

sv ch ex va total avg med total avg med

Abduction 48 48 48 48 48.3 1.0 0.0 21.4 0.4 0.1
Adder 0 0 0 0 0.0 0.0 0.0 0.0 0.0 0.0
blackbox-01X-QBF 43 36 36 36 531.3 14.8 0.2 226.4 6.3 0.3
blackbox design 0 0 0 0 0.0 0.0 0.0 0.0 0.0 0.0
Blocks 4 3 3 3 11.4 3.8 0.1 310.5 103.5 0.1
BMC 12 12 12 12 34.4 2.9 0.5 165.1 13.8 3.4
Chain 0 0 0 0 0.0 0.0 0.0 0.0 0.0 0.0
circuits 2 2 2 2 30.2 15.1 15.1 4.4 2.2 2.2
conformant 5 3 3 3 24.7 8.2 0.1 121.5 40.5 0.2
Connect4 8 8 8 8 40.8 5.1 0.1 13.8 1.7 1.5
Counter 2 2 2 2 229.6 114.8 114.8 20.3 10.2 10.2
Debug 0 0 0 0 0.0 0.0 0.0 0.0 0.0 0.0
evader-pursuer 10 9 9 9 719.5 79.9 0.7 164.8 18.3 2.1
FPGA * FAST 2 2 2 2 0.2 0.1 0.1 0.5 0.3 0.3
FPGA * SLOW 1 1 1 0 0.0 0.0 0.0 0.0 0.0 0.0
Impl 1 1 1 1 0.0 0.0 0.0 0.0 0.0 0.0
jmc quant 0 0 0 0 0.0 0.0 0.0 0.0 0.0 0.0
mqm 128 128 121 70 1227.0 17.5 0.6 84.0 1.2 0.4
pan 24 24 21 14 1785.3 127.5 9.0 3103.8 221.7 14.6
Rintanen 1 1 1 1 12.8 12.8 12.8 3.5 3.5 3.5
Sakallah 0 0 0 0 0.0 0.0 0.0 0.0 0.0 0.0
Scholl-Becker 11 10 10 10 30.4 3.0 0.2 30.9 3.1 0.5
SortingNet 6 5 5 4 187.4 46.9 3.7 112.8 28.2 18.9
SzymanskiP 0 0 0 0 0.0 0.0 0.0 0.0 0.0 0.0
tipdiam 3 2 1 1 0.0 0.0 0.0 0.0 0.0 0.0
tipfixpoint 9 9 9 9 2.2 0.2 0.1 6.1 0.7 0.4
Toilet 40 40 40 38 23.2 0.6 0.0 686.0 18.1 0.0
VonNeumann 2 2 2 2 4.9 2.5 2.5 506.0 253.0 253.0

Total 362 348 337 275 4943.7 18.0 0.2 5581.7 20.3 0.3

C Evaluation Details

Table 2 and Table 3 show the aggregated results of the QBFEVAL’10 and QBFE-
VAL’08 benchmarks set grouped by family. The first column contains the num-
ber of instances solved by DepQBF (sv), number of proofs checked by QRPcheck
(ch), number of certifices extracted by QRPcert (ex) and validated by PicoSAT
(va). We omit the number of CNFs generated by CertCheck as it is equal to
the number of certificates extracted. The second and third columns indicate the
runtime required for solving and certifying all instances that were successfully
validated by PicoSAT under given time and memory constraints. Note that the
time required for solving includes tracing (DepQBF), whereas the time required
for certification includes proof extraction and checking (QRPcheck), certificate
extraction (QRPcert), and certificate validation (CertCheck and PicoSAT).

Table 3: QBFEVAL’08 family overview of certification workflow.

Family
Instances Time Solv. [s] Time Cert. [s]

sv ch ex va total avg med total avg med

Abduction 284 283 283 283 562.4 2.0 0.1 1139.2 4.0 0.1
Adder 5 5 5 5 1.4 0.3 0.0 6.5 1.3 1.0
blackbox-01X-QBF 315 282 279 279 3377.7 12.1 0.1 1514.7 5.4 0.2
blackbox design 1 1 1 1 0.4 0.4 0.4 0.7 0.7 0.7
Blocks 11 10 10 10 129.0 12.9 0.7 1548.9 154.9 0.1
BMC 81 80 80 80 3277.6 41.0 0.4 1121.0 14.0 0.7
Chain 10 8 6 3 6.9 2.3 1.9 1643.6 547.9 260.5
circuits 5 4 4 4 3.0 0.8 0.6 0.5 0.1 0.1
conformant 11 9 9 8 197.0 24.6 2.2 124.1 15.5 0.7
Counter 10 10 10 10 130.9 13.1 0.0 15.3 1.5 0.0
Debug 1 1 1 0 0.0 0.0 0.0 0.0 0.0 0.0
DFlipFlop 10 10 10 10 1.9 0.2 0.1 24.5 2.5 0.3
evader-pursuer 16 14 14 14 332.8 23.8 0.2 51.5 3.7 1.5
FPGA * FAST 5 5 5 5 0.7 0.1 0.1 2.9 0.6 0.1
FPGA * SLOW 3 3 3 1 9.1 9.1 9.1 0.5 0.5 0.5
Impl 10 10 10 10 0.0 0.0 0.0 0.0 0.0 0.0
irqlkeapclte 0 0 0 0 0.0 0.0 0.0 0.0 0.0 0.0
jmc quant 0 0 0 0 0.0 0.0 0.0 0.0 0.0 0.0
MutexP 3 3 3 2 0.1 0.0 0.0 9.2 4.6 4.6
pan 162 157 152 114 3289.7 28.9 0.4 8080.4 70.9 0.3
Rintanen 2 2 2 2 39.3 19.6 19.6 23.4 11.7 11.7
Sakallah 1 1 1 1 0.1 0.1 0.1 1.5 1.5 1.5
Scholl-Becker 38 35 35 35 183.4 5.2 0.1 855.3 24.4 0.0
SortingNet 49 44 44 33 1069.8 32.4 1.8 1347.2 40.8 1.9
SzymanskiP 2 2 2 2 0.0 0.0 0.0 0.0 0.0 0.0
terminator 0 0 0 0 0.0 0.0 0.0 0.0 0.0 0.0
tipdiam 78 76 73 59 10.3 0.2 0.0 1853.2 31.4 0.0
tipfixpoint 73 70 69 68 707.6 10.4 0.1 724.6 10.7 0.4
Toilet 8 7 7 6 28.6 4.8 0.4 211.5 35.2 0.0
Tree 12 11 10 6 0.4 0.1 0.0 420.8 70.1 0.3
uclid 0 0 0 0 0.0 0.0 0.0 0.0 0.0 0.0
VonNeumann 10 10 10 10 6.5 0.6 0.4 665.6 66.6 15.2
wmiforward 13 13 11 9 0.0 0.0 0.0 0.1 0.0 0.0

Total 1229 1166 1149 1070 13366.6 12.5 0.1 21386.4 20.0 0.2

 0.5

 1

 5

 10

 25

 50

 100

 250

 500

 1000

 600 700 800 900 1000

 0.5

 1

 5

 10

 25

 50

 100

 250

 500

 1000
T

im
e
 (

s
e
c
o
n
d
s
)

QBFEVAL 2008 benchmarks: certified formulae, sorted by runtime

QBF Solving

Certification

(a) Solving vs. certification

 0.5

 1

 5

 10

 25

 50

 100

 250

 500

 1000

 600 700 800 900 1000

 0.5

 1

 5

 10

 25

 50

 100

 250

 500

 1000

T
im

e
 (

s
e
c
o
n
d
s
)

QBFEVAL 2008 benchmarks: certified formulae, sorted by runtime

DepQBF

QRPcheck

QRPcert

CertCheck

PicoSAT

(b) Individual tools

Fig. 5: Run time overview, all instances with solving time ≥0.1s considered.

Table 4: Comparison of traces, proofs, AIGs and CNFs. Avg. and med. values.
Trace Proof AIG CNF

s̄ l̄ l̃ s̄ l̄ l̃ ā ã c̄ c̃

2008
sat 324k 66M 242k 127k 33M 32k 2M 4k 6M 51k

unsat 380k 60M 379k 155k 19M 58k 68k 58 409k 40k
total 357k 62M 334k 144k 25M 43k 872k 197 3M 45k

2010
sat 785k 200M 17M 308k 117M 626k 20M 24k 59M 183k

unsat 376k 70M 1M 135k 14M 146k 170k 193 846k 55k
total 556k 127M 2M 211k 60M 175k 8M 369 25M 71k

Table 5: File size comparison in kilobyte (k), megabyte (M) and gigabyte (G).
Trace Proof AIG CNF

avg med avg med avg med avg med

2008
sat 823.1M 1.6M 145.1M 154.4k 49.2M 68.5k 133.7M 779.0k

unsat 1.4G 3.0M 89.8M 351.5k 1.5M 14.9k 7.4M 626.1k
total 1.2G 2.3M 112.4M 272.5k 20.7M 26.5k 58.4M 675.0k

2010
sat 1.3G 78.7M 518.4M 2.8M 449.4M 378.9k 1.2G 2.8M

unsat 1.1G 9.2M 66.7M 729.9k 3.6M 13.8k 15.5M 874.7k
total 1.2G 11.2M 265.3M 1.0M 192.7M 23.6k 524.2M 1.1M

We also compared average and median size of the generated files in terms of
number of Q-resolution and reduction steps (s), number of literals (l), number
of and-gates (a) and number of clauses (c) as shown in Table 4. The results
show that proofs are on average over 50% smaller than the traces produced by
DepQBF. A comparison of the actual file sizes of the generated files is shown in
Table 5.

